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Support motion of a finite bar with an
external spring

Jeng-Tzong Chen1,2,3,4,5, Hao-Chen Kao1, Ying-Te Lee1 and Jia-Wei Lee6

Abstract
In this paper, we gave the vibration analysis of a finite bar with an external spring on one side and the support motion on the
other side. Two analytical methods, the mode superposition method in conjunction with the quasi-static decomposition
method and the method of characteristics using the diamond rule, were employed to solve this problem. Both advantages
and disadvantages of two methods were discussed. It is interesting to find that the mode superposition method can capture
the silent area in terms of sum of an infinite series while the method of characteristics using the diamond rule can exactly
derive the dead zone. Besides, it is found that discontinuities always occur at the location on the characteristic lines.
Discussions of direct and inverse problems are also addressed.
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Introduction

Wave propagation is very important in physics and mechanics because there are various engineering problems which can
be modeled by using the wave equation. Many researchers solved this problem by using various methods, for example, the
mode superposition technique,1 the method of separation variables,2,3 the method of quasi-static decomposition,3,4 the
method of the diamond rule,3,5 the image method,5 the finite element method (FEM),6 the boundary element method
(BEM),7 and the meshless method.8

The Rayleigh-damped Bernoulli–Euler beam subjected to multi-support excitation and the string subjected to support
motions have been studied by using many methods.3,4 Mindlin and Goodman9 proposed the quasi-static decomposition
approach. D’Alembert’s solution provides an exact solution. Method of characteristics can be found in the textbook of
Farlow.10 It is widely employed to solve various kinds of problems, for example, water hammer.11 The diamond rule which
is based on D’Alembert’s solution was proposed by John12 in 1975 and was mainly used to solve the wave problem. The
diamond rule has been employed to solve the one-dimensional wave problem of an infinite or a semi-infinite string attached
by a mass, spring, or damper5 and a finite string.3 Besides, the animation was also given in.5

It is necessary to derive the eigenfunctions in advance to obtain the transient response of the bar13 if the mode su-
perposition approach is considered. Mathematically speaking, the series solution of the dynamic response of the bar can be
obtained by using the method of separation variables in conjunction with a truncated series to approximate the real
response.2 The free vibration problem of a finite bar with an external spring has been studied.14
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Besides, the instability is a crucial issue in dynamics. Tian and He15–19 investigated on the instability of the micro-
electromechanical system (MEMS). Nonlinear effect is an interesting and practical issue. In this paper, two methods, the
mode superposition method in conjunction with the quasi-static decomposition method and the method of characteristics
using the diamond rule, are based on the linear theory. More efforts should be done to extend this approach to nonlinear
problem. If transforming a nonlinear PDE to a linear PDE is possible, our approach can be directly applied.

In engineering practice, real cases can be always categorized to two kinds, direct and inverse problems. Regarding the
inverse problem, an ill-posed model is always required to be regularized.20,21 For example, deconvolution of the site
response analysis was done by using the Cesàro sum in conjunction with the L-curve.22,23 Some researchers also solved the
inverse problem on vibration problems24 or the Laplace equation.25 As shown in Figures 1(a), a finite bar with a spring end
(right) subject to the support motion (left) is a direct problem which can be solved by using the well-posed model. On the
other hand, in Figure 1(b), the support motion is changed to a free end. If the boundary condition is simultaneously specified
for the displacement history and the free traction at the left end, this over-specified boundary condition results in an inverse
problem. Therefore, it yields an ill-posed model, although we focus on the support motion of Figure 1(a) only. However,
why Figure 1(b) is an ill-posed model can be detected by using the present approach of the diamond rule. For the direct
problem of Figure 1(a), the support displacement history, a(t), can be arbitrarily specified by the experiment. The unique
solution can be obtained and the reaction of axial force history can be correspondingly obtained. However, the arbitrary a(t)
in Figure 1(b) may result in nonzero traction at the free end. This supports that the solution may not exist. Ill-posed model
may have three outcomes, nonexistence, non-uniqueness and instability of solution.

The main concern of this paper is to find an efficient way to solve the vibration problem of the finite bar with an external
spring on one side and the support motion on the other side. We employ two methods, including the series solution with the
quasi-static decomposition method and the method of the diamond rule. Advantages and disadvantages of both methods
will be investigated in this paper.

Problem statements and methods of solutions

We consider a finite bar with an external spring as shown in Figure 1(a). The governing equation for the vibration
problem of finite bar is shown below:

c2
∂2uðx,tÞ
∂x2

¼ ∂2uðx,tÞ
∂t2

, 0 < x < L, t > 0 (1)

where c ¼
ffiffiffiffiffiffiffi
E=ρ

q
and uðx,tÞ denote the wave speed and displacement in the x direction, respectively. The symbols

E, ρ and L denote Young’s modulus, density, and length of the bar, respectively. The initial displacement and velocity
conditions are

uðx,tÞjt¼0 ¼ fðxÞ ¼ 0 (2)

∂uðx,tÞ
∂t

����
t¼0

¼ φðxÞ ¼ 0 (3)

where fðxÞ and φðxÞ are initial displacement and velocity functions, respectively.
The boundary condition at the left hand side ðx ¼ 0Þ can be expressed by the support motion as follows:

uð0,tÞ ¼ aðtÞ (4)

Figure 1. Sketch of the problem.
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The boundary condition at the right hand side ðx ¼ LÞ is given from the condition of force equilibrium as follows:

EA
∂uðx,tÞ
∂x

����
x¼L

¼ �kuðx,tÞjx¼L (5)

where k denotes the spring constant, and A is the area of cross section.
Equation (1) in conjunction with B.C. of equations (4) and (5) and initial condition of equations (2) and (3) is a well-posed
model for the direct problem of support motion at the fixed end instead of the free end.

Method 1: Mode superposition in conjunction with the quasi-static decomposition method

The solution can be decomposed into two parts

uðx,tÞ ¼ Uðx,tÞ þ
X∞
n¼1

qnðtÞunðxÞ (6)

where Uðx,tÞ denotes the quasi-static solution, and the natural modes unðxÞ weighted by the generalized coordinate, qnðtÞ,
are the dynamic contribution due to the inertia effect. The quasi-static part Uðx,tÞ satisfies the governing equation

EA
∂2Uðx,tÞ

∂x2
¼ 0; 0 < x< L (7)

and is subject to time-dependent boundary conditions:

Uð0,tÞ ¼ aðtÞ (8)

EA
∂Uðx,tÞ

∂x

����
x¼L

¼ �kUðx,tÞjx¼L (9)

By solving the PDE in equation (7) with boundary conditions in equations (8) and (9), we have the quasi-static solution.

Uðx,tÞ ¼ aðtÞ
�
1� k

AE þ kL
x

�
(10)

The nth natural mode unðxÞ satisfy the governing equation

un
00ðxÞ þ λ2nunðxÞ ¼ 0, n ¼ 1; 2; 3::: (11)

subject to boundary conditions:

unð0Þ ¼ 0 (12)

at the fixed end of x = 0,

EA
∂unðxÞ
∂x

����
x¼L

¼ kunðxÞjx¼L (13)

at the spring end of x = L.
By solving equation (11) subject to boundary conditions of equations (12) and (13), we have the nth natural mode unðxÞ of
the eigenvalue λn

unðxÞ ¼ sinðλnxÞ, n ¼ 1; 2; 3::: (14)

where the nonlinear eigenequation is given by

λn ¼ �k tanðλnLÞ
AE

, n ¼ 1; 2; 3::: (15)

and the corresponding natural frequency is
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ωn ¼ λn
ffiffiffiffiffiffiffi
E=ρ

q
, n ¼ 1; 2; 3::: (16)

The orthogonality of the eigenfunction isZ L

0

unðxÞumðxÞdx ¼ δnmNn, n ¼ 1; 2; 3, :::m ¼ 1; 2; 3::: (17)

where δnm is the Kronecker delta and

Nn ¼ L

2
� sinð2λnLÞ

4λn
(18)

Substituting equation (6) into equation (1), we obtain

X∞
n¼1

h
€qnðtÞ þ ω2

nqnðtÞ
i
unðxÞ ¼ � €Uðx,tÞ (19)

Multiplying both sides of equation (19) by umðxÞ, integrating over ð0,LÞ and applying the orthogonality condition in
equation (17), we have qnðtÞ satisfying the following equation

€qnðtÞ þ ω2
nqnðtÞ ¼

€FnðtÞ
Nn

(20)

where

FnðtÞ ¼ �
Z L

0

Uðx,tÞunðxÞdx (21)

After considering the initial conditions, we have

Nnqnð0Þ ¼ �
Z L

0

Uðx,0ÞunðxÞdx ¼ Fnð0Þ,ðn no sumÞ (22)

Nn _qnð0Þ ¼ �
Z L

0

_Uðx,0ÞunðxÞdx ¼ _Fnð0Þ,ðn no sumÞ (23)

Thus, we can solve qnðtÞ by using equations (20), (22), and (23), to obtain

qnðtÞ ¼ 4½�ðAE þ kLÞλn þ AE cosðLλnÞ þ k sinðLλnÞ�
cðAE þ kLÞλ2n½2Lλn � sinð2LλnÞ�

�
cλn að0ÞcosðλnctÞ þ _að0ÞsinðλnctÞ þ

Z t

0

sinðλncðt � τÞÞ€aðτÞdτ
�

(24)

Then, the series solution for the displacement, uðx,tÞ, and the axial force, pðx,tÞ, can be expressed, respectively, as

uðx,tÞ ¼ aðtÞ
�
1� k

AE þ kL
x

�
þ
X∞
n¼1

qnðtÞsinðλnxÞ (25)

pðx,tÞ ¼ AE
∂uðx,tÞ
∂x

¼ AE

"��aðtÞk
AE þ kL

�
þ
X∞
n¼1

qnðtÞλn cosðλnxÞ
#

(26)

where qnðtÞ is shown in equation (24).

Method 2: Method of characteristics in conjunction with the diamond rule

By employing the method of characteristic line, we can assume the general solution of 1D wave equation in equation (1) as
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uðx,tÞ ¼ Pðxþ ctÞ þ Qðx� ctÞ (27)

where Pðxþ ctÞ and Qðx� ctÞ are specified functions to match initial conditions in equations (2) and (3). The functions
Pðxþ ctÞ and Qðx� ctÞ represent a left-going-traveling wave and a right-going-traveling wave, respectively. By satisfying
equations (2) and (3) for equation (27), the D’Alembert solution is expressed as

uðx,tÞ ¼ 1

2
½fðxþ ctÞ þ fðx� ctÞ� þ 1

2c

Z xþct

x�ct

φðτÞdτ (28)

where fðxÞ and φðxÞ are functions of initial displacement and velocity, respectively. Two groups of characteristic lines from
equation (28) are included in the solution of the wave equation. Moreover, the two groups of parallel characteristic lines can
form a parallelogram in the plane of space-time region as shown in Figure 2. Based on D’Alembert’s solution, we have the
diamond rule5, as shown below

uA þ uB ¼ uC þ uD (29)

where uA, uB, uC and uD denote the displacement at the four points A, B, C, and D, respectively. Several characteristic lines
separate the domain into many regions as shown in Figure 3. The diagrams of calculating the displacement by using the
diamond rule in the regions I, II, III, IV, V, and VI are given in Figure 4. The displacements in the former six regions are
given below

uIðx,tÞ ¼ 0,ðx,tÞ 2 I (30)

uIIðx,tÞ ¼ a
�ct � x

c

	
,ðx,tÞ 2 II (31)

uIIIðx,tÞ ¼ r1

�
xþ ct � L

c

�
,ðx,tÞ 2 III (32)

uIVðx,tÞ ¼ a
�ct � x

c

	
,ðx,tÞ 2 IV (33)

uVðx,tÞ ¼ a
�ct � x

c

	
,ðx,tÞ 2V (34)

uVIðx,tÞ ¼ a
�ct � x

c

	
� a

�
xþ ct � 2L

c

�
þ r2

�
xþ ct � L

c

�
,ðx,tÞ 2VI (35)

Figure 2. The diamond rule of uA þ uB ¼ uC þ uD.
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Then, r1ðtÞ and r2ðtÞ denote the displacements of uðL,tÞ, 0 ≤ t ≤ L=c and uðL, tÞ,L=c ≤ t ≤ 2 L=c, which can be obtained from
the condition of force equilibrium at x ¼ L

EA
∂uIIIðx,tÞ

∂x

����
x¼L

¼ �kuIIIðx,tÞjx¼L (36)

EA
∂uVIðx,tÞ

∂x

����
x¼L

¼ �kuVIðx,tÞjx¼L (37)

Thus, we can determine r1ðtÞ by using equation (32) to satisfy equation (36). The displacement at x ¼ L, uIIIðL,0Þ and
uIðL,0Þ, must satisfy the displacement continuity. Then, we have

r1ðtÞ ¼ 0, 0 ≤ t ≤
L

c
(38)

Similarly, the response of r2ðtÞ can be obtained by using equation (35) to satisfy equation (37). The displacement at

Figure 3. Regions separated by using the characteristic line.

Figure 4. Space-time regions, I, II, III, IV, V, and VI.
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x ¼ L, uVI

�
L,L=c

�
and uIV

�
L,L=c

�
, must satisfy the displacement continuity. Then, we have

r2ðtÞ ¼

Z
e

kc
AE t2a0

�
ct � L

c

�
dt

e
kc
AE t

,
L

c
≤ t ≤

2L

c
(39)

By the same way, r3ðtÞ and r4ðtÞ can be successively obtained in the space-time marching scheme according to the diamond
rule as shown in Figure 3. Responses of r3ðtÞ and r4ðtÞ are similarly derived as shown below

r3ðtÞ ¼

Z
e

kc
AE t2a0

�
ct � L

c

�
dt

e
kc
AE t

,
2L

c
≤ t ≤

3L

c
(40)

r4ðtÞ ¼

Z
e

kc
AE t

2
42a0�ct � L

c

�
þ 2a0

�
ct � 3L

c

�
� 2r2

0
�
ct � 2L

c

�35dt
e

kc
AE t

,
3L

c
≤ t ≤

4L

c
(41)

Regions I and III are called the dead zone due to the fact that the carried information of disturbance does not arrive yet.
The space derivative of displacement of each region is shown below

u1
0ðx,tÞ ¼ 0,ðx,tÞ 2 I (42)

uII
0ðx,tÞ ¼ �1

c
a0
�ct � x

c

	
,ðx,tÞ 2 II (43)

uIII
0ðx,tÞ ¼ 1

c
r1

0
�
xþ ct � L

c

�
,ðx,tÞ 2 III (44)

uIV
0ðx,tÞ ¼ �1

c
a0
�ct � x

c

	
,ðx,tÞ 2 IV (45)

uV
0ðx,tÞ ¼ �1

c
a0
�ct � x

c

	
,ðx,tÞ 2V (46)

uVI
0ðx,tÞ ¼ �1

c
a0
�ct � x

c

	
� 1

c
a0
�
xþ ct � 2L

c

�
þ 1

c
r2

0
�
xþ ct � L

c

�
,ðx,tÞ 2VI (47)

An illustrative example

A finite bar with an external spring subjected to a support motion is considered. The model parameters are given as
follows: c ¼ 1m=s, AE ¼ 1N , L ¼ 7m and k ¼ 2N=m. By setting the support motion

aðtÞ ¼ sinðtÞ (48)

the solutions of two approaches can be obtained as shown in the following subsection.

Mode superposition method

By substituting model parameters c,A,E,L, k and equation (48) into equations (25) and (26), we have

uðx,tÞ ¼ sinðtÞ
�
1� 2

15
x

�
þ
X∞
n¼1

�
4½�15λn þ λn cosð7λnÞ þ 2 sinð7λnÞ�½� sinðtÞ þ λn sinðλntÞ�

15λn

�1þ λ2n

�½14λn � sinð14λnÞ�

�
sinðλnxÞ (49)
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u0ðx,tÞ ¼ � 2

15
sinðtÞ þ

X∞
n¼1

�
4½�15λn þ λn cosð7λnÞ þ 2 sinð7λnÞ�½� sinðtÞ þ λn sinðλntÞ�

15

�1þ λ2n

�½14λn � sinð14λnÞ�

�
cosðλnxÞ (50)

Besides, we provide the former six eigenfrequencies and natural modes by using the FEM to compare with analytical
results. The comparison is shown in Table 1, good agreement is made.

Method of the diamond rule

By substituting model parameters c,A,E,L, k and equation (48) into equations (30)–(35), we have

uIðx,tÞ ¼ 0,ðx,tÞ 2 I (51)

uIIðx,tÞ ¼ sinðt � xÞ,ðx,tÞ 2 II (52)

uIIIðx,tÞ ¼ 0,ðx,tÞ 2 III (53)

uIVðx,tÞ ¼ sinðt � xÞ,ðx,tÞ 2 IV (54)

uVðx,tÞ ¼ sinðt � xÞ,ðx,tÞ 2V (55)

uðx,tÞ ¼ sinðt � xÞ �sinðxþ t � 14Þ þ r2ðxþ t � 7Þ,ðx,tÞ 2VI (56)

where

r2ðtÞ ¼ �2½�2cosð7� tÞ þ sinð7� tÞ�
5

� 4

5
e2ð7�tÞ,7 ≤ t ≤ 14 (57)

By similarly substituting equation (48) into equations (40) and (41), r3 and r4 become

r3ðtÞ ¼ �2½�2cosð7� tÞ þ sinð7� tÞ�
5

� 4

5
e2ð7�tÞ,14 ≤ t ≤ 21 (58)

r4ðtÞ ¼ 2

25
e�2t

��10e14 þ 838e42 � 40e42t þ 10e2t cosð7� tÞ þ 2e2t cosð21� tÞ
� 5e2t sinð7� tÞ � 11e2t sinð21� tÞ,21 ≤ t ≤ 28

(59)

The space derivative of displacement of each region is shown below:

uI
0ðx,tÞ ¼ 0,ðx,tÞ 2 I (60)

uII
0ðx,tÞ ¼ �cosðt � xÞ,ðx,tÞ 2 II (61)

uIII
0ðx,tÞ ¼ 0,ðx,tÞ 2 III (62)

uIV
0ðx,tÞ ¼ �cosðt � xÞ,ðx,tÞ 2 IV (63)

uV
0ðx,tÞ ¼ �cosðt � xÞ,ðx,tÞ 2V (64)

uVI
0ðx,tÞ ¼ �cosðt � xÞ � cosðxþ t � 14Þ � 2½�2 � sinð14� x� tÞ � cosð14� x� tÞ�

5
þ 8

5
e2ð14�x�tÞ,ðx,tÞ 2VI (65)

The displacement profiles with the silent area for t = 1, 3, and 5 s by using the mode superposition method and the
diamond rule are shown in Figure 5(a)-(c), respectively. It is interesting to find that the mode superposition method also
yields the silent response. In Figure 6, shadow regions, I and III, denote the dead zone. It matches the silent responses begin
at x = 1, 3, and 5 m to the end of bar (x = 7 m), for the time when t = 1, 3, and 5 s as shown in Figure 5. It is found that the
slopes are discontinuous at x = 1, 3, and 5 m when t = 1, 3, and 5 s, respectively. These discontinuities occur at (1,1), (3,3),
and (5,5) in the (x–t) plane as shown in Figure 6. As theoretically predicted, the discontinuities of the slope really occur at
the position of (1,1), (3,3), and (5,5), on the characteristic line.
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Table 1. The former six eigenfrequencies and eigenmodes by using the analytical solution and the finite element method.

FEM: finite element method.
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Regarding no silent area, the displacement profiles at t = 7, 9, and 11 s are shown in Figure 7(a)-(c), respectively. It is also
found that the slope is discontinuous at x = 5 and 3 m when t = 9 and 11 s, respectively. These slope discontinuities occur at
locations of (5,9) and (3,11) in the x–t plane as shown in Figure 8. This finding matches well from the mathematical
requirement that the discontinuity must occur at the position on the characteristic line26.

Figure 5. Displacement profiles with the silent area by using the quasi-static decomposition and the diamond rule.

Figure 6. The locations of slope discontinuities at (1,1), (3,3), and (5,5), where the shadow region denotes the dead zone.
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Figure 7. Displacement profiles without the silent area by using the quasi-static decomposition and the diamond rule

Figure 8. The locations of slope discontinuities at (3,11) and (5,9).
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In order to ensure the convergence of series solution, the displacement profiles using 5, 10, 25, 50, and 100 modes are
shown in Table 2. Here, we adopt the solution of diamond rule in the IV region (t = 7) for simplicity.

The displacement response at x = 7 m by using the mode superposition method and the diamond rule are shown in
Figure 9. The axial force of reaction at x = 0 m by using the mode superposition method and the diamond rule are
shown together in Figure 10. It is interesting to find that the axial force has an impulse at t = 14 s. Besides, the axial
force is not zero at the beginning (t = 0) subjected to the support motion at the left end of the finite bar. According to
Figure 10, it indicates that there is a reaction force history to have a support motion of a(t). Therefore, a specified
displacement history, a(t), at the free end, x = 0, is an inverse problem. A comparison for the ill-posed model between
the statics (Laplace equation) and dynamics (wave equation) is given in Table 3. Both cases show the similar over-
specified conditions.

Figure 9. Displacement history at x = 7 m.

Figure 10. History of the axial force at x = 0 m (fixed end) by using the mode superposition method and the diamond rule.
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Table 2. Convergence of the displacement profiles at t = 7 sec for the solution in the region IV by using the quasi-static decomposition
and the error plot.
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Table 3. Comparison of ill-posed models in statics and dynamics.

Table 4. Comparison of the both approaches for the vibration problem of a finite rod.
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Discussions

Wemust carefully derive the solution because the wrong data at the previous stage deteriorate the later response when the
space-time region is marching in the scheme of the diamond rule. The dead zone and silent response can be both analytically
and numerically captured by using the mode superposition technique and the method of characteristics, respectively. The
slope discontinuity is also observed at the position (x, t) on the characteristic lines. Two analytical approaches yield
agreeable numerical results. Gibbs phenomenon is also observed for the axial force at t = 0 obtained by using the mode
superposition method. Table 4 summaries the comparison of the two approaches.

If the same a(t) is given in Figure 1(b) (inverse problem), the identical solution is obtained by using the diamond rule.
However, this result contradicts the zero axial force at the free end. From the experiment point of view, a(t) in Figure 1 can
be arbitrarily specified to yield the corresponding reaction force. That is to say, a(t) in Figure 1(b) should satisfy some
consistent constraint. Table 3 also shows the ill-posed model for statics and dynamics.

Conclusions

In this paper, we have successfully solved the direct problem of the longitudinal vibration analysis of a finite bar
with an external spring on one side and the support motion on the other fixed side by using two methods. The inverse
problem was also discussed. Both approaches can analytically and numerically capture the silent response by using the
mode superposition method and the method of characteristics, respectively. The slope discontinuity occurs at the
position on the characteristic line as mathematically predicted. Two results show that good agreement is made. The
solution by using the diamond rule depends on the previous result of the space–time region and the error is accu-
mulated. However, the mode superposition method has the truncation error due to the finite term of series sum.
Convergence study was also done. Finally, the advantage and disadvantage for two methods were summarized
in Table 4.
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