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ABSTRACT

This paper proposes a simple scheme to decompose an n×n nonpositive
definite matrix, A, associated with simultaneous equations, A X = B, into
a triple-factors (lower triangular, diagonal, and upper triangular matrices),
i.e., Ã = L D U, without interchanging rows or columns of A, but with
A expanded with new rows and new columns to an m×m matrix Ã. Whenever
a near-zero diagonal element, say āii, is encountered and used as a pivoting
element, an appropriate positive real number, say p, is added to this diagonal
element, and a new term —pxk is also added to the i-th equation, where xk

is a new variable called "dummy variable''. If we also add a new equation
—pxi + pxk = 0 to enforce the new added variable xk equal to xi then the
modified i-th equation has the same effect as the original equation. Therefore,
the original solution X can be found directly from the expanded solution of
the modified expanded equation. The method is very useful in solving the
following problems: (1) nonlinear problems near the limit state, (2) postbuckl-
ing analysis, (3) system equations with constraint conditions, and (4) getting
eigenvectors from eigenvalues.

AX=B,

* Correspondence addressee
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INTRODUCTION

In order to preserve the sparseness of the matrix
A in solving the following linear equations:

AX = B

(A + c X = B (4)

where et is the i-th column of the identity matrix, and
then getting the original solution X by using Sherman-
Morrison-Woodbury formula [2] as follows:

or

an al2

... an

X2

(\b)

the matrix A is decomposed into a lower triangular matrix
L, a diagonal matrix D, and an upper triangular matrix
U, i.e., A = LD U. If a near-zero pivoting diagonal
element is encountered, the interchanging of rows or col-
umns may be required to make the diagonal pivoting ele-
ment nonzero. This will, however, change the profile of
the sparse matrix A and cause some difficulties in storing
the matrix elements.

Sharifi and Popov [3] proposed a method to modify
the matrix A to positive definite by adding a matrix
c B BT, where c is a positive constant. Therefore, they
solve X from the following equation:

(A + cBBT)X = B

and then get the original solution X by

X = X (1 - cBTX)-1

(2)

(3)

This method is very simple to apply but has the
disadvantages of: (1) changing the matrix from sparse to
dense for the arbitrary general constant vector B, and (2)
losing the capability to solve for more than one constant
vector B.

Stewart (4] also proposed a method to avoid inter-
changing rows and columns of the matrix by adding a
positive number, c, to the diagonal element, au, and
solve X from the following equation:

" 1

X = ( A"1 -
A'1cejA - 1

(5a)

= X - (
CX;

c et ' A" 1 et - 1
) A"1 et (5b)

where xt is the i-th element of the solution vector X, A
= A + c e{ e{

 T, and A"1 e{ is the i-th column of the
matrix A"1, which can be solved from the decomposed
matrices of A.

This method may cause problems if the denominator
in Eq. (5) is zero, which may happen when matrix A is
singular. And the method is rather complicated if more
than one diagonal element is modified.

The method proposed in this paper not only
modifies the diagonal elements but also adds new variables
and new equations, such that the modified equations have
the same solution as the original equations for the original
variables. Therefore the matrix decomposition and the
substitutions are simple and straightforward. If the matrix
is modified only by adding some numbers to the diagonal
elements, as proposed by Stewart, then the modified equa-
tions will have different solution from the original equa-
tions. Therefore the original solution can not be obtain-
ed directly.

THE ALGORITHM

It is clear that the following augmented equations
have the same solution as the original Eq. (1) for the
original n-variables:
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=

bl

bi

bj

bn

0

0

(6)

The pk is added to the diagonal only when a near-zero
diagonal element is to be used as a pivoting element.

To get the physical meaning of the modification,
we use a structure system as an example. In structural
terminology, a truss element called a dummy link with

the stiffness matrix | 1 is added to the original

structural system. The dummy link connects a system
degree to a new degree, which is not in the original system
and therefore called a dummy degree. If no loading is
applied to the dummy degree, the displacement of the
dummy degree must be equal to the displacement of the
linked system degree, and the displacement of the system
degree will not be affected by the added dummy link and
the dummy degree.

CHOICE OF P

In this section, we will discuss how to choose the
magnitude of the p. During the computation of the
decomposed diagonal element djj, i.e.,

(7)

we can say that the new djj has lost (at least) i-bits
(binary digits). Therefore, we can choose/? = djj for
adding to the diagonal element djj, and this will maximize
the accuracy of the pivoting element and minimize the
truncation error of the diagonal element djj. For this p,
it will truncate the s least significant bits of djj, which is
just the inaccurate part of djj.

Note that the correct number of bits, s, may be
larger than that from Eq. (9), if the dominate terms of
ijAkUkj has lost some bits. To account for these errors,
we must trace the error of every element. This will re-
quire a considerable amount of working space and com-
putations. Therefore, in practice, we do not make any
effort to trace the accuracy of each element. The simplest
thing we can do is to keep every pivoting element as ac-
curate as possible.

Next, we must point out that, if the original matrix
is singular, i.e., t = n — rank (A) > 0, then it will have
a t x t null submatrix in the lower right corner of the three
decomposed matrices L, D and U. In that case, if we
try to modify the first zero element in the decomposed
diagonal matrix by adding p, then after eliminating, the
zero will appear in the newly added last diagonal and it
still have a t x t null submatrix. Therefore, we need not
make any modification to the diagonaTelements in the last
t X t null submatrix.

we can get the maximum intermediate value, -
the following equation:

jj, from

= max
1 - 1

- E
it=i

kj I . « = 1,2, ...,j)

(8)

where ljk, d& and ukj are the elements in the decompos-
ed lower triangular matrix L, diagonal matrix D, and up-
per triangular matrix U. And if

APPLICATION EXAMPLES

To illustrate the applications of the proposed
method, two numerical examples are shown in this
section.

Example 1:

An important application is to solve system equa-
tions including constrained equations. The general for-
mulations can be stated as:

Minimize x = y - A r F (10a)

~l S a < 1 (9) Subject to G A - H = 0
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where K is a n x n stiffness matrix, A is a displacement
vector, F is a loading vector, G is a m X n matrix, and
H is a constant vector. This is equivalent to find the
stationary point of the Lagrangian:

L (A, A) = - ATF + AT (G A - H)

(11)

from the following stationary conditions:

K
G

GT

0
A
A

F
H

(12)

where the Lagrange multiplier X,- represents a load fac-
tor of the constraint force vector g", i.e., the i-th column
ofG r .

The difficulty with this problem is that the matrix
K may be singular, and the system matrix is typically non-
positive definite. A procedure had been proposed by
Chang and Lin [1] to solve this problem, but it is too com-
plicated to implement.

To keep the example small, we will just analyze
a structure with only one truss element, and the structure
is subject to the constraint condition of 5t + 52 = 0,
where 6j and b2 are the displacements of the end nodes
of the truss element. The equation to solve this problem is

(13)

The 3x3 matrix A is expanded to a 4x4 matrix A and
decomposed as

1
1
1

- 1
1
1

1
1
0

h
X

=
1
0
0

1
- 1

1

0

- 1
1+1

1

- 1

1
1

0

0

0
- 1

0

1

1
- 1

1

1

2

- 1

1

- . 4 1

- 5

.8

1 - 1

1

1

2

1

- 1

- . 4

1

(14)

By forward and backward substitutions, the solution for
the expanded constant vector 8 = [1,0,0,0]' is % =
[0.25, - . 2 5 , .5, - .25] ' , and then the original solution
is X = [0.25, - . 2 5 , .5]'.

Example 2:

The second important application is to solve
simultaneous equations with singular matrices. These
may encountered in nonlinear analysis at limit states,

or in eigenvector calculations from the eigenvalue. The
applicability is very obvious. So we just illustrate a very
simple numerical example as follows:

0
1
1

1 1
1 0
0 - 1

*1
x2

*3

=

0
0
0

(15)

The 3x3 matrix A is expanded to a 5x5 matrix A and
decomposed as

-
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1

1

- 1

0+1
1
1

- 1

1

- 1

1

- 1

1
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0
0
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(16)
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and the solution of the expanded equations can be solved
from

NOMENCLATURE

1
- 1

1

- 1
1

2

3

1

- 1
1

3

1
0

*1

x2

x3

x4

. x 5 .

_

0
0

0

0
0

or

Xl

x2

H

= ~X5

0
1

1

3

1

1 1 - 1
1 - 1 1

1 - —
3

(17)

By backward substitutions, the solution for the expanded
equations is

x1
2

3
= -x5

1
_ 1

1

1

or

x >

x2

X3
XA

= ~X5

1
- 1

1
1

- 1

(18)

and then the original solution is X = —x2 [1, —1, 1]'.

CONCLUSIONS

The method proposed in this paper has the follow-
ing advantages:
(1) No interchange of rows or columns is required.

Sparseness is preserved, thus making this method very
suitable for large systems.

(2) By adding a suitable positive number to the near-zero
diagonal element, the accuracy of the pivoting ele-
ment can be retained.

(3) The method is so simple and straightforward that it
can easily be implemented in the general solver of
the large skyline matrix as a general and standard
feature.

A
B
D
ei
F
G
H
K
L

P
U
X

Greek

A
A

an n X n matrix
a constant vector
a diagonal matrix
the i-th column of the identity matrix /
a loading vector
a n r a x n matrix
a constant vector
a stiffness matrix
a lower triangular matrix
an added real number
an upper triangular matrix
a solution vector

symbols

a displacement vector
a Lagrange multiplier vector
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