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中文摘要 

 
本論文利用加法定理及疊加技巧來求解集中力與螺旋差

排問題的格林函數。此兩類問題均可利用疊加技巧分為兩部

份。一部分為基本解的問題;另一部份為典型的邊界值問題。

於基本解的部份，我們利用加法定理展開成退化核的型式。

而在求解螺旋差排問題時，將角度型的基本解展成退化核的

型式，這在作者的認知中文獻並未發現。我們引入疊加技巧

及加法定理來決定典型邊界值問題之邊界條件。再利用

NTOU/MSV 在零場積分方程結合傅立葉級數求解典型邊界值問

題之成功經驗，第二部份的解將能迎刃而解。將兩部分的場

解做疊加即可得到完整的格林函數。另外，選取不同項數的

傅立葉級數進行收斂性分析來測試本方法的收斂速率。最

後，我們將利用含圓形邊界(洞及夾雜)之集中力與螺旋差排

問題，來驗證此方法的準確性。本法最大特色可免除傳統邊

界元素法中的五項缺點:(1)奇異積分的主值計算、(2)病態矩

陣、(3)邊界層效應、(4)線性收斂及(5)網格切割。 

關鍵字：加法定理、疊加技巧、螺旋差排、格林函數 
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Abstract 

 

In this thesis, we employ the addition theorem and superposition 

technique to derive the Green function of the concentrated forces and screw 

dislocation problems. By using the superposition technique, the problems 

can be decomposed into two parts. One is the problem of the fundamental 

solution and the other is a typical boundary value problem (BVP). The 

fundamental solution is expanded into the degenerate kernel by using the 

addition theorem. The angle-type fundamental solution of the screw 

dislocation problem has not been expanded into the degenerate form before 

to our best knowledge. Following the success of null-filed integral 

formulation for solving the typical BVP with Fourier boundary densities in 

the NTOU/MSV group, the second part boundary condition can be easily 

obtained by introducing the superposition technique and addition theorem. 

After superposing the two solutions, the Green function can be obtained. 

Convergence rate using various numbers of terms for Fourier series is also 

examined. Finally, some concentrated force and screw dislocation problems 

with circular boundaries, including holes and inclusions, were demonstrated 

to see the validity of present method. Five disadvantages, (1) calculation of 

principal value, (2) ill-posed model, (3) boundary-layer effect, (4) linear 

convergence and (5) mesh generation, can be avoided by using the present 

approach in comparison with the conventional BEM. 

Keyword: addition theorem, superposition technique, screw dislocation, 

Green function 
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Chapter 1 Introduction 

1.1 Motivation of the research and literature review 

Many engineering problems can be formulated as mathematical models of the 

boundary value problems. In order to solve such problems, researchers proposed 

several numerical methods as shown in the Table 1-1, e.g., boundary element method 

(BEM), finite element method (FEM), finite difference method (FDM). Figure 1-1 

shows growth of number of papers for FEM and BEM. FDM is the simplest way of 

approximating a differential operator and is extensively used in solving a differential 

equation. FDM has some difficulties in modeling the boundary condition of 

complicated curved geometries. In such problems, FDM can’t exactly capture the 

geometry of the problem. In the recent years, FEM has been widely applied to solve 

many engineering problems. The development of the FEM is often based on the 

energy principle, e.g., the virtual work principle or the minimum potential. FEM has 

some disadvantages when modeling infinite regions, moving boundary problems and 

dealing with domain discretization. Among various numerical methods, BEM is one 

of the most popular numerical approaches for solving boundary value problems. The 

method requires only discretization of the boundary thus reducing one-dimension 

discretization in numerical implementation. BEM is convenient for the general 

boundaries, no matter what the dimension of the problem is. The most important 

advantage to FEM is that BEM can deal with the problem with the infinite domain 

without artificially truncating the domain. Although BEM has been involved as an 

alternative numerical method for solving engineering problems, five critical issues are 

of concern. 

(1) Treatment of weak, strong and hypersingular singularity 

BEM is based on the fundamental solution to solve the partial differential 

equation. The fundamental solution is a two-point function which is singular as 

the source and field points coincide. Most researchers have focused on the 

singular boundary integral equation for problems with ordinary boundaries. When 

a problem contains the degenerate boundary, fictitious frequency and spurious 

eigenvalue, the singular boundary integral equation is not sufficient. Thus, the 
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hypersingular boundary integral equation has been proposed. A review article of 

Chen and Hong [Chen and Hong, 1999] can be consulted for readers. In order to 

directly face the Cauchy, Riemann and Hadamard principal values, researchers 

have published a large amount of papers by using the bump contour approach. 

Guiggiani [Guiggiani, 1995] has derived the free terms for the Laplace and Navier 

equations by using the differential geometry and bump contour approach in 

Figure 1-2 (a). Gray and Manne [Gray and Manne, 1993] have employed a 

limiting process to ensure a finite value from an interior point to boundary by 

using a symbolic software in Figure 1-2 (b). Waterman [Waterman, 1965] 

introduced the null-field approach (so-called extended boundary condition 

method (ECBM) or T-matrix method) to deal with the singularity problem. 

Achenbach et al. [Achenbach, Kechter and Xu, 1988] proposed the off-boundary 

approach in order to overcome the fictitious frequencies free of singularity. 

Although the fictitious BEM and the null-field approach can avoid directly 

calculating the singular and hypersingular integrals, they may result in an 

ill-posed model which will be elaborated on later. 

(2) Ill-posed model 

When the null-field approach or fictitious BEM are used to avoid directly 

calculating the singular and hypersingular integrals, it result in an ill-posed model. 

The influence matrix is not diagonally dominated and needs preconditioning. A 

well-posed model can be reconstructed, when the fictitious boundary locates on 

the real boundary or the null-field point is pushed on the real boundary. However, 

the singularity appears as the first issue mentioned.  

(3) Boundary-layer effect 

It is well known that boundary-layer effect appears in the conventional BEM. 

Kisu and Kawahara [Kisu and Kawahara, 1988] proposed a concept of relative 

quantity to eliminate the boundary-layer effect. Chen and Hong in Taiwan [Chen 

and Hong, 1994] as well as Chen et al. in China [Chen, Lu and Schnack, 2001] 

independently extended the idea of relative quantity to two regularization 

techniques which the boundary densities are subtracted by constant and linear 

terms. Sladek et al. [Sladek and Sladek, 1991] used a regularized version of the 
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stress boundary integral equation (σ BEM) to compute the correct values of 

stresses close to the boundary. Others proposed a regularization of the integrand 

by using variable transformations. For example, Telles [Telles, 1987] used a cubic 

transformation such that its Jacobian is a minimum at the point on the boundary 

close to the collocation point and can smooth the integrand. Similarly, Huang and 

Cruse [Huang and Cruse, 1993] proposed rational transformations which can 

regularize the nearly singular integrals. To eliminate the boundary-layer effect, 

correct calculation for the nearly singular integral is the main concern. 

(4) Convergence rate 

In the recent years, BEM is very popular for boundary value problems with 

general geometries since it requires discretiztion on the boundary only. Regarding 

to constant, linear and quadratic elements, the discretization scheme does not take 

the special geometry into consideration. It leads to the slow convergence rate. 

Different boundary shapes have different interpolation functions to approximate 

the boundary density on the specific geometry. Fourier series for circular 

boundary, spherical harmonic function for surface of sphere, Legendre and 

Chebyshev polynomials for the boundary densities on the regular and degenerate 

straight boundaries and Methieu function for the boundary densities of elliptic 

boundaries were incorporated into BEM, respectively. Figure 1-3 shows randomly 

distributed apertures and/or inclusions with square, elliptic and circular shapes, 

etc. Bird and Steele [Bird, 1992; Bird and Steele, 1991; Bird and Steele, 1992] 

presented a Fourier series procedure to solve Laplace and biharmonic problems 

with circular holes by using the similar concept of Trefftz bases of the interior and 

exterior problems. T-complete functions can be extracted out in the degenerate 

kernel of fundamental solution [Chen, Wu, Lee and Chen, 2007]. The boundary 

potential and normal derivative of Laplace problem have been solved in the Caulk 

and Barone work [Barone and Caulk, 1981, 1982, 1985, 2000; Caulk, 1983, 1983, 

1983, 1984] by using the special boundary integral equations in conjunction with 

the Fourier series. Crouch and Mogilevskaya [Crouch and Mogilevskaya, 2003] 

solved the elasticity problems with circular boundaries by using the Somigliana’s 

formula and Fourier series. Although the boundary integral equations in 
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conjunction with the Fourier series expansion were used in the previous 

researchers’ work, but no one introduced the degenerate kernel in boundary 

integral equations. The exponential convergence instead of the algebraic 

convergence by using the degenerate kernel and Fourier expansion in the BEM 

has been proved in the Kress book [Kress, 1989]. Also, the collocation approach 

in the RBF meshless method also results in the exponential convergence and this 

finding receives attention. This thesis will take the advantage of the higher-order 

convergence rate to solve the problems with circular boundaries by using the 

Fourier series and degenerate kernels in the boundary integral equations. 

(5) Mesh generation 

In Figure 1-4, the numeral methods can be decomposed into two parts. One is the 

domain type methods, FEM and FDM, which have been widely used to solve the 

engineering problems. The other is the boundary type methods, BEM, MFS and 

Trefftz method, which are popular in the recent years. Although BEM is free of 

the domain disscretization, the boundary mesh is also required since the 

collocation point is on the real boundary. Thus, we introduced the Fourier series 

for problems with circular boundaries. By using the generalized coordinate, only 

collocation is required and mesh is free. 

You may wonder is it possible to have an approach free of the five disadvantages of 

conventional BEM. The answer is yes. In this thesis, we propose a BIE approach to 

have five gains, singularity free, boundary-layer effect free, exponential convergence, 

well-posed model, mesh-free generation. 

In mathematics, Green’s function is an important tool to solve the ordinary and partial 

differential equations [Kellogg, 1953; Bergman and Schiffer, 1953; Morse and 

Fechbach, 1953; Courant and Hilbert, 1962; Melnikov, 1977; Roach, 1982]. 

Analytical Green’s function for the concentrated forces have been presented for only a 

few simple configurations, Boley [Boley, 1956] analytically constructed the Green’s 

function by using the successive approximation. Adewale [Adewale, 2006] proposed 

an analytical solution for an annular plate subjected to a concentrated load. Later, it 

was corrected by Chen et al.. Numerical Green’s function has received attention by 

many researchers [Telles, Castor and Guimaraes, 1995; Guimaraes and Telles, 2000; 
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Ang and Telles, 2004]. Melnikov [Melnikov, 1982, 1995; Melnikov and Melnikov, 

2001] utilized the method of modified potentials (MMP) to solve boundary value 

problems from various areas of computational mechanics. Later, Melnikov [Melnikov 

and Melnikov, 2006] studied in computing Green’s functions and matrices of Green’s 

type for mixed boundary value problems stated on 2-D regions of irregular 

configuration. For different field problems, dynamic Green’s functions for 

time-harmonic problems [Kitahara, 1985; Denda, Wang and Yong, 2003; Denda, 

Araki and Yong, 2004], piezoelectricity problems [Wang and Zhong, 2003; Chen and 

Wu, 2006], and scattering problems in elastodynamics [Willis, 1980a, b; Talbot and 

Willis, 1983] have been solved by using BEM. In the recent years, the null-field BIEs 

were employed to solve Laplace, Helmholtz, Biharmonic, BiHelmholtz and Navier 

problems. In 2008, Chen and Ke [Chen and Ke, 2008] successfully used the null-field 

integral equation in conjunction with the Fourier series and degenerate kernels to 

construct the Green’s function for the concentrated force by way of Green’s third 

identiry. 

Analytical Green’s functions for the screw dislocation were derived by using the 

complex-variable function. Smith [Smith, 1968] solved the screw dislocation 

problems with circular or elliptic inclusion contained within an infinite body. Also, a 

uniform applied shear stress at infinity was considered. Dundurs [Dundurs, 1969] also 

solved such problems with circular hole or inclusion by using the image technique. 

Sendeckyj [Sendecky, 1970] extended a single inclusion to an arbitrary number of 

circular inclusions by employing the complex-varialbe function in conjunction with 

the inverse point method. Honein et al. [Honein et al., 1992] solved the problem of an 

elastic body containing circular inclusions subject to arbitrary loading by using the 

Möbius transformation. Sudak [Sudak, 2002] and Jin and Fang [Jin and Fang. 2008] 

solved the screw dislocation problem interacting with an imperfect interface by using 

the complex-variable technique. In 2006, Fang and Liu [Fang and Liu, 2006] extended 

the complex-variable function and Riemann-Schwarz’s symmetry principle to solve 

the problem of the interaction of a screw dislocation with a circular 

nano-inhomogeneity incorporating interface stress. All the above papers utilized the 

complex-variable approach. We may propose an alternative formulation by using 
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real-variable function. 

For the inclusion problem, subdomain approach in a similar way of taking free body 

was used by Chen and Wu [Chen and Wu, 2006]. To derive the Green’s function for a 

source singularity, Chen and Ke [Chen and Ke, 2008] directly solved the problems by 

using the Green’s third identity. In stead of using the above approach, this thesis 

derives the Green function by using the superposition technique and addition theorem. 

The mathematical equivalence between Ke’s and the present approaches is addressed 

in this thesis. Many addition theorems can be found in the mathematical handbook. 

Two-point function of fundamental solution is the main ingredient in BIEM. 

Difference-type x s−  kernel can be expanded in a separable form. The addition 

theorem and degenerate kernel are very similar if the position vector of s  changes 

sign. Therefore, degenerate kernel belongs to one kind of addition theorem. 

In the Fredholm integral equations, the degenerate kernel (or so-called separate kernel) 

plays an important role. However, its applications in practical problems seem to have 

taken a back seat to other methods as mentioned by Golberg [Golberg, 1978]. This 

method can be seen as one kind of approximation methods, and the kernel function is 

expressed as finite sums of products by two functions of source and field point, 

respectively. The concept of generating “optimal” degenerate kernels has been 

proposed by Sloan et al. [Sloan, Burn and Datyner, 1975]. They also proved it to be 

equivalent to the iterated Petrov-Galerkin approximation. Later, Kress [Kress, 1989] 

proved that the integral equations of the second kind in conjunction with degenerate 

kernels have the convergence rate of exponential order instead of the linear algebraic 

order. The convergence rate is better than that of conventional BEM. Recently, Chen 

et al. applied the degenerate kernels in conjunction with null-field integral equations 

to solve many engineering problems including the Laplace [Chen et al. 2005, 2006, 

2006, 2007], Helmholtz [Chen, 2005; Chen, Chen and Chen, 2005; Chen, Chen and 

Chen, 2005], biharmonic [Chen, Hsiao and Leu, 2006] and biHelmholtz [Lee, Chen 

and Lee, 2007] problems with holes and/or inclusions. The degenerate kernels are 

summarized in Table 1-2. Following the success of null-field integral formulation for 

a typical BVP as shown in Figure 1-5, the second part of the Green’s function in the 

superposition approach can be easily solved. Main gains of their approach have five 



 

 7

folds: avoid the improper integrals, well-posed model, boundary-layer effect free, 

exponential convergence and mesh-free generation. Based on the degenerate kernel, 

Chen and Wu had a new point of view for finding the image location [Chen and Wu, 

2006]. Also, NTOU/MSV group linked the two numerical methods, Trefftz method 

and method of fundamental solutions for both Laplace and biharmonic problems, by 

using degenerate kernels [Chen, Wu, Lee and Chen, 2007] not only for the circular 

domain but also annular case. They found that the bases of T-complete sets are 

embedded in the degenerate kernel when the fundamental solution is expanded into 

degenerate form. Therefore, these two methods, Trefftz method and method of 

fundamental solutions, can be seen as mathematically equivalent. The similar 

viewpoint was also found by Schaback. However, Schaback claimed that MFS is 

closely connected to the Trefftz method but they are not mathematically equivalent as 

the number of d.o.f. becomes infinity. For the finite number of d.o.f.s, they are not 

equivalent in error analysis. He found that the MFS for the source points on the 

far-away filed yield a trial space that is a space of harmonic polynomials [Schaback, 

2007]. In a word, the degenerate kernel can transform the integral equation to a linear 

algebraic system, once the closed-form kernel functions is replaced by the degenerate 

kernels. 

In this thesis, we focus on the application of the addition theorem and superposition 

technique to problems with circular boundaries subject to concentrated forces or 

screw dislocations. The fundamental solution for the concentrated force has been 

already expanded into separable form in the polar coordinate by using the addition 

theorem. But, no one expanded the angle-type fundamental solution of the screw 

dislocation into the degenerate form to our best knowledge both in mathematics or 

engineering literature. Thus, we will separate the angle-type fundamental solution into 

the degenerate form by using the addition theorem. After introducing the 

superposition technique, the original problem can be decomposed into two parts. One 

is the fundamental solution and the other is the typical BVP with circular boundaries. 

The typical BVP of the second part is solved by using the null-field integral equation 

in conjunction with degenerate kernels and Fourier series following the successes of 

NTOU/MSV group. When the degenerate kernels and Fourier series are introduced, 
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five advantages can be expected, (1) singularity free, (2) boundary-layer effect free, (3) 

exponential convergence, (4) well-posed model, (5) mesh-free generation. Regarding 

to the typical BVP using the null-field integral formulation, the adaptive observer 

system is proposed to fully employ the property of degenerate kernel. All the 

boundary integrals are easily obtained through the orthogonal property between the 

degenerate kernel and Fourier series. The Fourier coefficients can be obtained by 

using the linear algebraic equation after collocating the null-field point exactly on the 

real boundary and matching the boundary condition. In addition, the convergence test 

with various number of terms for Fourier series is studied. Problems of the 

concentrated force and screw dislocation are both demonstrated to see the validity of 

present method. 

1.2 Organization of the thesis 

The frame of the thesis is shown in Figure 1-6. In this thesis, the addition theorem and 

the superposition technique are the two key tools to derive the Green’s function for 

the concentrated force and screw dislocation problems with circular holes and/or 

inclusions. The organization of this thesis is summarized below: 

In chapter 2, we employ the present method to construct the Green’s function of 

source singularity for the Laplace problem. After using the superposition technique, 

the Green’s function can be decomposed into two parts. One is the fundamental 

solution and the other is a typical BVP with circular boundaries. In order to fully 

employ the geometry of circular boundary, the Fourier series for boundary densities, 

degenerate kernels for fundamental solutions and the adaptive observer system are all 

used in the null-field integral formulation. After collocating points on each circular 

boundary and satisfying the boundary conditions, the linear algebraic equation is 

obtained. Thus, the unknown boundary densities can be obtained easily. It is 

straightforward to obtain the field solution by substituting the unknown coefficients to 

the integral equation for the domain point. After superimposing the fundamental 

solution and the typical problem, the Green’s function is obtained. Green’s functions 

for eccentric or half-plane problems with a circular hole as well as an aperture and a 

semi-circular inclusion are found. The results of eccentric case and half-plane 
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problems with a circular aperture or an aperture and a semi-circular inclusion are 

compared with those by Melnikov and Melnikov [Melnikov and Melnikov, 2001, 

2006]. The comparison of the present thesis and Ke’s is also made. 

In chapter 3, we focus on the applications in deriving the solution of the screw 

dislocation for the Laplace equation with circular holes and/or inclusions. In this 

chapter, the angle-type fundamental solution is first expanded into the separable form. 

To our best knowledge, the degenerate kernel for the angle-type fundamental solution 

was not found in the literature before. Finally, some illustrative examples, infinite 

plane with a circular hole subjected to the Dirichlet or Neumann boundary condition 

and infinite plane with one and two circular inclusions were demonstrated to see the 

validity of the present method. 

In chapter 4, we draw out some conclusions item by item and indicate some topics 

deserved for further study. 
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Number of papers of FEM, FDM, FVM, CM and BEM 

Numerical method Search phrase in topic field No. of entries 
FEM ‘Finite element’ or ‘finite element’ 66,237 
FDM ‘Finite difference’ or ‘finite difference’ 19,531 
BEM ‘Boundary element’ or ‘boundary element’ or ‘boundary integral’ 10,126 

FVM ‘Finite volume method’ or ‘finite volume method’ 1695 

CM ‘Collocation method’ or ‘collocation method’ 1615 

Table 1-1 Bibliographic database search based on the Web of Science [Cheng A. H. D. and Cheng D. T. (2005)] 
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Table 1-2 Degenerate kernels and addition theorems 
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Figure 1-2 (a) Bump contour 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

 
Figure 1-2 (b) Limiting process 
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Fig. 1-3 A typical BVP with arbitrary boundaries 
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Fig. 1-6 The frame of this thesis 
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Chapter 2 Green’s function of source singularity for Laplace 
problems with circular boundaries 

Chapter 4 Conclusions and further research 

Chapter 3 Screw-dislocation Green’s function for Laplace 
problems with circular boundaries 
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Chapter 2 Derivation of Green’s function for Laplace 
problems with circular boundaries using addition 

theorem and superposition technique 

Summary 

Following the success of null-field integral equation to solve BVP of the Laplace 

equation, we employ the addition theorem and superposition technique to revisit the 

Green’s function of the Laplace problem with circular boundaries. The Green’s 

function is decomposed into two parts. One is the fundamental solution and the other 

is an infinite plane of circular boundary subject to the specified boundary conditions 

derived from the addition theorem. After superimposing the two solutions, the 

governing equation and boundary condition are both satisfied automatically. Several 

examples are demonstrated to see the validity of the present method. 

Keyword: null-field integral equation, addition theorem, superposition, Laplace 

problem, Green’s function. 

2.1 Introduction 

Mathematicians as well as engineers have studied Green’s function in many fields 

[Jaswon and Symm, 1977; Melnikov, 1977]. Green’s functions are useful building 

blocks for attacking more realistic problems. But only a few of simple regions allow a 

closed-form Green’s function for the Laplace equation. For example, one aperture or 

circular sector in half-plane, infinite strip, semi-strip or infinite wedge are mapped by 

elementary analytic functions, making their Green’s function expressed in a closed 

form. A closed-form Green’s function for the Laplace equation by using the mapping 

function becomes impossible for the complicated domain except for very simple cases. 

Numerical Green’s function has received attention from BEM researchers by Telles et 

al. [Telles et al., 1995; Guimaraes and Telles, 2000; Ang and Telles , 2004]. Melnikov 

[Melnikov, 1982, 1995; Melnikov and Melnikov, 2001] utilized the method of 

modified potentials (MMP) to solve boundary value problems from various areas of 

computational mechanics. Later, Melnikov and Melnikov [Melnikov and Melnikov, 

2006] studied in computing Green’s functions and matrices of Green’s type for mixed 
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boundary value problems (BVP) stated on 2-D regions of irregular configuration. For 

the image method, Thompson [Thomson, 1848] proposed the concept of reciprocal 

radii to find the image source to satisfy the homogeneous Dirichlet boundary 

condition. Chen and Wu [Chen and Wu, 2006] proposed an alternative way to find the 

location of image through the degenerate kernel. Chen and Ke [Chen and Ke, 2008] 

have constructed the Green’s function of multiply-connected domain problems by 

using the null-field integral equation derived from the Green’s third identity. 

In this paper, the Green’s function is decomposed into two parts. One is the 

fundamental solution and the other is an infinite plane of circular boundary subject to 

the specified boundary conditions, derived from the addition theorem. After 

superimposing the two solutions, the governing equation and boundary conditions are 

both satisfied. The main difference between the present paper and Chen and Ke [Chen 

and Ke, 2008] is that we do not directly employ the Green’s third identity to derive the 

Green’s function. Following the success of null-filed integral equation approach 

[Chen and Shen, 2007] for a typical boundary value problem with Fourier boundary 

densities, it can be easily extended to derive the Green’s function by introducing the 

superposition technique and addition theorem in the present thesis. The null-field 

equation approach offers a few attractive features. First, the integrals involved are 

made simple by avoiding the senses of Cauchy and Hadamard principal values. 

Secondly, boundary-layer effect is eliminated since we introduce the addition theorem 

for the interior and exterior regions, respectively. Finally, this method can be seen as 

one kind of meshless method since no boundary element discretization is required. 

Finally, several illustrative examples, annular, eccentric and half-plane cases are 

demonstrated to see the validity of the present method. 

2.2 Review of the null-field integral formulation for a typical 
boundary value problem with Fourier boundary densities 

Considering the problem with N  randomly distributed circular cavities and/or 

inclusions bounded in the domain D  and enclosed with the boundaries, iB  

( 0,1, 2, ,i N= ) as shown in Figure 2-1. We define 

0

N

i
i

B B
=

=∪  (2-1) 
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In mathematical physics, many engineering problems can be described by the Laplace 

equation as shown below: 
2 ( ) 0,u x x D∇ = ∈  (2-2) 

where 2∇  is the Laplacian operator, ( )u x  is the potential function and D  is the 

domain of the interest. The integral equation for the domain point can be derived from 

the third Green’s third identity, we have 

2 ( ) (s, x) ( ) (s) (s, x) ( ) (s), xE E

B B
u x T u s dB U t s dB D Bπ = − ∈ ∪∫ ∫  (2-3) 

( )2 (s, x) ( ) (s) (s, x) ( ) (s), xE E

B B
x

u x M u s dB L t s dB D B
n

π
∂

= − ∈ ∪
∂ ∫ ∫  (2-4) 

where the kernel functions ( , , ,E E E EU T L M ) should be represented by using the 

exterior form of degenerate forms (see the next section), s  and x  are the source 

and field points, respectively, B  is the boundary, xn  denotes the outward normal 

vector at the field point x  and the kernel function (s, x) lnU r= , ( x sr ≡ − ), is the 

fundamental solution which satisfies 
2 (s, x) 2 (x s)U πδ∇ = − , (2-5) 

in which (x s)δ −  denotes the Dirac-delta function. The other kernel functions, 

(s, x)T , (s, x)L  and (s, x)M , are defined by 

s

(s, x)(s, x) UT
n

∂
≡

∂
, 

x

(s, x)(s, x) UL
n

∂
≡

∂
, 

2

s x

(s, x)(s, x) UM
n n

∂
≡

∂ ∂
, (2-6) 

where sn  denotes the outward normal vector at the source point s . By collocating 

the field point x  locates outside the domain, the null-field integral equations of the 

direct method in Eqs. (2-3) and (2-4) yield 

0 (s, x) (s) (s) (s, x) (s) (s)I I

B B
T u dB U t dB= −∫ ∫ , x cD B∈ ∪ , (2-7) 

0 (s, x) (s) (s) (s, x) (s) (s)I I

B B
M u dB L t dB= −∫ ∫ , x cD B∈ ∪ , (2-8) 

where the kernels should be represented by using the interior form of degenerate 

forms (see the next section), cD  is the complementary domain. It is worth noting 

that the null-field integral equations are not singular since s  and x  never coincide. 

2.2.1 Expansion of kernel function and boundary density 

Based on the separable property, the kernel function (s, x)U  can be expanded into 
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series form by separating the field point ( , )x ρ φ  and source point ( , )s R θ  in the 

polar coordinate: 

( )
( )

( )

1

1

1( , ; , ) ln cos ,
,

1( , ; , ) ln cos , >

m
I

m
m

E

m

U R R m R
m R

U s x
RU R m R

m

ρ
θ ρ φ θ φ ρ

θ ρ φ ρ θ φ ρ
ρ

∞

=

∞

=

⎧⎪ ⎛ ⎞⎪ ⎟⎜= − − ≥⎪ ⎟⎜⎪ ⎟⎜⎝ ⎠⎪⎪=⎨⎪ ⎛ ⎞⎪ ⎟⎜⎪ ⎟= − −⎜⎪ ⎟⎜ ⎟⎜⎪ ⎝ ⎠⎪⎩

∑

∑
 (2-9) 

where the superscripts I  and E  denote the interior and exterior cases, respectively. 

It is noted that the leading term and the numerator in Eq. (2-9) involve the larger 

argument to ensure the log singularity and the series convergence, respectively. The 

other kernel functions, (s, x)T , (s, x)L  and (s, x)M  are obtained by their definition. 

The unknown boundary densities are represented by using the Fourier series as shown 

below: 

0
1

(s ) ( cos sin )k k k
k n k n k

n

u a a n b nθ θ
∞

=

= + +∑ , sk kB∈ , 1, 2, ,k N= , (2-10)

0
1

(s ) ( cos sin )k k k
k n k n k

n

t p p n q nθ θ
∞

=

= + +∑ , sk kB∈ , 1, 2, ,k N= , (2-11)

where k
na , k

nb , k
np  and k

nq  ( 0,1, 2,n = ) are the Fourier coefficients, kθ  is the 

polar angle measured related to the x -direction and N  is the number of circular 

boundaries. In the real computation, the finite number of terms ( M ) for expansion of 

kernel and boundary density are adopted. 

2.2.2 Adaptive observer system 

In order to fully employ the property of degenerate kernels for circular boundaries, an 

adaptive observer system is addressed. For the integration, the origin of the observer 

system can be adaptively located on the center of the corresponding boundary contour. 

The dummy variable in the circular boundary integration is the angle θ  instead of 

radial coordinate R . By using the adaptive system, all the integrations can be easily 

calculated for multiply-connected problems. 

2.2.3 Linear algebraic equation 

By moving the null-field point xi  to the ith  circular boundary in the limit sense for 

Eq. (2-7), we have the linear algebraic equation 



 

 24

[ ]{ } [ ]{ }=U t T u  (2-12)

where [ ]U  and [ ]T  are the influence matrices with a dimension of 

( 1)(2 1)N M+ +  by ( 1)(2 1)N M+ + , { }u  and { }t  denote the column vectors of 

Fourier coefficients with a dimension of ( 1)(2 1)N M+ +  by 1 in which  [ ]U , 

[ ]T , { }u  and { }t  are defined as shown below: 

[ ]

00 01 0

10 11 1

0 1

N

N

N N NN

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

U U U
U U U

U

U U U

, [ ]

00 01 0

10 11 1

0 1

N

N

N N NN

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

T T T
T T T

T

T T T

, (2-13)
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u
u

u u

u

, { }

0

1

2

N
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t
t

t t

t

, (2-14)

where the vectors { }ju  and { }jt  are in the forms of 0 1 1{ }j j j j j T
M Ma a b a b  

and 0 1 1{ }j j j j j T
M Mp p q p q , respectively; the first subscript “ i ” 

( 0,1, 2, ,i N= ) in [ ]ijU  and [ ]ijT  denotes the index of the ith  circle where the 

collocation point is located and the second subscript “ j ” ( 0,1, 2, ,j N= ) denotes 

the index of the jth  circle where boundary data { }ju  or { }jt  are specified, N  is 

the number of circular apertures in the domain and M  indicates the truncated 

number of terms in Fourier series. The coefficient matrix of the linear algebraic 

system is partitioned into blocks, and each off-diagonal block corresponds to the 

influence matrices between two different circular cavities. The diagonal blocks are the 

influence matrices due to itself in each individual hole. After uniformly collocating 

the point along the jth  circular boundary, the submatrix can be written as 

0 1 1
1 1 1 1 1

0 1 1
2 2 2 2 2

0 1 1
3 3 3 3 3

0 1 1
2 2 2 2

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

c c s Mc Ms
ij ij ij ij ij

c c s Mc Ms
ij ij ij ij ij

c c s Mc Ms
ij ij ij ij ij

ij

c c s Mc Ms
ij M ij M ij M ij M ij

U U U U U
U U U U U
U U U U U

U U U U U

U

φ φ φ φ φ
φ φ φ φ φ
φ φ φ φ φ

φ φ φ φ

⎡ ⎤ =⎢ ⎥⎣ ⎦

2
0 1 1

2 1 2 1 2 1 2 1 2 1

( )
( ) ( ) ( ) ( ) ( )

M
c c s Mc Ms

ij M ij M ij M ij M ij MU U U U U
φ

φ φ φ φ φ+ + + + +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

 (2-15)
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0 1 1
1 1 1 1 1
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3 3 3 3 3
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2 2 2 2
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0 1 1

2 1 2 1 2 1 2 1 2 1
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M
c c s Mc Ms

ij M ij M ij M ij M ij MT T T T T
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φ φ φ φ φ+ + + + +
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⎢ ⎥
⎢ ⎥
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⎢ ⎥
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 (2-16)

where iφ , 1, 2, , 2 1i M= + , are the angles of collocation along the circular 

boundary. Although both the matrices in Eqs. (2-15) and (2-16) are not sparse, it is 

found that the higher order harmonic is considered, the lower influence coefficient in 

numerical experiments is obtained. It is noted that the superscript “ 0c ” in Eqs. (2-15) 

and (2-16) indicates the first term of Fourier series. The elements of [ ]ijU  and [ ]ijT  

are defined respectively as 
( ) (s , x ) cos( )

j

nc
ij m j m j j jB

U U n R dφ θ θ= ∫ , 

0,1, 2, ,n M= , 1, 2, , 2 1m M= +  
(2-17)

( ) (s , x ) sin( )
j

ns
ij m j m j j jB

U U n R dφ θ θ= ∫ ,  

1, 2, ,n M= , 1, 2, , 2 1m M= +  
(2-18)

( ) (s , x ) cos( )
j

nc
ij m j m j j jB

T T n R dφ θ θ= ∫ ,  

0,1, 2, ,n M= , 1, 2, , 2 1m M= +  
(2-19)

( ) (s , x ) sin( )
j

ns
ij m j m j j jB

T T n R dφ θ θ= ∫ , 

1, 2, ,n M= , 1, 2, , 2 1m M= +  
(2-20)

where s ( , )j j jR θ= , and mφ  is the polar angle of the collocation point mx . The 

influence coefficient of ( )nc
ij mU φ  in Eq. (2-17) denotes the response at mx  due to 

cos nθ  distribution. The direction of contour integration should be taken care, i.e., 

counterclockwise and clockwise directions are for the interior and exterior problems, 

respectively. By rearranging the known and unknown sets, the Fourier coefficients 

can be obtained easily. After obtaining unknown boundary densities, the field solution 

can be obtained by using Eq. (2-3). 
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2.3. Present approach for constructing the Green’s function 

Considering the problem with N  randomly distributed circular cavities and/or 

inclusions bounded in the domain D  and enclosed with the boundaries, iB  

( 0,1, 2, ,i N= ) as shown in Figure 2-2 (a), we define 

0

N

i
i

B B
=

=∪  (2-21)

In mathematical physics, Green’s function problems subjected to the boundary 

conditions and concentrated source satisfies 
2 ( , ) ( ),G x x x Dξ δ ξ∇ = − ∈  (2-22)

where ( , )G x ξ  is the Green’s function and can be seen as the potential, ξ  denotes 

the location of the concentrated force and 2∇  indicates the Laplacian operator. The 

boundary conditions of the problem are shown in the Figure 2-2 (a). Instead of using 

the Green’s third identity in [Chen and Ke, 2008], the problem is decomposed into 

two parts. One is the fundamental solution and the other is an infinite plane of circular 

boundary subject to the specified boundary conditions, which are shown in Figures 

2-2 (b) and (c), respectively. For boundary value problems with circular holes, it is 

usually convenient to take the origin of coordinate on the center of hole. This implies 

that it is likely to be convient to shift the origin during the solution procedure. Such 

shifts can be accomplished with the aid of addition theorems or so-called degenerate 

kernels which exist for the Laplace equation in the polar coordinate system. For 

simplicity, we use the Dirichlet boundary condition ( ( ) 0G θ = ) to demonstrate our 

formulation. The fundamental solution is governed by: 
2 1( , ) ( ),G s x x sδ∇ = −  (2-23)

where 1( , )G s x  is the fundamental solution for the Laplace problem and the 

superscript 1 denotes the first-part solution. Based on the addition theorem, the 

fundamental solution can be separated into the series form in Eq. (2-9). To fully use 

the objectivity of the frame indifference, the origin of the observer system can be 

adaptively located on each center of the corresponding cycle. The boundary condition 

along the ith  circular boundary is expressed as 
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 (2-24)

where the superscript 1 of ( )G θ  denotes the first-part B.C. on iB  boundary due to 

the fundamental solution, iR  and iθ  are the distance and the angle between the 

source point and the ith  center of the corresponding circle, respectively, ia  denotes 

the radius of the ith  circle and iB  is the ith  circular boundary. In order to satisfy 

the boundary condition, the second part is a typical problem subject to the specified 

boundary condition ( 2 1( ) ( )i iG x G x=− ) which can be expressed in terms of Fourier 

series after using the addition theorem. The governing equation is shown below: 
2 2 ( , ) 0,G s x x D∇ = ∈  (2-25)

where the superscript 2 of ( , )G s x  denotes the second-part solution. This part can be 

seen as a typical BVP with circular boundaries and can be easily solved by using the 

null-field formulation as shown in Figure 2-2 (c). After superimposing the two 

solutions, the boundary condition automatically satisfies the Dirichlet boundary 

condition. Thus, the boundary condition in the second part is shown below: 
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 (2-26)

where the superscript 2 of ( )G θ  denotes the second-part B.C.. By using the present 

approach, the problem can be solved in two stages. One is fundamental solution 

(Figure 2-2 (b)) and the other is a typical problem (Figure 2-2 (c)). After 

superimposing the two solutions, the Green’s function can be obtained easily. The 

equivalence between the Green’s third identity used in Ke’s thesis and the 

superposition technique for the Green’s function in the present chapter are shown in 

the Appendix 1. 
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2.4. Numerical examples 

Case 1: An annular case (analytical solution)  

Figure 2-3(a) depicts the Green’s function of the annular ring. The boundary 

conditions along the inner and outer circles are the Dirichlet types. The source point is 

located at (7.5,0)ξ= . The two radii of inner and outer circles are 4.0a =  and 

10.0b = . The center of the inner and outer circles is (0,0) . The analytical solution is 

obtained as 
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where the R  denotes the distance between the source point and the origin, θ  is the 

polar angle and the Fourier coefficients are shown below: 
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Figures 2-3(b) and 2-3(c) show the potential distribution by using the BIE approach 

and the present method, respectively. Good agreement is made. 

Case 2: An infinite plane with an aperture (analytical solution) 

Figure 2-4(a) depicts the Green’s function for an infinite plane with an aperture with 

the Neumann boundary condition. The source point is located at (1.25,0)ξ= . The 

center and radius of the aperture are (0,0)  and 1.0a = , respectively. By using the 

present formulation, the analytical solution is shown below: 
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Figures 2-4(b) and 2-4(c) show the potential distribution by using the image method 

and the present method, respectively. Good agreement is made. The stress distribution 

is shown in Figures 2-4(d) and 2-4(e). After comparing with the two figures, we 

obtain the stress concentration factor of 2. When the location of the source point 

moving to far away, the problem can be seen as a remote shear problem with a 

circular hole where concentration factor is also 2 [Wu, 2006]. The local maximums 

occur at the angles of 
2
π  and 3

2
π . 

Case 3: An eccentric ring (semi-analytical solution) 

Figure 2-5(a) depicts the Green’s function of the eccentric ring with the Dirichlet 
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boundary condition. The source point is located at (0,0.75)ξ= . The two radii of 

inner and outer circles are 0.4a =  and 1.0b = . The two centers of the inner and 

outer circles are (-0.4, 0) and (0,0), respectively. Figures 2-5(b) and 2-5(c) show the 

potential distribution by using Melnikov's approach [Melnikov and Melnikov, 2001] 

and the present method, respectively. We can also obtain consistent data by using our 

method as well as the Green’s function ( , )G x ξ  by MMP method. 

Case 4: A half plane with an aperture (semi-analytical solution) 

Figure 2-6(a) depicts the Green’s function for the half plane with a hole with the 

Dirichlet boundary condition. The source point is located at (2,1)ξ = . The center and 

radius of the aperture are (0,3)  and 1.0a = . Figures 2-6(b) and 2-6(c) show the 

potential distribution by using the Melnikov's approach and the present method, 

respectively. Good agreement is made. 

Case 5: A half-plane problem with a circular boundary subject to the Robin boundary 

condition (semi-analytical solution) 

A half-plane problem with an aperture is considered. The governing equation and 

boundary condition are shown in Figure 2-7(a). The center and radius of the aperture 

are (2, 2)  and 1.0,a = respectively. The concentrated source is located at (0,3.5) . 

The Robin boundary condition ( , ) 2 ( , )
x

G x G x
n
ξ

ξ
∂

=−
∂

 is imposed on the aperture. 

Figures 2-7(b) and 2-7(c) show the potential distribution by using the Melnikov's 

approach and the present method, respectively. Good agreement is obtained. 

Case 6: An infinite-plane problem with a circular inclusion (analytical solution) 

An infinite-plane problem with an circular inclusion is considered. The governing 

equation and boundary condition are shown in Figure 2-8(a). The center and radius of 

the inclusion are (0,0)  and 1.0,a =  respectively. The concentrated source is 

located at (1.1,0) . Figure 2-8(b) shows the stress distribution along the interface. 

After comparing the present approach with the Wang and Sudak [Wang and Sudak, 

2007], good agreement is obtained. After using the Parseval’s theorem to test the 

convergence rate, Figures 2-8(c) and 2-8(d) are obtained.  
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2.5. Conclusions 

For the Green’s function with circular boundaries, we have proposed an indirect 

approach to construct the Green’s function by using the addition theorem and 

superposition technique. Several examples, including two analytical solutions (an 

annular case and an infinite plane with an aperture) and three semi-analytical 

solutions (an eccentric ring, a half plane with an aperture and a half-plane problem 

with a circular boundary subject to the Robin boundary condition) were demonstrated 

to check the validity of the present formulation. The present method has more 

physical sense (taking free body) to solve the Green’s function for the Laplace 

problems with circular boundaries. Our advantages are five folds: (1) mesh-free 

generation (2) well-posed model (3) principal-value free (4) elimination of 

boundary-layer effect (5) exponential convergence. 
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Figure 2-1 A typical boundary value problem with Fourier boundary densities of 
Dirichlet, Neumann and Robin boundary conditions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-2 (a) Green’s function for the Laplace problem with Fourier boundary 
densities of the Dirichlet, Neumann and Robin types 
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Figure 2-2 (b) The first part of the Green’s function-fundamental solution 
 

Figure 2-2 (c) The second part of the Green’s function-fundamental solution-an 
infinite plane with circular boundary subject to the specified 
boundary conditions 
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( , ) 0G x ξ =

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-3 (a) Green’s function for the annular ring 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 2-3(b) Potential contour by using 
the BIE approach 

Figure 2-3(c) Potential contour by using 
the present method (M=50)
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Figure 2-4(a) Green’s function for an infinite plane with an aperture 
  

Figure 2-4(b) Potential contour by using 
the image method 

Figure 2-4(c) Potential contour by using the 
present method (M=50) 
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Figure 2-4(d) Stress distribution along the circular hole ( 1.0a =  and (1.25,0)ξ= )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-4(e) Stress distribution along the interface ( 1.0a =  and (150,0)ξ = ) 
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Figure 2-5(a) Green’s function for the eccentric ring 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 2-5(b) Potential contour by using 
the Melnikov’s method 
[Melnikov and Melnikvo 
(2001)] 

Figure 2-5(c) Potential contour by using 
the present method 
(M=50) 
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Figure 2-6(a) Green’s function for the half-plane problem with the Dirichlet 
boundary condition 

  

Figure 2-6(b) Potential contour by using 
the Melnikov’s method 
[Melnikov and Melnikvo 
(2001)] 

Figure 2-6(c) Potential contour by using 
the present method 
(M=50) 
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Figure 2-7(a) Green’s function for the half-plane problem with the Robin boundary 

condition 
  

Figure 2-7(b) Potential contour by using 
the Melnikov’s approach 
[Melnikov and Melnikvo 
(2006)] 

Figure 2-7(c) Potential contour by using 
the present method (M=50)
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Figure 2-8(a) Green’s function for the infinite plane with a circular inclusion 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-8(b) Stress distribution along the interface 
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Figure 2-8(c) Parseval’s sum for MG  with 1.0a =  and (1.1,0)ξ =  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-8(d) Parseval’s sum for 
MG

n
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 with 1.0a =  and (1.1,0)ξ =  

 



 

 42

Chapter 3 Derivation of screw dislocation 
solution for Laplace problem with circular 

boundaries using addition theorem and 
superposition technique 

Summary 
In this chapter, the addition theorem and superposition technique are extended to solve 

the screw dislocation problems with several circular holes or inclusions. After taking the 

free body between the interface of the matrix and inclusions, the problem is 

decomposed into two parts. One is the screw dislocation problem with several circular 

holes and the other is interior Laplace problem for several circular inclusions. The 

problem with circular holes can be formulated by using superposition technique of the 

chapter 2. The interior problem is formulated by using the null-field formulation. 

According to the continuity of displacement and equilibrium of traction along the 

interface, the influence matrix can be constructed. The kernel functions and unknown 

boundary densities are expanded by using the degenerate kernel and Fourier series, 

respectively. To the author’s best knowledge, the angle-type fundamental solution is 

first derived in this thesis. Finally, infinite-plane problems with circular holes or 

inclusions are demonstrated to verify the validity of present approach. 

3.1 Introduction 

The subject of dislocation is essential for an understanding of many of physical and 

mechanical properties of crystalline solids. Many researchers investigated the 

dislocation problems in the past years. Smith [Smith, 1968] successfully solved the 

problem of the interaction between a screw dislocation and a circular or elliptic 

inclusion contained within an infinite body. by using the complex-varialbe function and 

circle theorem. Besides, uniform anti-plane remote shear can bee considered at the same 

time. Dundurs [Dundurs, 1969] solved the screw dislocation with circular inclusion 

problem by using the image technique. Later, Sendeckyj [Sendeckyj, 1970] employed 

the complex-varialbe function in conjunction with the inverse point method to solve the 

problem of the screw dislocation near an arbitrary number of circular inclusions. Honein 
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et al. [Honein et al., 1992] extended the circle theorem to solve the problem of an elastic 

body containing an elastic circular inclusion and subject to arbitrary loading. Sudak 

[Sudak, 2002] and Jin and Fang [Jin and Fang, 2007] solved the problem of the screw 

dislocation interacting with an imperfect interface by using the complex-variable 

technique. Such a problem was solved by using the image technique and Fourier 

transform by Fan and Wang [Fan and Wang, 2002]. In 2006, Fang and Liu [Fang and 

Liu, 2006] extended the complex-variable function and Riemann-Schwarz’s symmetry 

principle to solve the problem of the interaction of a screw dislocation with a circular 

nano-inhomogeneity incorporating interface stress. Almost all the above problems were 

solved by using the complex-variable technique. Its extension to three-dimensional 

cases may be limited. A more general approach is nontrivial for further investigation. 

In this chapter, we introduce the degenerate (or so-called separable) kernel for the 

angle-based fundamental solution (θ ) instead of radial-basis one ( ln r ). To our best 

knowledge, the degenerate kernel for angle-type fundamental solution was not found in 

the literature. A screw dislocation solution is decomposed into two parts. One is screw 

dislocation problem with several holes, and the other is the interior Laplace problems 

for several circular inclusions. After superposing the two solutions, the governing 

equation and boundary conditions can be satisfied automatically. The present approach 

offers a few attractive features. First, the integrals are made simple by avoiding the 

senses of Cauchy and Hadamard principal values. Secondly, the extension to 

three-dimensional problem is possible. Besides, this method can be seen as one kind of 

meshless method since no boundary element discretization is required. Finally, several 

illustrative examples are demonstrated to see the validity of the present method. 

3.2 Problem statements and mathematical formulation 

The physical problem to be considered is shown in Figure 3-1, where circular inclusions 

are imbedded in an infinite plane. For the anti-plane problem, we only consider the 

anti-plane displacement w  such that 
0, ( , )u v w w x y= = =  (3-1)

where u  and v  are the vanishing components of displacement. The governing 
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equation for anti-plane elasticity w  in the absence of body forces is simplified to 
2 ( , ) 0w x y∇ =  (3-2)

where 2∇  is the two-dimensional Laplacian operator. Therefore, the screw dislocation 

can be described as 

0
lim[ ( , ) ( , )] ,
y

w x y w x y b x ξ
→

− − = ≥  (3-3)

where b  denotes the Burgers’ vector and ξ  denotes the location of the screw 

dislocation. By taking the free body along the interface between the matrix and 

inclusions, the problem is decomposed into two systems. One is an infinite plane with 

N  circular holes subject to a screw dislocation as shown in Figure 3-2 (a). The other is 

N  circular inclusions bounded by iB  contour which satisfies the Laplace equation as 

shown in Figure 3-2 (b). For the problem in Figure 3-2 (a), it can be superimposed by 

two parts again. One is an infinite plane subjected to screw dislocation and the other is 

an infinite plane with N  circular holes which satisfies the specified boundary 

conditions as shown in Figures 3-2 (c) and 3-2 (d), respectively. 

3.3 Expansions of fundamental solutions and boundary densities 

To fully employ the property of circular geometry, the mathematical tools, separable 

kernel (so-called degenerate kernel or addition theorem) and Fourier series, are utilized 

for an analytical study. 

3.3.1 Degenerate (Separable) kernel for the angle-based fundamental solution 

In order to derive the degenerate kernel, the polar coordinate is utilized to replace the 

Cartesian coordinate. Therefore, the location of the screw dislocation and collocation 

points are expressed as ( , )R θ  and ( , )ρ φ , respectively, in the polar coordinate. The 

position vector of screw dislocation point is θi
s eRz = . Similarly, the collocation point 

can be expressed by φρ i
x ez = , as shown in Figure 3-3. In order to derive the screw 

dislocation fundamental solution of Laplace equation ( ( , )s xϕ ) into the separable form, 

we have 

ln( ) ln( ) lni
x sz z re r iϕ ϕ− = = +  (3-4)
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For the exterior case )( ρ<R , Eq.(3-4) can be expanded as follows 

1
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1
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 (3-5)

Thus, the degenerate (or so-called separable) form for the fundamental solution of the 

screw dislocation for the Laplace equation ( ( , )s xϕ ) is obtained 

1

1 R( , ) ( ) sin ( ), ,m

m

s x m R
m

ϕ φ θ φ ρ
ρ

∞

=

= − − <∑  (3-6)

Similarly, we also obtain 

1

1( , ) ( ) sin ( ), ,m

m

s x m R
m R

ρ
ϕ θ π θ φ ρ

∞

=

= + + − ≥∑  (3-7)

for the interior case )( ρ>R . In Figure 3-3, the range of ( , )s xϕ  is defined between 0  

and 2π . To match the physical meaning and mathematical requirement, we modify the 

range of the interest between π−  and π . Thus, the fundamental solution of the screw 

dislocation ( ( , )s xϕ ) is expressed by 

1

1

1( , ; , ) ( ) sin ( ),
( , )

1 R( , ; , ) ( ) sin ( ),

I m

m

E m

m

R m R
m R

s x
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ϕ ρ φ θ φ π θ φ ρ
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∞
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⎧⎪⎪ = + − ≤⎪⎪⎪=⎨⎪⎪ = − − − >⎪⎪⎪⎩

∑

∑
 (3-8)

where the superscripts I  and E  denote the interior and exterior cases, respectively. It 

is noted that the numerator in Eq. (3-8) involve the larger argument to ensure the series 

convergence. By using Eq. (3-8) to plot the contour plots for the screw dislocation in the 

four quadrants are shown in Figure 3-4 (a) to Figure 3-4 (d). When the screw dislocation 

locates at the four quadrants, there are certain areas falling outside the range between 

π−  and π . We subtract 2π  where the value is greater than π  to ensure the value in 

the range. Similarly, we add 2π  where the value is smaller than π− . When the 

response is in the defined range, Figure 3-5 shows the screw-dislocation response. To 

the author’s best knowledge, the degenerate kernel for the angle-type fundamental 
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solution was not found in the literature. 

3.3.2 Fourier series expansion for boundary density 

The unknown boundary densities are represented by using the Fourier series as shown 

below: 

0
1

(s ) ( cos sin )
M

k k k
k n k n k

n

u a a n b nθ θ
=

= + +∑ , sk kB∈ , 1, 2, ,k N= , (3-9) 

0
1

(s )(s ) ( cos sin )
M

k k kk
k n k n k

ns

ut p p n q n
n

θ θ
=

∂
= = + +

∂ ∑ , sk kB∈ , 1, 2, ,k N= , (3-10)

where k
na , k

nb , k
np  and k

nq  ( 0,1, 2,n = ) are the Fourier coefficients, kθ  is the 

polar angle measured related to the x -direction and N  is the number of circular 

boundary. In the real computation, the finite number of terms M  for boundary density 

is adopted. 

3.4 Matching of interface conditions and solution procedures 

After decomposing the inclusion problems into two parts, we employ the null-field 

equation approach to handle one exterior Laplace problems for the matrix and several 

interior Laplace problems for the inclusions as shown in Figures 3-2 (b) and 3-2 (d), 

respectively. By collocating the null-field point exactly on the real boundary, the linear 

algebraic system is obtained. For the exterior problem of matrix in Figure 3-2 (d), we 

have 

{ }
M sd

M M M sd
⎧ ⎫⎪ ⎪∂ ∂⎪ ⎪⎡ ⎤ ⎡ ⎤− = −⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎪ ⎪∂ ∂⎪ ⎪⎩ ⎭

w wU T w w
n n

. (3-11)

where the superscript M  denotes the matrix and superscript sd  denotes the screw 

dislocation. For the interior problem of each inclusion in Figure 3-2 (b), we have 

{ }
I

I I I
⎧ ⎫⎪ ⎪∂⎪ ⎪⎡ ⎤ ⎡ ⎤=⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎪ ⎪∂⎪ ⎪⎩ ⎭

wU T w
n

, (3-12)

where the superscript I  denotes the inclusion. The M⎡ ⎤⎢ ⎥⎣ ⎦U , M⎡ ⎤⎢ ⎥⎣ ⎦T , I⎡ ⎤⎢ ⎥⎣ ⎦U  and I⎡ ⎤⎢ ⎥⎣ ⎦T  are 

the influence matrices due to degenerate kernels of single and double-layer potentials. 

The boundary data of 
M⎧ ⎫⎪ ⎪∂⎪ ⎪⎨ ⎬⎪ ⎪∂⎪ ⎪⎩ ⎭

w
n

, 
sd⎧ ⎫⎪ ⎪∂⎪ ⎪⎨ ⎬⎪ ⎪∂⎪ ⎪⎩ ⎭

w
n

, { }Mw  and { }sdw  are the vectors of 
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Fourier coefficients. It is denoted that { }sdw  and 
sd⎧ ⎫⎪ ⎪∂⎪ ⎪⎨ ⎬⎪ ⎪∂⎪ ⎪⎩ ⎭

w
n

 in Figure 3-2 (c) are the 

displacement and traction fields due to the screw dislocation. According to the 

continuity of displacement and equilibrium of traction along the ideal interface, we have 

the constraints 

{ } { }M I
j jw w= ,        on jB , (3-13)

[ ] [ ]
M I
j j

M I

t w
n n

μ μ
⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪∂ ∂⎪ ⎪ ⎪ ⎪=−⎨ ⎬ ⎨ ⎬⎪ ⎪ ⎪ ⎪∂ ∂⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

, on jB , (3-14)

where [ ]Iμ  and [ ]Mμ  are shown as follows: 

[ ]

0 0
0 0

0 0

I

I
I

I

μ
μ

μ

μ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

, 

0 0
0 0

[ ]

0 0

M

M
M

M

μ
μ

μ

μ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

, (3-15)

in which Iμ  and Mμ  denote the shear modulus of the matrix and the inclusion, 

respectively. By assembling matrices in Eqs. (3-11)~(3-14), a global algebraic system 

can be obtained. 

0 0
00 0
00 0
00 0

M
j

M M M
j j j

I I
j j

I
j
I

M I j

w
cT U w

T U n
I I w

w
n

μ μ

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎡ ⎤ ⎪ ⎪ ⎧ ⎫− ⎪ ⎪∂⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎢ ⎥ ⎪ ⎪− ⎪ ⎪∂ ⎪ ⎪⎪ ⎪⎢ ⎥ =⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎪ ⎪ ⎪ ⎪− ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪∂⎢ ⎥ ⎩ ⎭⎣ ⎦ ⎪ ⎪⎪ ⎪⎪ ⎪∂⎪ ⎪⎩ ⎭

, (3-16)

where { }c  is the forcing terms due to the screw dislocation. The matrix [ ]I  is an 

identity matrix. By comparing Eq. (3-11) with the first row of Eq. (3-16), we have 

{ } { }
sd

M sd M wc T w U
n

⎧ ⎫⎪ ⎪∂⎪ ⎪⎡ ⎤ ⎡ ⎤= − ⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎪ ⎪∂⎪ ⎪⎩ ⎭
. (3-17)

By translating the screw dislocation to the origin of the circular hole, the boundary 

distribution of sdw  and sdt  due to the screw dislocation are expressed as 

1

1

1 ( ) sin ( ),

1 R( ) sin ( ),

mi
i

msd

m
i

m i

a m a R
m R

w
m a R

m a

θ θ φ

φ π θ φ

∞

=

∞

=

⎧⎪⎪ + − ≤⎪⎪⎪=⎨⎪⎪ − − − >⎪⎪⎪⎩

∑

∑
, (3-18)
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1

1

1
1

sin ( ),

sin ( ),

m
i

imsd
m

m

im
m i

a m a R
Rw

n R m a R
a

θ φ

θ φ

−∞

=

∞

+
=

⎧⎪⎪ − ≤⎪⎪∂ ⎪⎪=⎨⎪∂ ⎪ − >⎪⎪⎪⎪⎩

∑

∑
, (3-19)

where R  and θ  denote the distance and polar angle, respectively, between the screw 

dislocation and the origin as shown in Figure 3-3 and ia  denotes the radius of the ith  

circle. The flowchart of the present approach is shown in the Figure 3-6. 

 

3.5 Illustrative examples and discussions 

Case 1: An infinite plane with a rigid inclusion subject to the Dirichlet boundary 

condition (an analytical solution) 

Figure 3-7 (a) shows the geometry of a single rigid inclusion in the infinite plane under 

the screw dislocation. The screw dislocation is located at (1.75,0)ξ= . The center of 

the rigid inclusion is set at (0,0)  and the radius a  is 1.0 . An analytical solution was 

derived by Smith (Smith, 1968) as shown below: 
2

0 0( ) log( ) log( )
2 2

1( , ) Re[ ( )]

E E

E

b b aF z z z z
i i z

w x y F z

μ μ
π π

μ

= − + −

=
 (3-20)

where ( )F z  and Eμ  denote the complex variable function and shear modulus, 

respectively, 0z  denotes the conjugate of the position vector of the screw dislocation, 

b  denotes the Burgers’ vector, and Re[ ]i  denotes the real part. By using the present 

formulation, the analytical solution is shown below: 

2

1

2

1

ln(1 ) [( ) ( ) ]sin ( ),
ln 2 2

( , )
ln [( ) ( ) ]sin ( ),

2 2 ln 2 2

m m

m

m m

m

b b a m R
a m R R

w
b b b b R a m R

a m R

ρ θ ρ
θ φ ρ

π π ρ
ρ φ

φ ρ θ
θ φ ρ

π π π ρ ρ

∞

=

∞

=

⎧⎪⎪ − + − − ≥⎪⎪⎪⎪=⎨⎪⎪ − − − + − <⎪⎪⎪⎪⎩

∑

∑
 (3-21)

Figures 3-7 (b) and 3-7 (c) show the potential distribution by using the Smith method 

(Smith, 1969) and the present method, respectively. It is found that the result of the 

present approach is in good agreement. Based on the addition theorem, it is easier to 
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find the image location of ( 2 /a R ) with negative strength. A similar work can be found 

for the image location of source case [Chen and Wu, 2006]. 

 

Case 2: An infinite plane with a hole subject to the Neumann boundary condition (an 

analytical solution) 

Figure 3-8 (a) shows the geometry of a single hole in the infinite plane under the screw 

dislocation. The screw dislocation is located at (1.75,0)ξ= . The center of the hole is 

set at (0,0)  and the radius a  is 1.5 . The analytical solution proposed by Smith is 

found in [Smith, 1969] as 
2

0 0( ) log( ) log( )
2 2

1( , ) Re[ ( )]

E E

E

b b aF z z z z
i i z

w x y F z
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By using the present formulation, the analytical solution is shown below: 
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 (3-23)

Figures 3-8 (b) and 3-8 (c) show the potential distribution by using the Smith method 

[Smith, 1969] and the present method, respectively. Good agreement is made. 

Comparisons of the two analytical solutions by using the addition theorem are given in 

the Appendix 2. The stress distribution along the circular hole is shown in the Figure 3-8 

(d). The stress concentration factor is 2. 

 

Case 3: An infinite plane with a circular inclusion (an analytical solution) 

Figure 3-9 (a) shows the geometry of a single inclusion in the infinite plane under the 

screw dislocation. The screw dislocation is located at (1.75,0)ξ= . The center of the 

hole is set at (0,0)  and the radius a  is 1.5 . The analytical solution proposed by 

Smith is found in [Smith, 1969] as 
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where the indexes I  and E  denote the inside and outside the inclusion, respectively, 

Iμ  and Eμ  denote the shear modulus for the inclusion and matrix, respectively and 

( ) /( )I E I Ek μ μ μ μ= − + . By using the present formulation, the analytical solution is 

shown below: 
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where Mμ  and Iμ  denote the shear modulus of the matrix and inclusion, respectively. 

Figures 3-9 (b) and 3-9 (c) show the potential distribution by using the Smith method 

[Smith, 1969] and the present method, respectively. The result of case 2 can be obtained 

by using the limiting process ( 0Iμ → ). Furthermore, the Parseval’s theorem is adopted 

to test the convergence for different number of terms ( M ) for Fourier series since the 

boundary densities are continuous on [0,2 ]π . The Parseval’s theorem is defined as 

shown below: 
2

2 2 2 2
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n n
n

f d a a b
π

θ θ π π
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+ +∑∫ , (3-25)

where 

0
1

( ) ( cos sin )
M

n n
n

f a a n b nθ θ θ
=

= + +∑ . (3-26)

According to Eq. (3-26), the Parseval’s sum versus various number of terms ( M ) for 

Fourier series of boundary densities on each circular boundary in the screw dislocation 
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is plotted in Figure 3-10 (a) to 3-10 (b). 

Case 4: An infinite plane with two circular holes (semi-analytical solution) 

Following the success of the single-hole case to compare well with the Smith’s result, 

we extend to two circular holes as shown in Figure 3-11 (a). The screw dislocation is 

located at (0,0)ξ= . The center of the two holes are set at 1 1( ,0.01 )a a−  and 

2 1( ,0.01 )d a a+ . The radii 1a  and 2a  are 1.0  and 12.0a , respectively. Three cases of 

12.0d a= , 10.1a  and 10.01a  are demonstrated to show the validity of the present 

method. The contour of displacement for the two circular holes problem is shown in 

Figure 3-11 (b) to 3-11 (d). 

3.6 Conclusions 

For the screw dislocation problem with circular boundaries, we have proposed an 

indirect approach to construct the screw dislocation solution by using the addition 

theorem and superposition technique. The angle-type fundamental solution for screw 

dislocation was derived in terms of degenerate kernel in this chapter. Several examples, 

including an infinite plane with a circular hole subject to the Dirichlet or Neumann 

boundary condition and a circular inclusion imbedded in an infinite plane, were 

demonstrated to check the validity of the present formulation. A case of two holes is 

also addressed. Neither complex-variable technique nor senses of principal values were 

required. Good agreements were made after comparing with the previous results. Based 

on this concept, the extension to three-dimensional problem may be possible and is now 

under investigation. 
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Figure 3-1 Infinite plane problem with arbitrary number of circular inclusions under 

the screw dislocation 
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Figure 3-2 (a) Infinite matrix with circular holes 

subject to a screw dislocation 

Figure 3-2 (b) Interior Laplace problems for each 

circular inclusion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-2 (c) Infinite matrix under the screw 

dislocation 

Figure 3-2 (d) Exterior Laplace problems for the 

matrix 
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Figure 3-3 Figure sketch for the screw dislocation 
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Figure 3-4 (a) Screw dislocation in the first 

quadrant without the constrain 

( 1.5R = , / 4θ π= ) 

Figure 3-4 (b) Screw dislocation in the second 

quadrant without the constrain

( 1.5R = , 3 / 4θ π= ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-4 (c) Screw dislocation in the third 

quadrant without the constrain 

( 1.5R = , 5 / 4θ π= ) 

Figure 3-4 (d) Screw dislocation in the forth 

quadrant without the constrain

( 1.5R = , 7 / 4θ π= ) 
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Figure 3-5 Screw dislocation in the first quadrant under the constrain 

( 1.5R = , / 4θ π= ) 
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An infinite plane with two circular holes 
subjected to the specified traction or 
displacement on the boundary to satisfy B. C. 

An infinite plane with two circular 
holes subjected to a concentration load 
or screw dislocation 

Decomposition of two parts 

An infinite plane subjected to a 
concentration load or screw 
dislocation 

Expansion 

Fundamental solutions 
(Calculate the boundary densities) 

Boundary densities for 
circular holes (Fourier series) 

Superposition (Match the boundary 
conditions of original problem) 

By collocating the null-field points 
to obtain the integral equation 

Linear algebraic system 

Obtain the unknown Fourier coefficients 

Calculate the field response using the BIE for the domain point 

Superposing the solution of two 
parts (Potential) 

⊗  

⊗  

Figure 3-6 Flowchart of the present method
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Figure 3-7 (a) Infinite plane with a circular rigid inclusion subject to the Dirichlet boundary 
condition under the screw dislocation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-7 (b) Potential contour by using the 
Smith method [Smith, 1968] 

Figure 3-7 (c) Potential contour by using the 
present method (M=50) 

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

1.5a =
(1.75,0)x =

y

x

0w=

2 ( , ) 0w x y∇ =

0
lim[ ( , ) ( , )] 1, 1.75
y

w x y w x y x
→

− − = >  



 

 59

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-8 (a) Infinite plane with a circular hole subject to the Neumann boundary condition under 
the screw dislocation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-8 (b) Potential contour by using the 
Smith method [Smith, 1968] 

Figure 3-8 (c) Potential contour by using the 
present method (M=50) 
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Figure 3-8(d) Stress distribution along the circular hole 
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Figure 3-9 (a) A circular inclusion embedded in the matrix under the screw dislocation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-9 (b) Potential contour by using the 
Smith method [Smith, 1968] 

Figure 3-9 (c) Potential contour by using the 
present method (M=50) 
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Figure 3-10 (a) Parseval’s sum for Mw  with 1.5a =  and (1.75,0)ξ=  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-10 (b) Parseval’s sum for 
Mw

n
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 with 1.5a =  and (1.75,0)ξ=  
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Figure 3-11 (a) Infinite plane with two circular holes subject to the Neumann boundary condition 
under the screw dislocation 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-11 (b) The displacement contour for the 
two circular holes problem 
( 12.0d a= , 50M = ) 

Figure 3-11 (c) The displacement contour for the 
two circular holes problem 
( 10.1d a= , 50M = ) 

-8 -6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8

-8 -6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8

(0,0)

1 1.0a =

1 1( , 0.01 )a a−  

y

x  

0w
n

∂
=

∂
 

2 12.0a a=

d

2 1( , 0.01 )a d a+

Mμ  

0w
n

∂
=

∂

2 ( , ) 0w x y∇ =  

0
lim[ ( , ) ( , )] 1
y

w x y w x y
→

− − =



 

 64

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-11 (d) The displacement contour for the two circular holes problem ( 10.01d a= , 50M = ) 
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Chapter 4 Conclusions and further research 

4.1 Conclusions 

The thesis is concerned about the derivation of Green’s function for concentrated 

force and screw dislocation problems with circular holes and/or inclusions by using 

the superposition technique and addition theorem. In the context of this thesis, we 

have demonstrated that our approach is useful and effective. Based on the proposed 

formulation for solving the problems involving circular apertures and/or inclusions 

with perfect interface, some concluding remarks are itemized as follows: 

 

1. Instead of directly using Green’s third identity as proposed by Ke [Chen and Ke, 

2008], a systematic approach to derive the Green’s function for Laplace 

problems with circular apertures and/or inclusions was proposed successfully in 

this thesis by using the superposition technique and addition theorem. Problems 

involving infinite, semi-infinite and bounded domains with perfect circular 

boundaries were examined to check the accuracy of the present formulation. 

 

2. The singularity and hypersingularity were avoided by using the addition theorem 

or the degenerate kernel for interior and exterior regions separated by the circular 

boundary. Instead of directly calculating principal values, all the boundary 

integrals can be performed analytically by using the degenerate kernel and 

Fourier expansion. 

 

3. The Green’s function can be obtained by using the null-field integral equation in 

conjunction with the degenerate kernel and Fourier series through the Green’s 

third identity. It is also solved by using the present approach. The two methods 

are proved to be mathematically equivalent as given in the Appendix 1. 

 

4. The convergence study shows that only a few terms of Fourier series can yield 

acceptable results and the convergence rate is fast since the kernel functions and 

boundary densities are expanded into the degenerate form and Fourier series, 

respectively. 
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5. We derived the analytical Green’s function for one aperture or inclusion problem 

by using the superposition technique and addition theorem. Also, the present 

approach can be utilized to construct semi-analytical Green’s functions for the 

concentrated force and screw dislocation problem with several circular aperture 

or inclusions. The present method is seen as a “semi-analytical” approach since 

error only stems from the truncation Fourier series. 

 

6. After introducing the degenerate kernel, the BIEs is nothing more than the linear 

algebra for the unknown Fourier coefficients. 

 

7. The angle-type fundamental solution is first successfully expanded into the 

degenerate form. Thus, we employ the kernel function to solve the screw 

dislocation problems with circular holes or inclusions. 

 

8. A program for deriving the Green’s function due to the concentrated force and 

screw dislocation with the circular apertures or inclusions of arbitrary radii and 

various positions involving Dirichlet, Neumann and mixed boundary condition 

was developed. 
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4.2 Further research 

In this thesis, our formulation has been applied to derive the Green’s function for the 

concentrated forces and screw dislocation problems with circular boundaries by using 

the addition theorem and superposition technique. However, several issues are worth 

to be further investigated as follows: 

 

1. In this thesis, we only consider the perfect interface. The general case of the 

imperfect interface which is circumferentially inhomogeneous can also be solved 

by using the present method. 

 

2. Although the Green’s function for the screw dislocation problems is solved by 

using the superposition technique, we may also employ the Green’s third identity 

to solve the screw dislocation problems in the future study. 

 

3. The degenerate kernels are expanded in the polar coordinate and only problems 

with circular boundaries are solved. For boundary value problems with ellipse or 

crack, further investigation should be considered. 

 

4. According to our successful experiences for half-plane problems, it is 

straightforward to quarter-plane problems which can be studied by employing 

the symmetric or anti-symmetric property of image method. 

 

5. Following the success of applications in two-dimensional problems, it is 

straightforward to extend this formulation to 3-D problems with spherical 

inclusions and/or apertures with perfect or imperfect circular boundaries using 

the corresponding 3-D degenerate kernel functions for fundamental solutions and 

spherical harmonic expansions for boundary densities. 
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Appendix 1 Equivalence between the solution 
using Green’s third identity and that using 

superposition technique 
According to the Chen and Ke (Chen and Ke, 2007) work, the Green’s function can 

be represented by using the Green’s third identity as shown below: 
( , )2 ( , ) ( , ) ( , ) ( ) ( , ) ( ) ( , )

sB B

G sG x T s x G s dB s U s x dB s U x
n
ξ

π ξ ξ ξ
∂

= − +
∂∫ ∫ , 

x D∈ , 
(A1-1)

After introducing the superposition technique, the Green’s function is decomposed 
into two parts. The part of the fundamental solution can be written by using the 
boundary integral equation as given below: 

1
1 1 ( )2 ( , ) ( , ) ( ) ( ) ( , ) ( ) ( , )

sB B

G sG x T s x G s dB s U s x dB s U x
n

π ξ ξ
∂

= − +
∂∫ ∫ , 

x D∈ . 

(A1-2)

The figure is shown in Fig. 2 (b). The boundary integral equation for the typical 
boundary value problem can be also written as 

2
2 2 ( )2 ( , ) ( , ) ( ) ( ) ( , ) ( )

sB B

G sG x T s x G s dB s U s x dB s
n

π ξ
∂

= −
∂∫ ∫ , x D∈ . (A1-3)

as shown in Fig. 2 (c). By superposing Eqs. (A2-2) with (A2-3), we can obtain the 
equation as shown below: 

1 2 1 2

1 2

2 ( ( , ) ( , )) ( , )( ( ) ( )) ( )

( ) ( )( , )( ) ( ) ( , ), x

B

s sB

G x G x T s x G s G s dB s

G s G sU s x dB s U x D
n n

π ξ ξ

ξ

+ = + −

∂ ∂
+ + ∈

∂ ∂

∫

∫
, 

(A1-4)

where 1 2( ) ( )u s u s+  and 2 1( ) ( )

s s

u s u s
n n

∂ ∂
+

∂ ∂
 must satisfy the original boundary 

conditions. Thus, Eq. (A1-4) is rewritten as 
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where 1 2( , ) ( , ) ( , )G x G x G xξ ξ ξ+ = . Therefore, we have proved the equivalence 
between the solution of Green’s third identity and that of superposition technique. 
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Appendix 2 Relation between the Smith solution 
and the present solution for screw dislocation by 

using the addition theorem 

According to the Smith (Smith, 1969) work, an analytical solution for the screw 

dislocation problem with a circular hole subject to the Neumann boundary condition 

is shown below: 
2
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2 2

1( , ) Re[ ( )]

E E
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b b aF z z z z
i i z
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π π
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= − − −

=
. (A2-1)

By using the addition theorem, the term 0log( )z z−  can be separated as shown in Eq. 

(3-8). Similarly, the term 
2

0log( )a z
z
−  is also separated into the separable form as 
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Thus, we separated the analytical solution into the separable form as shown below: 
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where the subscript S  denotes the Smith’s solution. The solution is also obtained by 

using the present approach as shown below: 
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where the subscript P  denotes the present solution. After comparing with the two 

solutions, there is a little difference between the present approach and Smith’s work. 

When the θ  is not equal to zero, the present solution and the Smith’s solution are 

different. The θ  term can be viewed as a rigid body solution due to the Neumann 

problem. 
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