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ABSTRACT 
This paper describes a numerical procedure for solving half-plane Laplace problems with a 
circular hole by using the null-field integral equation and degenerate kernels. The unknown 
boundary potential and flux are approximated by the truncated Fourier series. Degenerate kernels 
are utilized in the null-field integral equation. A linear algebraic system is obtained without 
boundary discretization. To avoid the integration along the infinite boundary of half-plane 
problem, image method is utilized. The present method is verified through two examples with 
the analytical solutions derived by Lebedev. In addition, the results of BEM and meshless 
method as well as exact solutions are also compared to show the accuracy and efficiency. This 
approach can be extended to problems with multiple circular holes without any difficulties. 
 
Keywords: half-plane problem, image method, Laplace problem, Fourier series, degenerate 
kernel 
 

INTRODUCTION 
A number of problems in engineering involving infinite and half-plane domains, e.g. the soil-structure 

interaction, tunnel and concrete pipe design, have been studied by using finite element method (FEM), 
boundary element method (BEM), method of fundamental solution (MFS) and Trefftz method. As we 
know, FEM is a very efficient method in solving finite-domain problems, but it is not convenient to deal 
with infinite-domain problems. In this aspect, BEM is an efficient alternative which has been extensively 
used for solving infinite and half-plane problems [2-4]. 

To tackle the exterior problems containing circular holes by using FEM, special treatment should be 
addressed for truncating the unbounded domain. Due to this reason, BEM is a more efficient method to 
solve an infinite or half-plane problem. BEM with truncated boundary has been utilized to solve the 
half-plane problem [5-7]. To avoid the error due to truncated boundary, BEM in conjunction with the 
image concept has been employed. 

In this paper, the BIEM by using image concept is utilized to solve half-plane problems with a circular 
hole. The unknown boundary potential and flux are approximated by using the truncated Fourier series [8, 
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9]. The Fourier coefficients can be determined by substituting the degenerate kernels in the null-field 
integral equation. Numerical results including Dirichlet and mixed-type cases are successfully given to 
illustrate the validity of the present approach. The accuracy and efficiency for the present method are also 
examined. 

 
BOUNDARY INTEGRAL FORMULATION AND PROBLEM STATEMENT 

Based on the boundary integral formulation for potential problems [1], we have 

2 ( ) ( , ) ( ) ( ) ( , ) ( ) ( ),
B B

u x T s x u s dB s U s x t s dB s x Dπ = − ∈∫ ∫ , (1)

where s  and x  are the source and field points, respectively, D  is the domain of interest, ( )u s  and 
( )t s  denote the potential and its normal flux on the source point s , respectively, and ( , ) lnU s x r=  is 

the fundamental solution which satisfies 
2 ( , ) ( )U s x x sδ∇ = − , (2)

in which, ( )x sδ −  denotes the Dirac-delta function. ( , )T s x  is defined by 
( , )( , )

s

U s xT s x
n

∂
=

∂
, (3)

where sn  denotes the outward normal vector at the source point s . 

By collocating x  outside the domain, we can obtain the null-field integral equation as shown below 

0 ( , ) ( ) ( ) ( , ) ( ) ( ), e

B B
T s x u s dB s U s x t s dB s x D= − ∈∫ ∫ . (4)

The first half-plane problem with a circular hole is considered as shown in Fig. 1. The potential ( )u x  

satisfies the Laplace equation 
2 ( ) 0,u x x D∇ = ∈ , (5)

subject to boundary conditions 
0u =  on 1B , (6)
1u =  on 2B . (7)

For the second problem of mixed-type, the boundary conditions are 
0u =  on 1B , (8)
1t =  on 2B . (9)

In order to avoid the boundary integral along 1B  in Eq. (4), the Green’s function using the image point is 

obtained 

( ; , ) ln lnU s x x x s x s′ ′= − − − , (10)

such that 

1
( ; , ) | 0s BU s x x ∈′ = . (11)

Then, Eqs. (1) and (4) are reduced to 

2 ( ) ( ; , ) ( ) ( ) ( ; , ) ( ) ( ),
B B

u x T s x x u s dB s U s x x t s dB s x Dπ ′ ′= − ∈∫ ∫ , (12)

0 ( ; , ) ( ) ( ) ( ; , ) ( ) ( ), e

B B
T s x x u s dB s U s x x t s dB s x D′ ′= − ∈∫ ∫  (13)

where ( ; , )U s x x′  denotes the Green’s function. 
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EXPANSION OF KERNELS AND BOUNDARY DENSITIES 
Based on the separable properties, the U  kernel function can be expanded into degenerate form as 

shown below 

1

1

1
( , ) ln ( ) cos ( ), ,

( , ) ln
1

( , ) ln ( ) cos ( ), ,

m

m

m

m

I

E

U s x R m R
m R

U s x r
R

U s x m R
m

ρ
θ φ ρ

ρ θ φ ρ
ρ

∞

=

∞

=

= − − >

= =
= − − >

⎧
⎪⎪
⎨
⎪
⎪⎩

∑

∑
 (14)

where the superscripts I  and E  denote the interior and exterior cases, respectively, ( , )x ρ φ=  
and ( , )s R θ=  are the polar coordinates. Based on the Fig. 3, we employ the image concept and 

obtain 

1

1

1
( , ) ln ( ) cos ( ), ,

( , ) ln
1

( , ) ln ( ) cos ( ), ,

m

m

m

m

I

E

U s x R m R
m R

U s x r
R

U s x m R
m

ρ
θ φ ρ

ρ θ φ ρ
ρ

∞

=

∞

=

′
′ ′ ′= − − >

′ ′= =
′ ′ ′ ′= − − >

′

⎧
⎪⎪
⎨
⎪
⎪⎩

∑

∑
 (15)

where ( , )x ρ φ′ ′ ′=  is the image point outside the half-plane domain. The degenerate kernels for the 

Green’s function are 

1 1

( ; , ) ln ln
1 1ln ( ) cos ( ) ln ( ) cos ( ),

I

m m

m m

U s x x r r
RR m m R

m R m
ρ θ φ ρ θ φ ρ ρ

ρ

∞ ∞

= =

′ ′= −

′ ′ ′= − − − + − < <
′∑ ∑

 (16)

1 1

( ; , ) ln ln
1 1ln ( ) cos ( ) ln ( ) cos ( ),

E

m m

m m

U s x x r r
R Rm m R

m m
ρ θ φ ρ θ φ ρ ρ

ρ ρ

∞ ∞

= =

′ ′= −

′ ′ ′= − − − + − < <
′∑ ∑

 (17)

After taking the normal derivative with respect to Eq. (14) and Eq. (15), the ( ; , )T x s s′  kernel can be 

derived as 

1

1
1 1

( ; , ) ( ; , )( ; , )

1 ( ) cos ( ) ( )cos ( ),

I I
I

s
m m

m m
m m

U s x x U s x xT s x x
n R

Rm m R
R R

ρ θ φ θ φ ρ ρ
ρ

−∞ ∞

+
= =

′ ′∂ ∂′ = = −
∂ ∂

′ ′= − − − − − < <
′∑ ∑

 (18)

1 1

1 1

( ; , ) ( ; , )( ; , )

( )cos ( ) ( ) cos ( ),

E E
E

s
m m

m m
m m

U s x x U s x xT s x x
n R

R Rm m Rθ φ θ φ ρ ρ
ρ ρ

− −∞ ∞

= =

′ ′∂ ∂′ = = −
∂ ∂

′ ′= − − − < <
′∑ ∑

 (19)

The boundary densities can be expressed in Fourier series form as shown below 

0 2
1

( ) ( ) ( cos sin ),n n
n

u s f a a n b n s Bθ θ θ
∞

=

= = + + ∈∑  (20)

0 2
1

( ) ( ) ( cos sin ),n n
n

t s g p p n q n s Bθ θ θ
∞

=

= = + + ∈∑  (21)

where the coefficients 0a , na  and nb  are specified once ( )f θ  is given in the case 1, 0p , np  and 
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nq  are the undetermined coefficients for the Dirichlet problem. In the case 2, ( )g θ  is given and the 
coefficients 0a , na  and nb  need to be determined. 

 

LINEAR ALGEBRAIC EQUATION 
By substituting Eqs. (16) and (18) into Eq. (13) for the kernels and substituting Eqs. (20) and (21) for 

the boundary data, we can obtain a linear algebraic system as follows 

[ ]{ } [ ]{ }A x B y=  (22)

where [ ]A  and [ ]B  are influence matrices, { }x  and { }y  denote the unknown and specified 

coefficient matrices, respectively. 
By substituting Eqs. (17) and (19) and the determined Fourier coefficients into Eq. (12), we can obtain the 
potential in the domain of half-plane. 
 

NUMERICAL EXAMPLES 
In this section, we consider two exterior problems with a circular hole [10] as shown in Fig.1 and Fig. 

2. 

Case 1: The circle with radius 1a =  lies below the ground at depth 5h = , subject to the Dirichlet 
boundary conditions 0u =  on 1B  and 1u =  on 2B . 

Case 2: The circle with radius 1a =  lies below the ground at depth 5h = , subject to the mixed-type 
boundary conditions 0u =  on 1B  and 1t =  on 2B . 

To solve the problems, four approaches [11] including (a) single-layer MFS approach, (b) double-layer 
MFS approach, (c) BEM with truncated boundary, and (d) BEM with image concept as well as (f) 
Lebedev exact solution are given for comparison with the (e) present solutions. The node and mesh for 
the different methods are shown in Fig. 5. Boundary flux was obtained to converge well to the exact 
solution for five and ten terms of Fourier series as shown in Fig. 4. All numerical results are illustrated in 
Fig. 6 and Fig. 7. Good agreement is made. 

 
CONCLUSIONS 

A new method by using degenerate kernels, null-field integral equation and Fourier series is proposed 
to solve half-plane problems with a circular hole. Two cases, Dirichlet and mixed-type boundary 
conditions are considered. Numerical results agree well with those of single-layer MFS approach, 
double-layer MFS approach, BEM with truncated boundary and BEM with image concept as well as the 
Lebedev exact solution. Not only mesh and boundary elements are not required in the present formulation 
but also the convergence rate of the present method is faster than the four numerical approaches. 
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Fig. 3 Considered problem and auxiliary 
system 

Fig. 4 The normal flux along the circular 
boundary 

 
Fig. 5 Nodes and meshes 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

(a) MFS (Single-layer potential method) (b) MFS (Double-layer potential method) 
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Fig. 6 Numerical results by using several methods (Dirichlet problem) 
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(L=50, L/h=10) 

(d) BEM using image method 
(N=40) 
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Fig 7 Numerical results by using several methods (Mixed-type problem) 
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(c) BEM with truncated boundary 

(L=50, L/h=10) 
(d) BEM using image method 

(N=40) 
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摘要 

本文以勢能理論為基礎，提出以退化核與傅立葉級數展開求解含孔洞半平面的問題，

此方法可視為半解析法。邊界未知勢能與流通量使用有限項傅立葉級數來近似求得。利用

退化核與傅立葉展開可導得一線性代數方法而無須對邊界離散。半平面無限邊界則採用映

射法予以處理。文中以 Lebedev 導得解析解的兩個不同邊界條件的拉普拉斯問題進行測

試。所得結果並與邊界元素法與無網格法作比較，驗證本方法的正確性。本文並可將單圓

孔洞問題推廣至多圓孔洞問題。 

 
關鍵字：半平面，映像法，拉普拉斯問題，傅立業級數，退化核 


