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ABSTRACT

A dual integral formulation  for the Laplace prob-
lem with a smooth boundary is  derived by using the
contour approach surrounding the singularity.  It is
found  that using the contour approach the jump terms
come  half and half from the free terms in the L and M
kernel integrations for the two-dimensional case, which
is different from the limiting process by approaching an
interior point to a boundary point where the jump terms
come totally from the L kernel only.  The definition of
the Hadamard principal value for  hypersingular inte-
gral at the collocation point of a smooth boundary is
extended to a generalized sense for both the tangent and
normal derivatives of double-layer potentials in com-
parison with the conventional definition.  For the three-
dimensional case, the jump terms come one-third and
two-thirds from the free terms of L and M kernels,
respectively.

INTRODUCTION

A dual integral formulation for crack problems
was developed in 1986 [5] and published in 1988 [23].
It was applied to the Laplace equation with a degenerate
boundary [6, 9].  The numerical implementation has
been termed the dual boundary element method by
Portela et al. [34].  The formulations have been mainly
applied to problems with a degenerate boundary [11], e.
g., a screen in acoustic cavity [10], a crack in elastic
body [23] and a cutoff wall in potential flow [7, 8].
Recently, the hypersingular equation has been utilized

to provide a constraint at a corner in an analytical way
[15, 17-20].  Gray and Manne [20] have applied the
hypersingular equation as an additional constraint to
ensure a unique solution by a limiting process from an
interior point to a corner.  The three-dimensional case
was also extended by Gray and Lutz [18].  How to
accurately determine the free term in hypersingular
equation has received much attention in the dual bound-
ary element method [21, 30-32].  From the viewpoint of
dual integral equations, singular and hypersingular equa-
tions can provide sufficient constraints for a singular
system with a corner.  In the case of a nonsmooth
boundary, e.g., a corner point, the jump terms of  singu-
lar and hypersingular integral equations are the same in
the former derivations as reported by Lutz et al. [28] and
Chen and Hong [7].  Later, an additional free term in the
hypersingular equation was found by Chen and Hong [9,
27].  Since the hypersingular integral equation can
provide an additional constraint for the problem with
the Dirichlet boundary conditions, the free terms on a
smooth boundary by approaching the interior domain to
the exterior domain must be examined [26].  Many
researchers, for example, Guiggiani [21], has derived
the free terms for the Laplace and the Navier equations.
However, they did not discuss the difference of the
results between the limiting approach and the bump
contour method.  To derive the free terms in a
hypersingular equation, the bump-contour approach
around the singularity can be considered and can be
compared with the limiting process by using an analyti-
cal integral.  Therefore, the dual integral equations for
a smooth boundary can be derived.  Following the same
symbols as in the reference [9] of U,  T,  L and M kernels
for single-layer kernel and its normal derivative, double-
layer kernel and its normal derivative, respectively, the
bump contour method will be adopted to determine the
free terms.  Two alternatives for constraint equations
can be chosen: (1) by using the UT equation; (2) by
using the LM equation.  A detailed review about dual
integral equations and dual BEM can be found in [11].
Both the free terms of the two-dimensional and three-
dimensional problems will be examined by using the
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Table 1.  Properties of different kinds of potentials across smooth boundary.

Kernel
function ln(r)(2−D)
K(s, x) U(s, x) T(s, x) L(s, x) M(s, x) Lτ(s, x) Mτ(s, x)
direct −1/r(3−D)

method
Kernel

function
K(x, s) U(x, s) U*(x, s) T(x, s) T*(x, s) Tτ(x, s) T* τ(x, s)
indirect
method

Singularity 1D O(r) O(1) O(1) O(δ(r)) O(1) O(δ(r))
Singularity 2D O(ln(r)) O(1/r) O(1/r) O(1/r2) O(1/r) O(1/r2)
Singularity 3D O(1/r) O(1/r2) O(1/r2) O(1/r3) O(1/r2) O(1/r3)

Density
function −t u −t u −t u

µ(s)
Potential single double normal normal tangent tangent

type layer layer derivative derivative derivative derivative
of single of double of single of double

∫K(s, x)µ(s)ds layer layer layer layer
potential potential potential potential

Continuity pseudo
across conti- disconti- disconti- conti- conti- disconti-

boundary nuous nuous nuous nuous nuous nuous
Free

term (2D) (1) [22] no jump πu −πu no jump no jump    π ∂u
∂τ

Free
term (2D) no jump πu    – 1

2
πt    1

2
πt    – 1

2
π ∂u

∂τ
   1

2
π ∂u

∂τ
method (2)

Free
term (3D) no jump 2πu −2πt no jump no jump    2π ∂u

∂τ
method (1)

Free
term (3D) (2) no jump 2πu    – 2

3
πt    4

3
πt    – 2

3
π ∂u

∂τ
   4

3
π ∂u

∂τ
Jump

term (2D) no jump 2πu −2πt no jump no jump    2π ∂u
∂τ

method (1)
Jump

term (2D) no jump 2πu −πt πt    – π ∂u
∂τ    π ∂u

∂τ
method (2)

Jump
term (3D) no jump 4πu −4πt no jump no jump    4π ∂u

∂τ
method (1)

Jump
term (3D) no jump 4πu    – 4

3
πt    8

3
πt    – 4

3
π ∂u

∂τ
   8

3
π ∂u

∂τ
method (2)
Principal

value R.P.V. C.P.V. C.P.V. H.P.V. C.P.V. H.P.V.
sense
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bump contour approach in this paper.  Their results will
be compared with those derived by using the limiting
process.

FREE TERMS OF DUAL  INTEGRAL
FORMULATION WITH A SMOOTH BOUNDARY

FOR THE TWO DIMENSIONAL CASE

The dual boundary integral equations for the po-
tential u can be derived as

    2πu(x) = {
B ' + B – + B n + B +

T(s, x) u(s)

  – U(s, x) t(s)} dB(s) (1)

    2πt(x) = {
B ' + B – + B n + B +

M(s, x) u(s)

  – L(s, x) t(s)} dB(s) (2)

    2π
∂u(x)

∂τ = {
B ' + B – + B n + B +

M τ(s, x) u(s)

   – L τ(s, x) t(s)} dB(s) (3)

where u(s) and t(s) denote the potential and its normal
flux on the boundary point s, respectively, B’, B−, Bn and
B+ are the contour integration paths including the singu-
larity inside the domain, D, as shown in Fig. 1, and U,
T, L, M, Lτ and Mτ are the six kernel functions [9] in the
dual integral equations with the properties shown in
Table 1.  The U, M kernels are weakly singular and
hypersingular, respectively, while the T, L kernels are
strongly singular.  For the single and double-layer

kernels, Aliabadi et. al [2, 3] have employed the Taylor
expansion to reduce the singularity order.  Eq. (2) and
Eq. (3) are different in the direction of derivative on the
collocation point x.  The direction of derivative of the
former one is normal, the latter is tangent.  The super-
script “τ” of the kernels in Eq. (3) denotes the tangent
vector along the boundary.  The B integration path in
Fig. 1 denotes the contour integration around the singu-
larity with a radius n , and B’+ B+ + B− is just the
definition of the integration region of the Cauchy prin-
cipal value.  B+ and B− denote two of the elements in the
B’ boundary near the singularity as shown in Fig. 1.
First of all, we will integrate the B path integration to
obtain the free terms for the six kernel functions.

Without loss of generality, we have the following
notations in Fig. 1 and Fig. 2:

x = (0,0) (4)

s = (n cos(θ), −n sin(θ)) (5)

r  = |x − s| (6)

y1 = −n cos(θ) (7)

y2 = n sin(θ) (8)

n(s) = (n1, n2) = (cos(θ), −sin(θ)) (9)

  n(x) = (n 1, n 2) = (0, 1)  for normal derivative     (10)

   τ = (n 1, n 2) = (1, 0)   for tangent derivative (11)

    u(s) = u(x) + ∂u
∂x s = x

n cos (θ) – ∂u
∂y

s = x

n sin (θ)   (12)

   t(s) =
∂u(s)
∂s 1

cos (θ) –
∂u(s)
∂s 2

sin (θ) (13)

where τ in Eq. (11) denotes the tangent vector on the

Fig. 1. The considered boundary integration path for the two-dimensional
Laplace problem.

Fig. 2. Related symbols around a smooth boundary for the two-dimen-
sional Laplace problem.
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boundary point x with the components (1, 0) as shown in
Fig. 2, and π is the interior angle of the smooth boundary.

According to the related symbols in Fig. 2, the free
terms of the six kernels on the two-dimensional case
will be derived in the following.

(1). Single-layer potential due to
U(s, x) = ln(r) = ln(n):

   U
B n

(s, x) t(s) dB(s) = n ln (n) (finite value)

The free term is zero since n ln(n) approaches zero as the
radius n approaches zero.

(2). Double-layer potential due to
T(s, x) = −yini/r

2 = 1/n:

    T
B n

(s, x) u(s) dB(s) = π u (x) + n (finite value)

As n approaches zero, the free term is πu(x).

(3). Normal derivative of single-layer potential due to
L(s, x) =   y in i / r 2  = sin(θ)/n:

    L
B n

(s, x) t(s) dB(s) = – π
2

t(x) (16)

As n approaches zero, the free term is    – π
2

t(x).

(4). Normal derivative of double-layer potential due to
M(s, x) = 2yiyjni     n j / r 4 – n in i / r 2 = – sin (θ) / n

2

    M
B n

(s, x) u(s) dB(s) = π
2

t(x) + Boundary term     (17)

where the boundary term B(n) is

   B(n) = – 2
n

u(x) (18)

It is interesting to find that the free terms from the L and
M kernels are the same except  for the minus sign.  The
free terms resulted from the M kernel contain the bound-
ary term, which is infinite as n approaches zero in Eq.
(18).  By combining with the Cauchy principal value of
the M kernel integration over B’ including B+ and B− as
shown in Fig. 1, the finite part can be extracted, and the
infinity can be cancelled out.  Therefore, the Hadamard
principal value in the contour integration with a smooth
boundary for the M kernel can be defined by

  H.P.V. M
B

(s, x) u(s) dB(s)

   = C.P.V. M
B

(s, x) u(s) dB(s) – 2
n

u(x)

(5). Tangent derivative of single-layer potential due to
    L τ(s, x) = y in i / r 2 = – cos (θ) / n :

Since the tangent derivative instead of the normal de-
rivative is considered, we have

n(x) → τ (20)

    L τ

B n

(s, x) t(s) dB(s) = – π
2

∂u(x)
∂τ (21)

where τ denotes the tangent direction on the boundary

point x.  As n approaches zero, the free term is    – π
2

∂u(x)
∂τ .

(6). Tangent derivative of double-layer potential due to
Mτ(s, x) = 2yiyjni     n j / r 4 – n in i / r 2 = cos (θ) / n

2 :

Similar to Eq. (20), we only change the normal deriva-
tive to tangent derivative as

n(x) → τ (22)

    M τ

B n

(s, x) u(s) dB(s) = π
2

∂u(x)
∂τ (23)

It is found that the tangent derivative of potential can
also be expressed in terms of superposition of all the
state variables, which include the potential and the
normal derivative of potential on the boundary which
are solved by using the UT or LM equations.  Therefore,
we can derive the dual boundary integral equations and
the expression for the tangential flux along the bound-
ary as follows:

   πu(x) = C.P.V. T
B

(s, x) u(s) dB(s)

  – R.P.V. U
B

(s, x) t(s) dB(s) (24)

   πt(x) = H.P.V. M
B

(s, x) u(s) dB(s)

  – C.P.V. L
B

(s, x) t(s) dB(s) (25)

   π
∂u(x)

∂τ = H.P.V. M τ

B
(s, x) u(s) dB(s)

   – C.P.V. L τ

B
(s, x) t(s) dB(s) (26)

after using

  U
B ' + B – + B +

(s, x) t(s) dB(s) = R.P.V. U
B

(s, x) t(s) dB(s)
(27)

  T
B ' + B – + B +

(s, x) u(s) dB(s) = C.P.V. T
B

(s, x) u(s) dB(s)
(28)
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  L
B ' + B – + B +

(s, x) t(s) dB(s) = C.P.V. L
B

(s, x) t(s) dB(s)
(29)

  M
B ' + B – + B +

(s, x) u(s) dB(s) = H.P.V. M
B

(s, x) u(s) dB(s)

   + 2
n

u(x) (30)

   L τ

B ' + B – + B +
(s, x) t(s) dB(s) = C.P.V. L τ

B
(s, x) t(s) dB(s)

(31)

   M τ

B ' + B – + B +
(s, x) u(s) dB(s) = H.P.V. M τ

B
(s, x) u(s) dB(s)

(32)

 FREE TERMS OF DUAL INTEGRAL
FORMULATION WITH A SMOOTH BOUNDARY

FOR THE THREE DIMENSIONAL CASE

Similarly, we can extend the two-dimensional case
to the three-dimensional case in Fig. 3. Eq. (1)~(3)
reduce to

    4πu(x) = {
B ' + B – + B n + B +

T(s, x) u(s) – U(s, x) t(s)} dB(s)
(33)

    4πt(x) = {
B ' + B – + B n + B +

M(s, x) u(s) – L(s, x) t(s)} dB(s)
(34)

    4π
∂u(x)

∂τ = {
B ' + B – + B n + B +

M τ(s, x) u(s)

   – L τ(s, x) t(s)} dB(s) (35)

where U(s, x) = −1/r .  Without loss of generality, we

have the following notations in Fig. 4:

x = (0, 0, 0) (36)

s = (n sin θ sin φ, n sin θ cos φ, n cos θ) (37)

r  = |x − s| (38)

y1 = −n sin θ sin φ (39)

y2 = −n sin θ cos φ (40)

y3 = −n cos θ (41)

n(s) = (n1, n2, n3)
= (sin(θ) sin(φ), sin(θ)cos(φ), cos(θ))     (42)

  n(x) = (n 1, n 2, n 3) = (0, 0, 1)  for normal derivative
(43)

   τ 1 = (n 1, n 2, n 3) = (1, 0, 0)  for tangent derivative
(44)

   τ 2 = (n 1, n 2, n 3) = (0, 1, 0)  for tangent derivative
(45)

    u(s) = u(x) + ∂u
∂x1 s = x

n sin θ sin φ

    + ∂u
∂x 2 s = x

n sin θ cos φ + ∂u
∂x 3 s = x

n cos θ      (46)

   

t(s) =
∂u(s)
∂s 1

sin θ sin φ +
∂u(s)
∂s 2

sin θ cos φ +
∂u(s)
∂s 3

cos θ

(47)

Fig. 3. The considered boundary integration path for the three-dimen-
sional Laplace problem.

Fig. 4. Related symbols around a smooth boundary for the three-dimen-
sional Laplace problem.
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where 0 < θ < π
2

, and 0 < φ < 2π.  The free terms of the
six kernels on the three-dimensional case will be de-
rived in the following.

(1). Single-layer potential due to
U(s, x) = −1/r  = −1/n:

    U
B n

(s, x) [
∂u(s)
∂s 1

sin θ sin φ +
∂u(s)
∂s 2

sin θ cos φ

   +
∂u(s)
∂s 3

cos θ] dB(s) = 0 (48)

As n approaches zero, the free term vanishes.

(2). Double-layer potential due to
T(s, x) = −yini/r

3 = 1/n2:

    T
B n

(s, x)[u(x) + ∂u
∂x 1 s = x

n sin θ sin φ

    + ∂u
∂x 2 s = x

n sin θ cos φ

    + ∂u
∂x 3 s = x

n cos θ] dB(s) = 2πu(x)   (49)

As n approaches zero, the free term is 2πu(x).

(3). Normal derivative of single-layer potential due to
L(s, x) =     y in i / r 3 = – cos (θ) / n

2 :

    L
B n

(s, x)[
∂u(s)
∂s 1

sin θ sin φ +
∂u(s)
∂s 2

sin θ cos φ

   +
∂u(s)
∂s 3

cos θ] dB(s) = – 2π
3

t(x) (50)

As n approaches zero, the free term is    – 2π
3

t(x).

(4). Normal derivative of double-layer potential due to
M(s, x) =     – nn i / r 3 + 3y iy jn in j / r 5 = 2cos (θ) / n

3 :

    M
B n

(s, x)[u(x) + ∂u
∂x1 s = x

n sin θ sin φ

    + ∂u
∂x2 s = x

n sin θ cos φ + ∂u
∂x3 s = x

n cos θ] dB(s)

    = 4π
3

t(s) – 2π
n

u(x) (51)

As n  approaches zero, the free term is    4π
3

πt(x) .

Also, a boundary term,     – 2π
n

u(x), is present.

(5). Tangent derivative of single-layer potential due to
Lτ(s, x) =     y in i / r 3 = – cos (φ) sin (θ) / n

2 :

Since the tangent derivative instead of the normal de-
rivative is considered, we have

n(x) → τ (52)

    L τ

B n

(s, x)[
∂u(s)
∂s 1

sin θ sin φ +
∂u(s)
∂s 2

sin θ cos φ

   

+
∂u(s)
∂s 3

cos θ] dB(s) = – 2π
3

∂u(x)
∂τ (53)

As n approaches zero, the free term is    – 2π
3

∂u(x)
∂τ .

(6). Tangent dervative of double-layer potential due to
Mτ(s, x) =     – n in i / r 3 + 3y iy jn in j / r 5 = 2cos (φ) sin (θ) / n

3 :

Similar to Eq. (52), we only change the normal deriva-
tive to tangent derivative as

n(x) → τ (54)

    M τ

B n

(s, x)[u(x) + ∂u
∂x 1 s = x

n sin θ sin φ

    + ∂u
∂x 2 s = x

n sin θ cos φ

    + ∂u
∂x 3 s = x

n cos θ] dB(s) = 4π
3

∂u(x)
∂τ        (55)

As n approaches zero, the free term is    4π
3

∂u(x)
∂τ .

It is interesting to find that the free term in the LM
equation is contributed by one-third from the L kernel in
Eq. (50) and two-thirds from  the M kernel in Eq. (51),
respectively.  All the above results are summarized in
Table1.

CONCLUSIONS

The free terms of the dual boundary integral equa-
tions for the two-dimensional and three-dimensional
Laplace problems were derived.  The L and M kernels
for the two-dimensional problem resulted in the free
terms of    – π

2
t(x) and    π

2
t(x), respectively, while the L

and M kernels for the three-dimensional problem re-
sulted in the free terms of    – 2π

3
t(x)  and    4π

3
t(x) ,

respectively. Although the free terms are not the same in
the intermediate process, their final results are the same
to those deriving by using the limiting process.

NOTATIONS

BEM boundary element method
B’, B+, Bn, B

− contour integration path including the
singularity

R.P.V. Riemann principal value
C.P.V. Cauchy principal value
H.P.V. Hadamard principal value
U(s, x) kernel function of the first dual integral

equation
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T(s, x) kernel function of the first dual integral
equation

L(s, x) kernel function of the second dual inte-
gral equation

Lτ(s, x) kernel function for the tangent deriva-
tive of the single-layer potential

M(s, x) kernel function of the second dual inte-
gral equation

Mτ(s, x) kernel function for the tangent deriva-
tive of the double-layer potential

x position vector of field point
s position vector of source point
u(x) potential on the boundary point x
u(s) potential on the boundary point s
ni normal vector of field point x
n i normal (tangent) vector of source point

s
t(s) normal flux on the boundary point s
t(x) normal flux on the boundary point x
τ1 tangent direction on the boundary point

x
τ2 tangent direction on the boundary point

x
n radius of the contour integration around

the singularity
(n, θ) polar coordinate
(n, θ, φ) spherical coordinate
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