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ABSTRACT  

In this paper, we extended the previous experience to solve the vibration problem of a finite bar with a viscously damped boundary and the support 
motion on the other side. Two analytical methods, the mode superposition method in conjunction with the quasi-static decomposition method 
and the method of diamond rule based on the method of characteristics, were employed to derive two analytical solutions. One is a series solution 
by using the mode superposition method. The other is an exact solution by using the method of diamond rule. The non-conservative system 

with an external damper is solved straightforward by using the method of diamond rule to avoid the complex-valued eigen system. Agreement is 
made well. Both advantages and disadvantages of two methods were discussed. 
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1.  INTRODUCTION 

imulation of support motion is very important in physics and engineering, because there are var ious engineer ing problems for build-
ngs, cars and equipment which can be modeled by using this model. Many researchers have solved this problem by using various
ethods, e.g. the mode superposition technique [ 1 ], the method of separation variables [ 2 –4 ], the method of quasi-static decom-
osition [ 3 , 5 , 6 ], the method of the diamond rule [ 3 , 7 ] or the so-called method of characteristics, the image method [ 6 ], the finite
lement method ( FEM ) [ 8 ], the boundary element method ( BEM ) [ 9 ], the meshless method [ 10 ], etc. 
The Rayleigh-damped Bernoulli-Euler beam and the string subjected to multi-support excitation have been studied by using many
ethods including Stokes transformation and Cesaro sum [ 3 , 5 , 6 ]. For the Euler beam, Su and Cho [ 11 ] studied the free vibration
f a single-walled carbon nanotube based on the nonlocal Timoshenko beam mode. Besides, nonlinear effect is an interesting and
ractical issue. Lin et al. [ 12 ] studied the nonlinear free vibration of size-dependent microbeams with nonlinear elasticity under various
oundary conditions. Hull [ 2 ] and Jovanovic [ 13 ] solved the rod and beam problems with a viscous boundary, respectively. They
aced the non-self-adjoint operator and orthogonality condition of complex modes needs special care. Jovanovic also extended to the
orsion damper [ 14 ]. Two ends of dampers were also investigated and the stability was also discussed by Udawadia [ 15 ] and Jovanovic
 16 ]. A beam including the internal damping in span and a boundary damper was studied by Gurgoze and Erol [ 17 ]. 
Since a viscous damper is very popular to reduce the earthquake response, support motion is also the main concern of this paper.
xact solutions for a system with an external damper are sparse. Results of continuous and discrete systems were compared with by
ingh et al. [ 3 ]. Besides, a case of the limiting damping was also discussed. Although Hull [ 2 ] claimed that he derived a closed-form
olution and compared with FEM well, the solution was a series solution instead of an exact solution. In addition, he showed only a
requency domain example of a concentrated dynamic loading. 
The D’Alembert’s solution can provide an exact solution for an infinite string. Method of characteristics ( Diamond rule ) can be
ound in the textbook of Farlow [ 18 ]. It is widely employed to solve various kinds of problems, e.g. water hammer [ 19 ]. The diamond
ule on the D’Alembert’s solution was proposed by John [ 20 ] in 1975 and was popularly used to solve the wave problem. The diamond
ule has been employed to solve the one-dimensional vibration problem of an infinite or a semi-infinite string attached by a mass, a
pring, or a damper [ 7 ], a finite string [ 3 ] and a finite bar with an external spring subjected to a support motion [ 5 ]. Besides, the
nimation was also given in [ 7 ]. Although the mode superposition method in conjunction with the quasi-static decomposition is a
eneral approach for solving the support-motion problem, it becomes tedious when the vibration system contains a damper. Three
easons can be explained. One is that the quasi-static solution is not easily obtained straightforward for the support motion. Another
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Figure 1 Sketch of a finite bar w ith a v iscously damped boundary subjected to a support motion. 
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is that the orthogonal relation of complex modes is not obviously found. The other is that a complex eigen system is required. The
present solution free of mode superposition is possible since we can employ the method of characteristics in conjunction with the
diamond rule for the real response in the time domain. To yield an exact solution in the time domain is the main focus of this paper.
Mode superposition of series solution using complex eigenmodes can be employed to check our solution. 
In this paper, we extend the vibration problem of a finite bar with an external spring [ 4 ] to a finite bar with an external viscous

damper. For the non-conservative system with an external viscous damper, two analytical solutions are obtained. 

2. PROBLE  M STATE  M ENTS  AND  M ETHODS  OF  SOLUTION 

Here, we consider a finite bar with a viscously damped boundary as shown in Fig. 1 . The governing equation for the vibration problem
of a finite bar is as follows: 

c 2 
∂ 2 u ( x, t ) 

∂x 2 
= 

∂ 2 u ( x, t ) 
∂t 2 

, 0 < x < L, t > 0 , ( 1 )

where c = 

√ 

EA/ρ and u ( x , t ) denote the wave speed and displacement in the x direction, respectively. The symbols E , A , ρ and L
denote Young’s modulus, the area of cross section, the mass per unit length and the length of bar, respectively. The initial displacement
and velocity conditions are as follows: 

u ( x, t ) 
∣∣
t=0 = φ ( x ) = 0 , ( 2 )

∂u ( x, t ) 
∂t 

∣∣∣∣
t=0 

= ϕ ( x ) = 0 , ( 3 )

where φ( x ) and ϕ ( x ) are initial displacement and velocity functions, respectively. 
The boundary condition at the left-hand side ( x = 0 ) can be expressed by the specified support motion as follows: 

u ( 0 , t ) = a ( t ) . ( 4 )

The boundary condition at the right-hand side is given by the viscous damper in Fig. 1 as follows: 

EA 

∂u ( x, t ) 
∂x 

∣∣∣∣
x = L 

= −c d 
∂u ( x, t ) 

∂t 

∣∣∣∣
x = L 

, ( 5 )

where c d denotes the damping coefficient. 

2.1 Method 1: Mode superposition approach in conjunction with the quasi-static decomposition method 
The solution can be decomposed into two parts: 

u ( x, t ) = U ( x, t ) + 

∞ ∑ 

n = −∞ 

q n ( t ) u n ( x ) , ( 6 )

where U ( x , t ) denotes the quasi-static solution, u n ( x ) is the natural mode and q n ( t ) is the generalized coordinates of dynamic contri-
bution due to the inertia effect. The quasi-static part U ( x , t ) satisfies the governing equation, 

EA 

∂ 2 U ( x, t ) 
∂x 2 

= 0 , 0 < x < L, ( 7 )

and is subject to time-dependent boundary conditions at the two sides: 

U ( 0 , t ) = a ( t ) , ( 8 )
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EA 

∂U ( x, t ) 
∂x 

∣∣∣∣
x = L 

= −c d 
∂U ( x, t ) 

∂t 

∣∣∣∣
x = L 

. ( 9 ) 

By solving Eq. ( 7 ) to satisfy the boundary conditions, we have the quasi-static solution, 
U ( x, t ) = α ( t ) x + β ( t ) , ( 10 ) 

here 

α ( t ) = e −
AE 
c d L 

t 
[∫ t 

0 
−e 

AE 
c d L 

τ ˙ a ( τ ) 
L 

dτ + C 

]
, ( 11 ) 

β ( t ) = a ( t ) , ( 12 ) 

fter using the integration factor, where the undetermined constant, C , can be determined by 
α ( 0 ) = a ( 0 ) . ( 13 ) 

The n th complex-valued function, u n ( x ) , with the corresponding complex-valued eigenvalue λn is 

u n ( x ) = e λn x − e −λn x , n = 0 , ± 1 , ± 2 , · · · , ( 14 ) 

The corresponding complex-valued eigenvalues are given as follows: 

λn = − 1 
2 L 

ln 
(
c d c + EA 

c d c − EA 

)
− nπ

L 

i , n = 0 , ± 1 , ± 2 , · · · , ( 15 ) 

nd the corresponding complex-valued angular frequencies are as follows: 
ω n = cλn , n = 0 , ± 1 , ± 2 · · · . ( 16 ) 

The detail derivation of Eq. ( 15 ) is presented in the Appendix. 
To derive the governing equations of generalized coordinates q n ( t ) , we follow the Hull’s work [ 2 ]. The main difference is that we
onsider the support motion instead of body source excitation in [ 2 ]. To differentiate Eq. ( 6 ) with respect to t , we have 

∂u ( x, t ) 
∂t 

= 

˙ U ( x, t ) + 

∞ ∑ 

n = −∞ 

˙ q n ( t ) u n ( x ) . ( 17 ) 

By using Eqs. ( A8 ) and ( A4 ) ( in the Appendix ) , Eq. ( 17 ) can be written as 

∂u ( x, t ) 
∂t 

= 

˙ U ( x, t ) + 

∞ ∑ 

n = −∞ 

ω n q n ( t ) u n ( x ) . ( 18 ) 

By subtracting Eq. ( 18 ) from Eq. ( 17 ) , we have 
∞ ∑ 

n = −∞ 

[ ̇  q n ( t ) − ω n q n ( t ) ] 
(
e λn x − e −λn x 

) = 0 . ( 19 ) 

By differentiating Eq. ( 19 ) with respect to x and multiplying by the wave speed c , we obtain 
∞ ∑ 

n = −∞ 

[ ̇  q n ( t ) − ω n q n ( t ) ] ω n 
(
e λn x + e −λn x 

) = 0 . ( 20 ) 

Similarly, substituting Eq. ( 6 ) into Eq. ( 1 ) and using Eqs. ( A8 ) and ( A4 ) , we have 
∞ ∑ 

n = −∞ 

[ ̇  q n ( t ) − ω n q n ( t ) ] ω n 
(
e λn x − e −λn x 

) = −Ü (x, t ) . ( 21 ) 

In this way, the governing equations of generalized coordinates q n ( t ) can be decoupled by using Eq. ( 20 ) and Eq. ( 21 ) . By adding
q. ( 20 ) to Eq. ( 21 ) together and subtracting Eq. ( 20 ) from Eq. ( 21 ) , we obtain 

∞ ∑ 

n = −∞ 

[ ̇  q n ( t ) − ω n q n ( t ) ] 2 ω n e λn x = −Ü ( x, t ) , x ∈ [ 0 , L ] ( 22 ) 
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and ∞ ∑ 

n = −∞ 

[ ̇  q n ( t ) − ω n q n ( t ) ] 2 ω n e −λn x = Ü ( x, t ) , x ∈ [ 0 , L ] , ( 23 )

respectively. In Eq. ( 23 ) , x is replaced by −x and the interval is changed from [0, L ] to [ −L , 0], we have 
∞ ∑ 

n = −∞ 

[ ̇  q n ( t ) − ω n q n ( t ) ] 2 ω n e λn x = Ü ( −x, t ) , x ∈ [ −L, 0 ] . ( 24 )

Substituting the complex-valued eigenvalue into Eqs. ( 22 ) and ( 24 ) and rearranging them into a single equation, we have 

∞ ∑ 

n = −∞ 

[ ̇  q n ( t ) − ω n q n ( t ) ] 2 ω n e 
−nπ
L i x = 

⎧ ⎨ 

⎩ 

−e 
1 
2 L ln 

(
c d c + EA 
c d c −EA 

)
x Ü ( x, t ) , x ∈ [ 0 , L ] 

e 
1 
2 L ln 

(
c d c + EA 
c d c −EA 

)
x Ü ( −x, t ) , x ∈ [ −L, 0 ] 

. ( 25 )

Eq. ( 27 ) gives us a Fourier series expansion for orthogonal bases of e −n π i x / L with respect to the interval of [ − L , L ]. 
Multiplying the exponential term e m π i x / L ( where m is an integer ) on both sides of Eq. ( 25 ) and integrating from – L to L, the left

side of Eq. ( 25 ) can be expressed as follows: ∫ L 

−L 
[ ̇  q n ( t ) − ω n q n ( t ) ] 2 ω n e 

−nπ
L i x e 

mπ
L i x dx = 

{
4 [ ̇  q n ( t ) − ω n q ( t ) ] ω n L, m = n 
0 , m � = n ( 26 )

For the right side of Eq. ( 25 ) , it can be combined by using the reflection property of integrals as given below: ∫ L 

0 
−e −λn x Ü ( x, t ) dx + 

∫ 0 

−L 
e −λn x Ü ( −x, t ) dx = 

∫ L 

0 
u n ( x ) Ü ( x, t ) dx . ( 27 )

Combining Eqs. ( 26 ) and ( 27 ) , the first-order ordinary differential equation for the generalized coordinates q n ( t ) can be obtained
as 

˙ q n ( t ) − ω n q n ( t ) = 

1 
4 ω n L 

∫ L 

0 
u n ( x ) Ü ( x, t ) dx . ( 28 )

The initial condition of generalized coordinates can be determined from the initial conditions of the total solution. Using Eq. ( 6 )
to satisfy the initial displacement condition in Eq. ( 2 ) and differentiating it with respect to x , we have 

∂u ( x, t ) 
∂x 

∣∣∣∣
t=0 

= 

∂φ ( x ) 
∂x 

= 0 = U 

′ ( x, 0 ) + 

∞ ∑ 

n = −∞ 

q n ( 0 ) λn 
(
e λn x + e −λn x 

)
. ( 29 )

Multiplying Eq. ( 29 ) by the wave speed c , we have 
∞ ∑ 

n = −∞ 

ω n q n ( 0 ) 
(
e λn x + e −λn x 

) = −c U 

′ ( x, 0 ) . ( 30 )

Similarly, using Eq. ( 6 ) to satisfy the initial velocity condition in Eq. ( 3 ) , we have 

∂u ( x, t ) 
∂t 

∣∣∣∣
t=0 

= ϕ ( x ) = 0 = 

˙ U ( x, 0 ) + 

∞ ∑ 

n = −∞ 

ω n q n ( 0 ) 
(
e λn x − e −λn x 

)
. ( 31 )

By adding Eq. ( 31 ) to Eq. ( 30 ) together and subtracting Eq. ( 31 ) from Eq. ( 30 ) , we obtain 
∞ ∑ 

n = −∞ 

ω n q n ( 0 ) 2 e λn x = −c U 

′ ( x, 0 ) − ˙ U ( x, 0 ) , x ∈ [ 0 , L ] ( 32 )

and ∞ ∑ 

n = −∞ 

ω n q n ( 0 ) 2 e −λn x = −c U 

′ ( x, 0 ) + 

˙ U ( x, 0 ) , x ∈ [ 0 , L ] , ( 33 )

respectively. In Eq. ( 33 ) , x is replaced by –x and the interval is changed from [0, L ] to [–L , 0], we have 
∞ ∑ 

n = −∞ 

ω n q n ( 0 ) 2 e λn x = −c U 

′ ( −x, 0 ) + 

˙ U ( −x, 0 ) , x ∈ [ −L, 0 ] . ( 34 )
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Figure 2 Space-time regions separated by using the characteristic line. 
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Similarly, combining Eqs. ( 32 ) and ( 34 ) into a single equation and rearranging it, we have 
∞ ∑ 

n = −∞ 

2 ω n q n ( 0 ) e 
−nπ
L i x = 

⎧ ⎨ 

⎩ 

e 
1 
2 L ln 

(
c d c + EA 
c d c −EA 

)
x [−c U 

′ ( x, 0 ) − ˙ U ( x, 0 ) 
]
, x ∈ [ 0 , L ] 

e 
1 
2 L ln 

(
c d c + EA 
c d c −EA 

)
x [−c U 

′ ( −x, 0 ) + 

˙ U ( −x, 0 ) 
]
, x ∈ [ −L, 0 ] 

. ( 35 ) 

Multiplying the exponential term e m π i x / L ( where m is an integer ) on both sides of Eq. ( 35 ) and integrating from −L to L, the left
ide of Eq. ( 35 ) can be expressed as ∫ L 

−L 
ω n q n ( 0 ) 2 e 

−nπ
L i x e 

mπ
L i x dx = 

{
4 q n ( 0 ) ω n L, m = n 
0 , m � = n . ( 36 ) 

Using of the reflection property of integrals in the right side of Eq. ( 35 ) , we have ∫ L 

0 
e −λn x 

[−c U 

′ ( x, 0 ) − ˙ U ( x, 0 ) 
]
dx + 

∫ 0 

−L 
e −λn x 

[−c U 

′ ( −x, 0 ) + 

˙ U ( −x, 0 ) 
]
dx 

= −
∫ L 

0 
c U 

′ ( x, 0 ) 
(
e λn x + e −λn x 

)
dx + 

∫ L 

0 

˙ U ( x, 0 ) u n ( x ) dx . ( 37 ) 

Combining Eqs. ( 36 ) and ( 37 ) , the initial condition of generalized coordinates, q n ( 0 ) , can be obtained as 

q n ( 0 ) = 

−1 
4 λn L 

∫ L 

0 
U 

′ ( x, 0 ) 
(
e λn x + e −λn x 

)
dx + 

1 
4 ω n L 

∫ L 

0 

˙ U ( x, 0 ) u n ( x ) dx . ( 38 ) 

Therefore, we can solve q n ( t ) by considering Eqs. ( 28 ) and ( 38 ) and have 

q n ( t ) = 

e ctλn 

2 cLλ3 
n 

[∫ t 

0 
e −cλn τ ( λn ( −1 + cosh ( λn L ) a ′′ ( τ ) ) + ( λn L cosh ( λn L ) − sinh ( λn L ) ) α′′ ( τ ) ) dτ

−λn a ′ ( 0 ) + sinh ( λn L ) ( cλn α ( 0 ) − α′ ( 0 ) ) + λn cosh ( λn L ) ( a ′ ( 0 ) + Lα′ ( 0 ) ) 

] 

( 39 ) 

Finally, the series solution for the displacement, u ( x , t ) , is as follows: 

u ( x, t ) = U ( x, t ) + 

∞ ∑ 

n = −∞ 

q n ( t ) 
(
e λn x − e −λn x 

)
. ( 40 ) 

2.2 Method 2: Method of characteristics in conjunction with the diamond rule 
he general solution of 1D wave equation can be obtained by using the method of characteristic line and we have 

u ( x, t ) = P ( x + ct ) + Q ( x − ct ) , ( 41 ) 
here P ( x + ct ) and Q ( x − ct ) stand for a left-going-traveling wave and a right-going-traveling wave, respectively. By using two char-
cteristic lines, x + ct = 0 and x − ct = 0, the space-time region can be decomposed into several division as shown in Fig. 2 . Each
egion in Fig. 2 is a parallelogram or an isosceles triangle. After using Eq. ( 41 ) to satisfy the initial conditions in Eqs. ( 2 ) and ( 3 ) , we
ave the D’Alembert’s solution for the region I 

u ( x, t ) = 

1 
2 
[ φ ( x + ct ) + φ ( x − ct ) ] + 

1 
2 c 

∫ x + ct 

x −ct 
ϕ ( τ ) dτ , ( 42 ) 
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Figure 3 The diamond rule of u A + u B = u C + u D . 

Figure 4 Space-time regions, I, II, III, IV, V and VI and the diamond rule. 
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where φ( ·) and ϕ ( ·) are initial displacement and velocity functions, respectively. According to the property of the D’Alembert’s solu-
tion, we have the relationship between the displacements at the four vertices of a diamond as follows: 

u A + u B = u C + u D , ( 43 )

where u A , u B , u C and u D denote the displacement at the four points A , B , C and D , respectively as shown in Fig. 3 . It is noted that any
side of a diamond is parallel to a certain characteristic line. Eq. ( 43 ) is the so-called diamond rule [ 4 , 7 ]. We can employ the space-time
marching scheme in Eq. ( 45 ) to calculate the displacement response for any time and space. By using the diamond rule for the former
six regions as shown in Fig. 4 , the displacements can be expressed as 

u I ( x, t ) = 0 , ( x, t ) ∈ I , ( 44 )

u II ( x, t ) = a 
(
ct − x 

c 

)
, ( x, t ) ∈ II , ( 45 )

u III ( x, t ) = r 1 
(
x + ct − L 

c 

)
, ( x, t ) ∈ III , ( 46 )

u IV ( x, t ) = r 1 
(
x + ct − L 

c 

)
+ a 

(
ct − x 

c 

)
, ( x, t ) ∈ IV , ( 47 )

u V ( x, t ) = r 1 
(
x + ct − L 

c 

)
+ a 

(
ct − x 

c 

)
− r 1 

(
ct − x − L 

c 

)
, ( x, t ) ∈ V, ( 48 )

u V I ( x, t ) = a 
(
ct − x 

c 

)
− a 

(
x + ct − 2 L 

c 

)
+ r 2 

(
x + ct − L 

c 

)
, ( x, t ) ∈ VI . ( 49 )

For the displacement in the other time-space region, it can be obtained by using the same procedure of time-space marching scheme.
Since the boundary displacement at the end of right side is unknown, it is required to assume some unknown functions on the right-
side boundary of full time-space region. In this way, r 1 ( t ) and r 2 ( t ) stand for the displacements of u ( L , t ) , 0 ≤ t ≤ L / c and u ( L , t ) ,
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 / c ≤ t ≤ 2 L / c , respectively. After using the corresponding displacement representation to satisfy the boundary condition in Eq. ( 5 ) ,
e have 

EA 

∂u III ( x, t ) 
∂x 

∣∣∣∣
x = L 

= −c d 
∂u III ( x, t ) 

∂t 

∣∣∣∣
x = L 

, ( 50 ) 

EA 

∂u VI ( x, t ) 
∂x 

∣∣∣∣
x = L 

= −c d 
∂u VI ( x, t ) 

∂t 

∣∣∣∣
x = L 

. ( 51 ) 

Substituting Eq. ( 46 ) into Eq. ( 50 ) and using the displacement continuity for the displacement at x = L , u III ( L , 0 ) and u I ( L , 0 ) , we
ave 

r 1 (t ) = 0 , 0 ≤ t ≤ L/c. ( 52 ) 

Similarly, substituting Eq. ( 49 ) into Eq. ( 51 ) , the corresponding first-order ODE for r 2 ( t ) at the boundary of damper can be derived
s 

r ′ 2 ( t ) = 

2 EA 

EA + c d c 
a ′ 

(
ct − L 

c 

)
, L/c ≤ t ≤ 2 L/c , ( 53 ) 

The general solution of Eq. ( 53 ) is 

r 2 ( t ) = 

2 EA 

EA + c d c 
a 
(
ct − L 

c 

)
+ C r2 , L/c ≤ t ≤ 2 L/c , ( 54 ) 

here the undetermined constant C r2 can be determined by satisfying the displacement continuity of solution in the intersection
egion IV and VI at ( x , t ) = ( L , L / c ) as shown in Fig. 4 . 

3. AN  ILLUSTRATIVE EXAMPLE  

 finite bar with a boundary damper subjected to a support motion is considered as shown in Fig. 1 . The model parameters are given:
 = 1 m / s , EA = 1 N , L = 7 m and c d = 5 N · s / m . By specifying the support motion, 

a ( t ) = sin ( t ) , ( 55 ) 
he solutions of two approaches can be obtained as shown in the following subsection. 

3.1 Mode superposition method 
fter substituting model parameters c , E , A , L , c d and Eq. ( 55 ) into Eq. ( 40 ) , the vibration response of displacement can be obtained
y taking Eq. ( 40 ) . 

u ( x, t ) = 

⎛ 

⎝ 

5 
(
e −

1 
35 t − sin ( t ) − 35 cos ( t ) 

)
1226 

x + sin ( t ) 

⎞ 

⎠ + 

∞ ∑ 

n = −∞ 

q n ( t ) 
(
e λn x − e −λn x 

)
, ( 56 ) 

here q n ( t ) is obtained by substituting model parameters c , E , A , L , c d and Eq. ( 55 ) into Eq. ( 39 ) . 
According to the generalized Hooke’s law, we can obtain the axial force as follows: 

p ( x, t ) = AE 

∂u ( x, t ) 
∂x 

= 

⎛ 

⎝ 

5 
(
e −

1 
35 t − sin ( t ) − 35 cos ( t ) 

)
1226 

⎞ 

⎠ + 

∞ ∑ 

n = −∞ 

q n ( t ) λn 
(
e λn x + e −λn x 

)
. ( 57 ) 

Since we assume EA = 1 N in the case, the space derivative of displacement is the axial force. 

3.2 Method of characteristics in conjunction with the diamond rule 
y substituting model parameters c , E , A , L , c d and Eq. ( 55 ) into Eqs. ( 44 ) –( 49 ) , we have 

u I ( x, t ) = 0 , ( x, t ) ∈ I , ( 58 ) 

u II ( x, t ) = sin ( t − x ) , ( x, t ) ∈ II , ( 59 ) 

u III ( x, t ) = 0 , ( x, t ) ∈ III , ( 60 ) 

u IV ( x, t ) = sin ( t − x ) , ( x, t ) ∈ IV , ( 61 ) 

u IV ( x, t ) = sin ( t − x ) , ( x, t ) ∈ V, ( 62 ) 
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Figure 5 Displacement profiles with the silent area by using the quasi-static decomposition ( ) and the diamond rule ( ——) . 
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u V I ( x, t ) = sin ( t − x ) − sin ( x + t − 14 ) + r 2 ( x + t − 7 ) , ( x, t ) ∈ VI . ( 63 )

where 
r 2 ( t ) = 

1 
3 
sin ( t − 7 ) , 7 ≤ t ≤ 14 . ( 64 )

The space derivative of displacement of each region is 

u ′ I ( x, t ) = 0 , ( x, t ) ∈ I , ( 65 )

u ′ II ( x, t ) = −cos ( t − x ) , ( x, t ) ∈ II , ( 66 )

u ′ III ( x, t ) = 0 , ( x, t ) ∈ III , ( 67 )

u ′ IV ( x, t ) = −cos ( t − x ) , ( x, t ) ∈ IV , ( 68 )

u ′ V ( x, t ) = −cos ( t − x ) , ( x, t ) ∈ V, ( 69 )

u ′ V I ( x, t ) = −cos ( t − x ) − cos ( x + t − 14 ) + r ′ 2 ( x + t − 7 ) , ( x, t ) ∈ VI . ( 70 )

The displacement profiles with the silent area for t = 2 and 4 s by using the mode superposition method and the diamond rule are
shown in Fig. 5 a and b, respectively. It is interesting to find that the mode superposition method of finite terms of series also yields the
silent response. In Fig. 6 , shadow regions, I and III, denote the dead zone. It matches the silent response begining at x = 2 and 4 m to
the end of bar ( x = 7 m ) , for the time when t = 2 and 4 s as shown in Fig. 5 . It is found that the slope is discontinuous at x = 2 and
4 m for the time t = 2 and 4 s, respectively. These discontinuities occur at the locations of ( 2,2 ) and ( 4,4 ) in the x-t plane as shown
in Fig. 6 . In Fig. 6 , the shadow region denotes the dead zone. As theoretically predicted, the discontinuity of the slope really occurs at
the position of ( 2,2 ) and ( 4,4 ) , on the characteristic line. 
Regarding the non-silent area, the displacement profiles at t = 8 and 10 s are shown in Fig. 7 a and b, respectively. It is also found

that the slope is discontinuous at x = 6 and 4 m for the time t = 8 and 10 s, respectively. The axial force at t = 8 s is shown in
Fig. 8 . It is found that the axial force is discontinuous at x = 6 m, and it is corresponding to the slope of displacement at x = 6 m
for the time t = 8 s in Fig. 7 a. The zoom view of the local profile of axial force with a jump by using the quasi-static decomposition
approach and the method of the diamond rule are shown in Fig. 9 . It is found that the mode superposition approach presents the
Gibbs phenomenon. These slope discontinuities occur at the locations of ( 6,8 ) and ( 4,10 ) in the x-t plane as shown in Fig. 10 . This
finding matches well from the mathematical requirement that the discontinuity can only occur at the position on the characteristic
line [ 21 ]. 
The displacement response at x = 5 m by using the mode superposition method and the diamond rule are shown in Fig. 11 . To test

the convergence of the mode superposition method, the plots of displacement profile and the time history with different numbers of
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Figure 6 The locations of slope discontinuities at ( 2,2 ) and ( 4,4 ) . 

Figure 7 Displacement profiles by using the quasi-static decomposition ( ) and the diamond rule ( ——) . 

Figure 8 Profile of the axial force at t = 8 by using the quasi-static decomposition ( ) and the diamond rule ( ——) . 
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Figure 9 Local profile of the axial force at t = 8 by using the quasi-static decomposition ( ) and the diamond rule ( ——) . 

Figure 10 The locations of slope discontinuities at ( 6,8 ) and ( 4,10 ) . 

Figure 11 Displacement history at x = 5 m by using the quasi-static decomposition ( and the diamond rule ( ——) . 
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Figure 12 Convergence tests: ( a ) displacement profile, ( b ) time history, ( c ) relative error. 
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runcation terms are shown in Fig. 12 a and b. The relative error obtained by using the mode superposition method versus the number
f truncation terms is also shown in Fig. 12 c. The exact solution is calculated as a reference by using the diamond rule. It found that
dopting M = 41 modes can reach the maximum relative error of 0.1%. 
Additionally, to test the convergence of the axial force by the termwise spatial differentiation with respect to the displacement in the
ode superposition method, the plots of profile of axial force and the history of axial force with different numbers of truncation terms
re shown in Fig. 13 a and b. The relative error of axial force obtained by using the mode superposition method versus the number of
runcation terms is also shown in Fig. 13 c. The definition of relative error is defined by | p Mode ( 7 , 8 ) −p Diamond ( 7 , 8 ) 

p Diamond ( 7 , 8 ) | , where the superscript
f p ( 7, 8 ) is denoted by the corresponding approach. 
From Table 1 , it is found that the numerical results satisfy the boundary condition when the number of the truncation terms is over
1. In order to check the boundary condition of the damper, numerical results of the axial force and damping force in equilibrium are
iven in Table 1 . 
The convergence test of S M 

( only the series summation without the quasi-static part ) and its derivative with respect to x at the
osition x = 0.6 L , 0.97 L and L for t = 8 and 10 are shown in Tables 2 and 3 , respectively. Additionally, the convergence tests of series
ummation ( S M 

and S ′ M 

) at ( x , t ) = ( 6, 8 ) and ( 4, 10 ) are also done and are discussed in Table 4 . For the above cases of no jump,
niform convergence is confirmed. There is a jump for the axial force when ( x , t ) is on the characteristic line. We check ( x , t ) = ( 6,
 ) and ( 4, 10 ) as shown in Fig. 10 . For the axial force in Table 4 , the jump of axial force can be exactly captured in different regions
sing the method of diamond rule, while the mode superposition method yields only one value in the mean. In this case, the mode
uperposition method converges to the solution piecewisely. 
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Figure 13 Convergence tests: ( a ) profile of the axial force, ( b ) history of the axial force, ( c ) relative error. 

Table 1 Numerical results to check the viscously boundary condition. 

c = 1 m / s , EA = 1 N , L = 7 m , c d = 5 N · s / m , x = L and t = 10 

Axial force of Eq. ( 5 ) Damping force of Eq. ( 5 ) 
Number of truncation terms ( M ) EA 

∂u ( x,t ) 
∂x | x = L −c d ∂u ( x,t ) ∂t | x = L 

1 0.113788 0.706723 
11 1.716176 1.69778 
51 1.63705 1.63506 
101 1.65378 1.65325 
201 1.6465 1.6462 
501 1.64944 1.64931 
1001 1.65006 1.64999 
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Table 2 Convergence test of S M 

and S ′ M 

( t = 8 ) 
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Table 3 Convergence test of S M 

and S ′ M 

( t = 10 ) 
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Table 4 Convergence test of S M 

and S ′ M 

at ( x , t ) = ( 6, 8 ) and ( 4, 10 ) 
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4. CONCLUSIONS  

egarding the longitudinal vibration, a finite bar with a viscously damped boundary is a non-conservative system. Since the two initial
onditions are homogeneous and the external force is zero, this finite bar is excited by a support motion at the clamped end. In addition,
his problem is also a direct problem. Not only the mode superposition approach but also the method of characteristics was employed
o solve the problem. From the viewpoint of computation, the complex-mode approach may not be simpler and easier than employing
he FEM. However, it provides a benchmark to interpret FEM results. Our second approach as known as the diamond rule is both
asy and simple and is highly recommended to scientists and engineers. For the mode superstition method, the orthogonality of com-
lex modes was achieved after special treatment. The diamond rule and the mode superposition method were both independently
mployed to derive an exact solution and a series solution, respectively. The positions of the slope discontinuity on the specified char-
cteristic line can be mathematically predicted and numerically verified by using the diamond rule and mode superposition method,
espectively. After comparing the results calculating by using two methods, good agreements are made. In addition, the displacement
esponse can be straightforwardly calculated in the space-time domain by using the diamond rule without considering the separa-
ion variables of space and time. In this way, using the diamond rule to solve the problem of non-conservative system with a damper is
asier than using the mode superposition method, since it is free to consider the complex-valued eigen system. For clarity, comparisons
etween two methods, for advantages and disadvantages, are summarized in Table 5 . 
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Table 5 Comparison of the two approaches for the vibration problem of a finite bar 

Method 

Item analysis 
Mode superposition method in conjunction with the 
quasi-static decomposition 

Method of characteristics in conjunction with the 
diamond rule 

Solution form Series solution Exact solution 

Advantage 1. Free of dividing the space-time region to represent the 
corresponding displacement response 

2. The vibration response can be directly obtained 
without any difficulty for any time and position 

1. Free of the truncation error of finite term of series 
sum 

2. It can easily capture the dead zone 
3. General approach for either conservative or 
non-conservative system 

4. Suitable for support excitation of short duration, 
e.g. earthquake input 

Disadvantage 1. Error due to a finite truncation series in the real 
computation 

2. Convergence test is required 
3. Complex-valued eigenvalues and eigenequation are 
required for a damped system 

4. Orthogonality condition needs special care 

Previous stage error propagates to the later response 
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APPENDIX 

The n th complex-valued eigenfunction and complex-valued eigenvalue can be deduced from the free vibration in conjunction with
the boundary conditions. 
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The governing equation for the free vibration problem of a finite bar is as follows: 

c 2 
∂ 2 u ( x, t ) 

∂x 2 
= 

∂ 2 u ( x, t ) 
∂t 2 

, 0 < x < L, t > 0 . ( A1 ) 

The boundary condition at the left-hand side ( x = 0 ) can be expressed by the fixed end as follows: 
u ( 0 , t ) = 0 . ( A2 ) 

The boundary condition containing a damper at the right hand side is given as follows: 

EA 

∂u ( x, t ) 
∂x 

∣∣∣∣
x = L 

= −c d 
∂u ( x, t ) 

∂t 

∣∣∣∣
x = L 

. ( A3 ) 

The solution can be separated in terms of a product of space and time functions or called the method of separation variables as
ollows: 

u ( x, t ) = X ( x ) T ( t ) , ( A4 ) 
here X ( x ) is the space function and T ( t ) is the generalized coordinates. By substituting Eq. ( A4 ) into Eq. ( A1 ) , we have two ordinary
ifferential equations, 

d 2 X ( x ) 
d x 2 

− λ2 X ( x ) = 0 , ( A5 ) 
nd 

d 2 T ( t ) 
d t 2 

− λ2 c 2 T ( t ) = 0 , ( A6 ) 
here λ is the complex-valued eigenvalue. 
From Eq. ( A2 ) and Eq. ( A5 ) , we have 

X ( x ) = 

(
e λx − e −λx ) . ( A7 ) 

The general solution to Eq. ( A6 ) is 
T ( t ) = Ge λct + He −λct . ( A8 ) 

Applying the viscous boundary condition of Eq. ( A3 ) to Eqs. ( A7 ) and ( A8 ) , we have 

EA 

[
λ

(
e λL + e −λL ) e λct ] = −c d 

[
λc 

(
e λL − e −λL ) e λct ] . ( A9 ) 

Rearranging Eq. ( A9 ) , we have 

−EA 

c d c 
= 

e λL − e −λL 

e λL + e −λL , ( A10 ) 

nd H = 0. 
We can rewrite the right-hand side of Eq. ( A10 ) , 

−EA 

c d c 
= tanh ( λL ) . ( A11 ) 

By using the complex tr igonometr ic function to rewrite the hyperbolic function of Eq. ( A11 ) , we obtain 

−EA 

c d c 
= −i tan ( i λL ) . ( A12 ) 

Rearranging Eq. ( A12 ) , we have 

tan ( i λL ) = 

EA 

i c d c 
. ( A13 ) 

By taking the arctangent operator to Eq. ( A13 ) , we have 

i λn L = arctan 
(
EA 

i c d c 

)
+ nπ, n = 0 , ± 1 , ± 2 , · · · . ( A14 ) 

Rearranging Eq. ( A14 ) , we obtain 

λn = 

−i 
L 

arctan 
(
EA 

i c d c 

)
− nπ

L 

i , n = 0 , ± 1 , ± 2 , · · · . ( A15 ) 

By using the function of arctan (x ) = 

1 
2i ln ( 

1+i x 
1 −i x ) to rewrite the inverse tr igonometr ic function of Eq. ( A15 ) , we obtain 
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λn = − 1 
2 L 

ln 
(
c d c + EA 

c d c − EA 

)
− nπ

L 

i , n = 0 , ± 1 , ± 2 , · · · . ( A16 )
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