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ABSTRACT 

Following the success of static analysis of free-free 2-D plane trusses by using a self-regularization 
approach uniquely, we further extend the technique to deal with 3-D problems of space trusses.  The in-
herent singular stiffness of a free-free structure is expanded to a bordered matrix by adding r singular 
vectors corresponding to zero singular values, where r is the nullity of the singular stiffness matrix.  Be-
sides, r constraints are accompanied to result in a nonsingular matrix.  Only the pure particular solution 
with nontrivial strain is then obtained but without the homogeneous solution of no deformation.  To link 
with the Fredholm alternative theorem, the slack variables with zero values indicate the infinite solutions 
while those with nonzero values imply the case of no solutions.  A simple space truss is used to demon-
strate the validity of the proposed model.  An alternative way of reasonable support system to result in a 
nonsingular stiffness matrix is also addressed.  In addition, the finite-element commercial code ABAQUS 
is also implemented to check the results. 

Keywords: Self-regularization approach, 3D free-free structure, Bordered matrix, Stiffness matrix, 
Space truss. 

1.  INTRODUCTION 

It is well known that two kinds of rank-deficiency 
problems in the boundary element method (BEM) or 
finite element method (FEM) are present.  For an air-
plane or a missile of free-free structures, inertia relief 
was employed to solve a static problem by considering 

the inertia force from the D’Alembert principle.  To 
include this capability, a support card was provided in 
the NASTRAN implementation.  Rigid body modes are 
found in a free-free structure for structural mechanics 
problems no matter which numerical method is em-
ployed.  This indicates that the free-free stiffness matrix 
results in zero eigenvalues (singular values).  Mathe-
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matically speaking, the nonunique solution appears for 
the Neumann problem of the Laplace equation or for the 
traction problem of the Navier equation, respectively 
[1-7]. 

In the BEM implementation, 2-D Dirichlet problems 
in potential theory or constrained structures for 2-D elas-
ticity problems may result in non-uniqueness of solutions.  
It is physically unrealizable but mathematically realiza-
ble due to the single-layer integral representation for the 
solution.  It is well known as a critical scale (degenerate 
scale).  To avoid this ill-posed model, Chen et al. [8] 
proposed an idea to make it a well-posed model by em-
ploying the singular value decomposition (SVD) and the 
bordered matrix from Fichera’s method [9].  One is to 
introduce a slack variable of an arbitrary constant field.  
The other is to enforce a constraint.  Therefore, a sin-
gular system is transformed to a nonsingular bordered 
system.  It is interesting to find that this idea can be 
applied to promote the rank of singular matrices inherent 
in free-free structures.  An illustrative example corre-
sponding to a free-free plane truss has been successfully 
demonstrated [8], although redundant (zero stress) 
members were found. 

Following this successful experiences, we extend it to 
static analysis of a free-free space truss.  Physical rigid- 
body modes for the displacement corresponding to zero 
singular values are found.  The self-regularization tech-
nique is linked to the Fredholm alternative theorem.  
The solvability condition is examined by the zero values 
of the slack variables.  On the other hand, generalized 
inverse of a matrix has been studied by Fredholm, Moore 
and Penrose [8].  It can be mathematically studied by 
using the bordered matrix [10].  However, its engineer-
ing applications in structural mechanics were not noticed 
in that book.  The mathematical problem corresponding 
to the free-free structure analysis is how to inverse a 
singular matrix due to rigid body modes.  Several 
mathematical and numerical methods [11-16] were pro-
posed to deal with this problem.  In the research done 
by Chen et al. [8], zero stress bars or so called redundant 
members were found.  To make the example more at-
tractive, a more general loading is considered.  To ex-
tend to 3-D structures, four cases are considered with 
zero stress bars or without zero stress bars. 

The rigid body mode exists for the Neumann problem.  
For the Dirichlet problem, the degenerate scale in the 
BEM also results in a singular matrix.  To deal with 
these problems, the unified self-regularization method 
was applied in the analysis of complicated structures 
once the stiffness matrix is available.  In this paper, a 
self-regularization technique is employed to solve the 
static responses of free-free space trusses.  The particu-
lar solution with nontrivial stress in the two-force mem-
bers will be obtained.  Besides, reasonable support sys-
tem is also one alternative to solve this problem in a sim-
ilar way of the support card in the NASTRAN.  Four 
examples are demonstrated for the proposed model.  
The finite-element results by the commercial code 
ABAQUS are also acquired for comparison and valida-
tion.  We extend the applications of 2D to 3D cases 
from the viewpoint of structural analysis.  In addition, 

we also use both the Fredholm alternative theorem and 
the SVD technique to address the non-uniqueness of the 
solution which was not mentioned in the paper by Chen 
et al. [8].  The validity and generality of the present 
approach are reconfirmed in this paper. 

2.  MOTIVATION FROM THE RANGE 
DEFICIENCY OF THE SINGLE-LAYER 
INTEGRAL REPRESENTATION FOR 

THE SOLUTION 

In potential theory of BEM/BIEM, the single-layer 
representation model is employed to solve the boundary 
value problem (BVP) as given below: 

 ( ) ( , ) ( ) ( ), ,
B

u U dB D x x s s s x  (1) 

where u(x) is the potential field, ϕ(s) is the unknown 
boundary density, U(x, s) is the fundamental solution and 
B is the boundary of the domain D. 

However, Eq. (1) may fail for the Dirichlet problem 
with a specific scale (degenerate scale).  To overcome 
this problem due to the ill-posed model (rank-deficiency), 
Fichera proposed a regularized formulation by adding a 
constant, c, and a corresponding constraint as shown 
below: 

 ( ) ( , ) ( ) ( ) , ,R
B

u U dB c D  x x s s s x  (2) 

 ( ) ( ) 0, ,R
B

dB B   s s s  (3) 

where ϕR(s) is the regularized boundary density.  After 
discretizing the boundary by using constant elements, 
Eq. (1) reduces to 

 ,b U


 (4) 

where b


 is the specified Dirichlet boundary condition 

(BC).  By employing the boundary element implemen-
tation, Eq. (2) and Eq. (3) together yield 
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U
  (5) 

where U is the influence matrix and {l} is the vector of 
length for boundary elements.  It is noted that 


 in Eq. 

(4) is the unregularized unknown vector in the singular 
system, while R


 in Eq. (5) is the regularized unknown 

vector in the nonsingular system. 
By analogy between the singular stiffness matrix for 

structural mechanics and the influence matrix for the 
indirect BEM as shown in Fig. 1, a regularized (bordered) 
matrix provides an alternative way to construct the free- 
free stiffness matrix. 

The linear algebraic system is generally written as 

 ,x bA
 

 (6) 

where A is obtained by using either the BEM or FEM.   
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Fig. 1 Null space and range deficiency for the mapping 
matrix A or AT by using the SVD structure. 

 
 
The matrix A may be a singular matrix which needs spe-
cial care for the inversion.  By employing the SVD 
technique, the matrix A is expressed as 

 

1

2T T ,

N






 
 
 
 
 
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  A =


 (7) 

where the left singular matrix 1 2{ , , , }N    
  

 the 

right singular matrix 1 2{ , , , }N    
  

 and the sin-

gular values 1 2 3 N       .  The unknown 

vector x


 can be represented by using the right singular 

vector i


 as 

 
1

.
N

i i
i

x 


 
 (8) 

Similarly, the forcing vector ib


 is expanded by the 

superposition of the left singular vector i


 as follows: 

 
1

.
N

i i
i

b  


 
 (9) 

If the singular value, σ1, is zero, α1 can not be deter-
mined.  By suppressing α1 to be zero in Eq. (8), it can 
be expressed as 

 1 0,Rx  


 (10) 

where the regularized solution Rx


 can be regarded as 

the pure particular solution  without containing any 
complementary solution (rigid body mode) cx


 such that 

0cx A
 

.  Since the range of A is deficient by 1


 as 

shown in Fig. 1, Eq. (6) can be regularized into 

 1 1 ,Rx c b A
 

 (11) 

where c1 is an arbitrary constant to be determined.  By 
combining Eq. (10) and Eq. (11), a regularized linear 
algebraic system is expressed as 

 
1

T
1 1

.
0 0

Rx b

c




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     

A
  



 (12) 

Then, the bordered matrix AB is defined by 

 
1

T
1

.
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B




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A
A 
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 (13) 

Since AB in Eq. (13) is nonsingular, Rx


 and c1 in Eq. 

(12) can be easily solved [8]. 

3.  LINKAGE OF THE SLACK VARIABLES IN 
THE BORDERED MATRIX TO THE FREDHOLM 

ALTERNATIVE THEOREM 

In the literature, Fredholm alternative theorem plays 
an important role to ensure a unique solution for the 
ODE, the integral equation and the linear algebra.  Now, 
the linkage of the slack variables corresponding to the 
bordered matrix to the Fredholm alternative theorem is 
constructed.  If the determinant value of a matrix A is 
not equal to zero, the linear algebraic system has a 
unique solution.  Otherwise, the singular matrix A has 
two possibilities for the nonuniqueness of solutions.  
One can use the zero or non-zero slack variables corre-
sponding to the bordered matrix to check the infinite 
solutions or no solutions in the Fredholm alternative the-
orem, respectively. 

The linear algebraic system in Eq. (6) has a unique 
solution if and only if the only solution to the homoge-
neous equation, 

 0,x A
 

 (14) 

is 0x 
 

.  Alternatively, the homogeneous equation has 

at least one solution if the homogeneous adjoint equation 

 H 0, A


 (15) 

has a non-trivial solution 


, where AH is the conjugate 

transpose matrix of A and the vector b


 must satisfy the 

constraint ( H 0b  
 

).  If the matrix A is real-valued, 

the conjugate transpose of a matrix is simplified to its 
transpose only [17], i.e., AH = AT.  In other words, Eq.  
(6) has at least one solution for x


 if the homogeneous
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˜ ˜
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adjoint equation 

 T 0, A


 (16) 

has a non-trivial solution 


, in which the constraint, 

0b  
 

, must be satisfied. 

By employing the singular value decomposition 
(SVD), the matrix A is represented in Eq. (7).  If the 
matrix A is symmetric, the right and left singular matri-
ces are the same due to the symmetric property.  There-
fore, A = ΦΣΦT = ΨΣΨT.  If the singular values, σ1, σ2, 
σ3…, σr are zeroes, where r is the number of the rank 
deficiency.  In other words, the matrix A has full rank N 
due to the non-zero determinant.  If the matrix A is rank 
deficient by r, it means that the matrix A has rank N  r.  
It exists the nullity k (k = N  (N – r) = r).  According 
to the SVD, we have 

 , 1, 2,3,...,i i i i N   A
 

 (17) 

 T , 1, 2,3,...,i i i i N   A
 

 (18) 

 1 1
, 1,2,3,...,i i

i

i N 


  A
 

 (19) 

If the matrix A is rank deficient by r, then Eq. (17) 
and Eq. (18) become 

 0, 1, 2,3,...,i i r  A


 (20) 

 T 0, 1, 2,3,...,i i r  A


 (21) 

It is interesting that the null space exists in the domain 
and the range deficiency of the singular system is shown 
in Fig. 1. 

By extending the concept from [8], we have 

 T 0 , 1, 2,3,..., ,i R R ix x i r   ψ
  

 (22) 

where the solution from the regularized system Rx


 

(pure particular solution) does not contain any compo-
nent of rigid body modes (the complementary solution).  
Since the range of A is deficient by 1 ~ r 

 
, Eq. (6) is 

regularized into 

 
1

, 1, 2,3,..., ,
r

R i i
i

x c b i r


  A
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 (23) 

where ci are slack variables. 
By combining Eq. (22) and Eq. (23) for a matrix with 

r zero singular values, a regularized linear algebraic sys-
tem is expressed as 
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
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 (24) 

By taking the inner product for Eq. (23) with respect 
to 1


 on both sides, it can be represented as 

 
1 1 1 1 2 2 1 3 3 1

1 1... .

R

r r

x c c c

c b

      

  

      

    

A
       

  

 (25) 

Since 1 0, 2,3, 4,...., ,i i r   
 

 due to the orthogo-

nal property of each i


, Eq. (25) reduces to 

 1 1 1.Rx c b    A
  

 (26) 

Since T T
1 1 1( ) 0R R Rx x x     A A A

    
 [8], the 

slack variable is obtained as shown below: 

 1 1.c b  
 

 (27) 

Similarly, the slack variables is expressed as 

 , 2,3,..., .i ic b i r  
 

 (28) 

If the matrix A is rank-deficient by r order (σi = 0, i = 
1, 2, 3, …, r), the range of the operator A is range defi-
cient by , 2,3,4,....,i i r 


.  The slack variables, 

 0, 1, 2,3,...., ,i ic b i r   
 

 (29) 

imply that Eq. (6) has infinite solutions.  Otherwise, 
there are no solutions for Eq. (6).  Accordingly, the 
process for the judgement of the non-uniqueness of solu-
tions from the Fredholm alternative theorem is summa-
rized in Fig. 2. 
 

 

Fig. 2 Linking of the non-unique solution from the 
Fredholm alternative theorem and the bordered 
matrix. 

4.  NUMERICAL EXAMPLES 

In the ODE, the PDE and the IE, three kinds of BCs, 
Dirichlet, Neumann and mixed types are used for differ-
ent problems.  For a structural system, similar corre-
sponding BCs for the fixed end, the traction loading 
(nodal force of truss) and the mixed type BC are summa-
rized in Table 1.  For the structural engineering, it is 
easy and straightforward to understand the validity of the 
self-regularization method in 2D and 3D problems by 
using trusses.  Four examples of free-free structures are 
demonstrated by using the self-regularized technique, the 
reasonable support system and the finite-element com-
mercial code ABAQUS with automatic damping algo-
rithm to deal with the non-unique solutions of the Neu- 
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Table 1  Analysis of 1-D, 2-D and 3-D structures subject to different BCs 

BC Types   
 

Dimension 

Neumann BC 
(free-free) 

Mixed type BC 
(reasonable support) 

Dirichlet BC 
(enforced displacement)

1-D  

2-D 

  

3-D 

 
Global stiffness 

(before condensation) [Kg] [Kg] [Kg] 

Stiffness matrix 
(after condensation or self-regularization) 

[Kb] [Km] [KD] 

Singularity 
det |[Kg]| = 0 

 
det |[Kb]| ≠ 0 

det |[Kg]| = 0 
 

det |[Km]| ≠ 0 

det |[Kg]| = 0 
 

det |[KD]| ≠ 0 

 
 
mann case.  Four examples by using the reasonable 
support system are compared with these results.  In ad-
dition, the rigid body mode would be discussed. 

4.1 Plane Truss (Zero Stress Bar to Non- Zero Stress 
Bar) 

A two-dimensional, 3-node and 6-dof, triangular truss 
with reasonable support and the one without any support 
are shown in Fig. 3 and Fig. 4, respectively.  By con-
sidering the direct stiffness method for the truss structure 
in Fig. 5, the free-free stiffness matrix Kg-2D of the truss 
is shown below: 

2

6 6

,

5 3 1 3
1 0

4 4 4 4
3 3 3 3

0 0
4 4 4 4
1 3 1 1 3

0
4 4 2 4 4
3 3 3 3 3
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 
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

  
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 

K  

  (30) 

where k = EA/L, E denotes Young’s modulus (N/m2), A 
denotes the cross-sectional area (m2) and L denotes the  

 
Fig. 3 The plane truss of the regular triangle with rea-

sonable supports. 

 
Fig. 4 The plane truss of the regular triangle with the 

external forces (free-free structure). 
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Fig. 5  Two-force members of the 2D truss and the 3D truss. 

 
length (m) for each uniform member of trusses.  By 
employing the SVD with respect to Kg-2D and setting k = 
10 for simplicity, the matrices of the singular value and 
the singular vector are obtained as 
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,

0
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3
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
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   (31) 
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,

1 1 1 1 1
0

2 22 3 3 2 3
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0
2 23 2 3 2 3
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0 0
23 3 2 3
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0 0
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 
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
 

  (32) 

where Σ is the singular value matrix, the left singular 
matrix 1 2 6{ , , , }    

  
, the right singular matrix 

1 2 6{ , , , }    
  

.  Since there are three zero singular 

values, the matrix Kg-2D is rank deficient by 3.  Accord-

ing to Eq. (24), the linear algebraic system 2g - Du pK
 
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 (33) 

where 1


, 2


, 3


 and 1


, 2


, 3


 are the left 

singular vectors and the right singular vectors corre-
sponding to three zero singular values of the free-free 
stiffness matrix Kg-2D, respectively. 

By considering the reasonable support or employing 
the self-regularization approach for the free-free struc-
ture corresponding to the zero stress bar case or the non- 
zero stress bar case, the 2-D cases are listed in Table 2. 

 

Table 2 2-D Cases for two loading cases (zero stress bar 
and non-zero stress bar) by using the reasonable 
support system or the self-regularization approach 
(free-free) 

 Reasonable 
support 

Self-regularization 
approach (free-free)

Non-zero 
stress bar 

 
Case 1-1 

 
Case 1-2 

Zero stress bar
 

Case 1-3 

 
Case 1-4 (Chen et al. 

2014a) 

Two-force member in a 3D truss Two-force member in a 2D truss

z
F2z

F2x

F2y

F1z

F1x

F1y

F1y F1x

F2y F2x
p p

p p
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Fig. 6 Case 1-1: The plane truss of the regular triangle with the mixed type BC by using the reasonable support (the 
solid line denotes the original plane truss and the dashed line denotes the deformed truss). 

 

 

Fig. 7 Case 1-2: The plane truss of the regular triangle with the Neumann BC (free-free structure) by using the 
self-regularization approach (the solid line denotes the original plane truss and the dashed line denotes the de-
formed truss). 

 
4.1.1  Reasonable Support System 

Instead of solving the Neumann problem, the reason-
able support system transforms the Neumann problem 
(singular) to the mixed BC problem (non-singular) which 
can be used to solve the linear algebraic system with a 
non-singular stiffness matrix.  By adding the hinge and 
roller supports at nodes of left bottom and right bottom, 
respectively, the reasonable support system for the plane 
truss is constructed.  The rigid body modes are con-
strained with reasonable supports by adding physical 
constraints, i.e. hinges or rollers.  After the matrix con-
densation, the stiffness matrix of the reduced linear alge-
braic system becomes non-singular and yields to a 
unique solution. 

4.1.2 Free-Free System Using the Present Approach 
(No Support) 

For the complicated structure, it is not easy to add 
reasonable supports (suitable physical constraints) for the 
Neumann problems by engineering judgement.  A self- 
regularization approach is systematically useful to solve 
the linear algebraic system for the singular stiffness ma-

trix [8].  The advantage of the present approach is that 
only the self-information (singular vectors) from the 
free-free stiffness matrix is needed to construct the bor-
dered matrix in this systematic method.  The bordered 
stiffness matrix is non-singular and full-rank which is 
different from the original one, the unique solution can 
be ensured as a reference solution for the original sys-
tem. 

4.1.3  Results and Discussions 

The deformations of the plane truss by using the 
reasonable support system (Case 1-1) and the self-regu- 
larization approach (Case 1-2) are plotted in Fig. 6 and 
Fig. 7, respectively.  In contrast to the different dis-
placements solved from the reasonable support system 
and the self-regularization approach, the stress states 
obtained by using two methods are the same.  The dif-
ference between two solutions is the rigid body mode.  
Here, only translation rigid body modes are found in this 
case.  The pure particular solution is obtained by using 
the self-regularization approach without containing any 
rigid body mode, translation and rotation. 
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It is interesting to find that the 2-D case in [8] has 
redundant (zero stress) members.  The corresponding 
reasonable support system is established as shown in 
Fig. 8 (Case 1-3).  If the given forces are specified 
symmetrically in Fig. 9 (Case 1-4) [8], redundant (zero 
stress) members are found.  In this case, only a 
two-force member is subjected to stress.  Similarly, 
reasonable support system in the Case 1-3 can yield the 
same stress state. 

4.2 Space Truss (Zero Stress Bar to Non-Zero 
 Stress Bar) 

A 3-D truss of the regular tetrahedron with 4-node and 
12-dof is shown in Fig. 10.  The free-free stiffness ma-
trix Kg-3D assembled from members as shown in Fig. 5, 
for the space truss is shown below 

 

 
Fig. 8 Case 1-3: The plane truss of the regular triangle with the mixed type BC by using the reasonable support - zero 

stress bar (the solid line denotes the original plane truss and the dashed line denotes the deformed truss). 

 

 
Fig. 9 Case 1-4: The plane truss of the regular triangle with the Neumann BC (free-free structure) by using the 

self-regularization approach - zero stress bar (the solid line denotes the original plane truss and the dashed line 
denotes the deformed truss). 

 

 
Fig. 10 A 3D space truss of the regular tetrahedron (Red arrows denote the direction of the force (p) and displacement 

(u) on the nodes). 
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By employing the SVD with respect to Kg-3D and setting k = 10, the singular value and the singular vector are ob-
tained as 
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where 1


, 2
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, 3
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, 6
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 and 1
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, 2
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, 3
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, 4


, 5


, 6


 are the left singular vectors and the right sin-

gular vectors corresponding to six zero singular values of the free-free stiffness matrix Kg-3D, respectively.  Therefore, 
the matrix Kg-3D is rank deficient by 6.  Similarly, the method by adding the reasonable support and the 
self-regularization approach to the free-free structure corresponding to the zero stress bar case or the non-zero stress bar 
case of the 3-D cases are listed in Table 3.  A space truss of the regular tetrahedron subject to the mixed type BC (Case 
2-1) is shown in Fig. 11, and the deformation of this case is shown in Fig. 12. 
 
 

Table 3 3-D Cases two loading cases (zero stress bar and non-zero stress bar) by using the reasonable support system or 
the self-regularization approach (free-free) 

 Reasonable support Self-regularization approach (free-free) 

Non-zero stress bar 

 
Case 2-1 

 
Case 2-2 

Zero stress bar 

 
Case 2-3  

Case 2-4 
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Fig. 11 Case 2-1: A space truss subject to the mixed 
type BC (reasonable support). 

 
 
 

 

Fig. 12 Deformation of the space truss subject to the 
mixed type BC (Case 2-1). 

 
 

Instead of considering the reasonable support system, 
the self-regularization approach is proposed to deal with 
the Neumann problem (Case 2-2) in Fig. 13.  According 
to Eq. (24), the linear algebraic system 3g- Du pK
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Fig. 13 Case 2-2: The space truss subject to the Neu-
mann BC (free-free structure). 

 

Table 4 Internal force of members for the space truss of 
Case 2-1 and Case 2-2 

Member
ID 

Mixed type 
problem (after 

enforcing reasonable 
support) 

Neumann 
problem 

ABAQUS 
(automatic 
damping 

algorithm) 

A BB B
0.136083 
(Tension) 

0.136083 
(Tension) 

0.135774 
(Tension) 

B CB B
0.136083 
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0.136083 
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0.136367 
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C AB B
0.136083 
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0.136083 
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(Compression) 
0.408248 
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(Compression) 
0.408384 

(Compression)

CB T
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(Compression) 
0.408248 

(Compression) 
0.408384 

(Compression)

 
 

Table 4 shows member forces for the space truss of 
the regular tetrahedron by using the method of the rea-
sonable support system (Case 2-1), the self-regulariza- 
tion approach (Case 2-2) and the finite-element commer-
cial code ABAQUS using the automatic damping algo-
rithm.  In the ABAQUS program, the singular stiffness 
matrix is considered as a kind of instability which may 
occur because unconstrained rigid body motions exist.  
The ABAQUS provides the automatic damping algorithm  
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Fig. 14 Deformation of the space truss subject to the 
Neumann BC by using the self-regularization 
approach (Case 2-2). 

 

 

Fig. 15 Deformation of the space truss subject to the 
Neumann BC by using the ABAQUS with the 
automatic damping algorithm (Case 2-2, defor-
mation scale factor = 1.0e-2) 

 
to stabilize the unstable problem.  By the automatic 
stabilization, viscous force is added to overcome insta-
bilities and to eliminate rigid body modes without con-
siderably distorting the solutions.  The plots of the de-
formation by using the self-regularization approach and 
ABAQUS with automatic damping algorithm are shown 
in Fig. 14 and Fig. 15, respectively.  Although the dis-
placements solved from the method of the reasonable 
support system and the self-regularization approach are 
different, the stress states obtained from these two meth-
ods are the same.  The reason is that the solution ob-
tained by using the self-regularization approach is a pure 
particular solution.  In other words, the obtained dis- 

 

Fig. 16 Case 2-3: The space truss subject to the different 
mixed type BC - zero stress bar (reasonable sup- 
port). 

 
 

 

Fig. 17 Case 2-4: The space truss subject to the Neu-
mann BC corresponding to the Case 2-3. 

 
placement field does not contain any rigid body mode. 

Reasonable support system for three zero stress bars 
(Case 2-3) is also constructed in Fig. 16 with a similar 
treatment from the 2-D truss cases.  For this simple case, 
it is not easy to find the reasonable support.  Similar to 
the 2-D case for the loading in Fig. 17 (Case 2-4), there 
are zero stress bars which can be considered as a redun-
dant.  The results of the space truss for the zero stress 
bar and non-zero stress bar are shown in Table 5.  The 
deformation of Case 2-3 and Case 2-4 is shown in Fig. 
18.  All rigid body modes can be obtained straightfor-
wardly by using the SVD in our approach.  The proce-
dure to obtain the rigid body mode is implemented in this 
paper.  Since it is difficult to find the reasonable support 
for unsymmetrical and complicated structures, our ap-
proach can work straightforwardly once the stiffness 
matrix is determined free of adding the reasonable sup-
port. 

0.0

0.2

0.4

0.6

0.8

1.0

-0.4
-0.2

0.0
0.2

0.4
0.6

0.8

-0.6-0.4-0.20.00.20.40.6

Z 

X 
Y 

Deformation of the truss (Neumann BC)

Original truss
Deformed truss

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

-0.4
-0.2

0.0
0.2

0.4
0.6

0.8

-0.6-0.4-0.20.00.20.4

Z

X

Y

Deformation of Case 2-2 by using the ABAQUS
with the automatic damping algorithm 

Original 
Deformed (ABAQUS-ADA)

0.0

0.2

0.4

0.6

0.8

1.0

-0.4
-0.2

0.0
0.2

0.4
0.6

0.8

-0.6-0.4-0.20.00.20.4

Z 

X

Y

f5 = 0.866

f5 = -0.866f7 = -0.5
f4 = -0.5

u11 = 0.0

T

BC

BA

BB

p3 = 1

p2 = 1

p1 = 1

T

BC

BA

BB

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jmech.2017.15
Downloaded from https://www.cambridge.org/core. National Taiwan Ocean University, on 22 Aug 2019 at 09:48:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jmech.2017.15
https://www.cambridge.org/core


Journal of Mechanics, Vol. 34, No. 4, August 2018 517 
 

Table 5 Internal force of members for the space truss of 
Case 2-3 and Case 2-4 

Member 
ID 

Mixed type BC Neumann problem 

A BB B  0.57735 (Tension) 0.57735 (Tension) 

B CB B  0.57735 (Tension) 0.57735 (Tension) 

C AB B  0.57735 (Tension) 0.57735 (Tension) 

AB T  0 (Redundant) 0 (Redundant) 

BB T  0 (Redundant) 0 (Redundant) 

CB T  0 (Redundant) 0 (Redundant) 

 
 
 

 

Fig. 18 Deformation of the space truss subject to dif-
ferent types of BCs (Case 2-3 (the mixed type 
BC) and Case 2-4 (the Neumann BC)). 

5.  CONCLUSIONS 

In this paper, the indeterminacy can be removed in the 
rigid body mode inherent in the free-free plane and space 
trusses by adding slack variables and then enforcing the 
corresponding constraints.  In this way, the correspond-
ing solution space is added since the range of the map-
ping is deficient.  Therefore, a singular stiffness matrix 
can be bordered to a nonsingular matrix.  According to 
the Fredholm alternative theorem, the slack variables, ci, 
is used to judge whether the algebraic system has the 

infinite solutions (ci = 0) or no solutions (ci ≠ 0).  By 
inversing the nonsingular matrix, the reference solution 
which is a pure particular solution without containing 
any rigid body mode can be obtained.  A method of the 
reasonable support system to constrain the rigid body 
mode is also an alternative.  Four examples of plane and 
space trusses were demonstrated to see the validity of the 
present formulation. 

Besides, zero stress bars were also discussed for the 
special loading system.  The finite-element commercial 
code ABAQUS was also applied for comparison and 
validation.  ABAQUS provides the automatic damping 
algorithm to deal with the inherent instabilities and rigid 
body modes in free-free structures.  It is found that the 
present method yields the agreeable stress of all bars 
although displacement fields from rigid body modes are 
different after comparing with those of using FEM and 
the method of reasonable support system.  Furthermore, 
we emphasize the accurate stress field rather than the 
displacement field which can be superimposed by any 
rigid body mode reasonably.  We obtain the reasonable 
reference displacement field which can be different from 
others by a rigid body mode. 
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