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Abstract  Based on the successful experience of solving anti-plane problems containing arbitrary 
elliptical inclusions, we extend to deal with the piezoelectricity problems containing arbitrary 
elliptical inhomogeneities. In order to fully capture the elliptical geometry, the keypoint of the 
addition theorem in terms of the elliptical coordinates is utilized to expand the fundamental solution 
to the degenerate kernel and boundary densities are simulated by the eigenfunction expansion. Only 
boundary nodes are required instead of boundary elements. Therefore, the proposed approach 
belongs to one kind of meshless and semi-analytical methods. Besides, the error stems from the 
number of truncation terms of the eigenfuntion expansion and the convergence rate of exponential 
order is better than the linear order of the conventional boundary element method. It is worth noting 
that there are Jacobian terms in the degenerate kernel, boundary density and contour integral. 
However, they would cancel each other out in the process of the boundary contour integral. As the 
result, the orthogonal property of eigenfunction is preserved and the boundary integral can be easily 
calculated. Finally, the problem of two elliptical inhomogeneities in an infinite piezoelectric 
material subject to anti-plane remote shear and in-plane electric field is considered to demonstrate 
the validity of the present method. Besides, two circular inhomegenieties can be seen as a special 
case to compare with the available data by approximating the major and minor axes. 
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1. Introduction 
In recent years, more and more investigators paid their attention to study the actuators and 

sensors because they were widely used in smart materials or structures technology. Therefore, the 
study of electromechanical behavior of piezoelectric material becomes an important issue. It is 
well-known that it results in the stress concentration when the inhomogeneities or defects exist in 
the materials. In this article, we extend the previous works [1] on the piezoelectricity problems with 
“circular” inclusions to deal with the problem containing “elliptical” inhomogeneities. 

For an elliptical shape, it may be more general than a circular geometry in the practical 
applications. Based on the concept of complex potential, Gong and Meguid [2] used the conformal 
mapping and Laurent series expansion to solve an infinite medium containing an elliptical 
inhomogeneity under anti-plane shear. Explicit form of the stress function in the inhomogeneity as 
well as in the matrix was derived in their work. Then, a generalized and unified treatment was 
developed by Gong [3] for the elliptical inclusion embedded in an infinite matrix not only under the 
remote shear but also interacting by the screw dislocation. Besides, Shen et al. [4] developed a 
semi-analytical solution for the problem of an elliptical inclusion not perfectly bonded in an infinite 
matrix under anti-plane shear. Under the assumption of continuous tractions and discontinuous 
displacements across the interface, they used a model of a spring layer with thickness to simulate 
the interface. They found the non-uniform stress field and the average stresses in the inclusion is 
highly related to the aspect ratio of the inclusion and the parameter of interface simulation. For 
arbitrary distributed elliptical inclusions under remote shears, few works were found in literature. 
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To the authors’ knowledge, Noda and Matsuo [5] have used the Cauchy-type singular integral 
equations to solve an interaction problem of elliptical inclusions distributed in an infinite medium 
under a longitudinal shear loading. They discussed different outlet of two elliptical inclusions as 
well as different ratios of shear moduli. Later, Lee and Kim [6] also revisited the problem of Noda 
and Matsuo by using the volume integral equation method. Lee and Chen [7] also successfully used 
the null-field boundary integral equation in conjunction with degenerate kernels to solve the 
problem. Besides, we don’t find other works to discuss on this issue containing more than two 
inclusions.  

For the piezoelectricity problems with circular inclusions, many researchers [8-12] made much 
contribution on this issue. However, for containing elliptical inhomogenieties, Meguid and Zhong 
[13] used the complex-variable method to study the problem of a piezoelectric elliptical 
inhomogeneity. They derived the analytical solution in their works. Pak [14] used the conformal 
mapping technique to obtain a closed-form solution. The previous works were very similar. The 
main difference is that Meguid and Zhong provided a general series solution, but Pak derived an 
explicit closed-form solution. Besides, numerous researchers have successfully solved similar 
problems with an elliptical inclusion. However, to the authors’ best knowledge, we don’t find any 
work on dealing with anti-plane piezoelectric problems containing two or more than two elliptical 
inclusions in the literature. This is our main concern. 

In this paper, we extend the successful experience of solving piezoelectricity with circular 
inclusions to deal with the problem containing elliptical holes and/or inclusions. By fully employing 
the elliptical geometry, fundamental solutions were expanded into the degenerate kernel by using an 
addition theorem in terms of the elliptical coordinates, and boundary densities are approximated by 
the eigenfunction expansion. The proposed approach can be seen as one kind of meshless and 
semi-analytical methods because only collocation points on the real boundary are required and the 
error purely attributes to the number of truncation terms. In order to verify the accuracy for solving 
two or more than two elliptical inclusions, the available result of two circular-inclusion case is used 
to compare with the solution of present approach by numerically approaching the length of the 
major axis to be equal to the minor axis. 
 

2. Problem statement and formulation 
2.1. Problem statement 

The problem to be considered here is an infinite piezoelectric medium with multiple elliptical  

inclusions under the remote anti-plane shears ( 
zx  and 

zy ) and the in-plane far-field electric field 

 
Figure 1 Sketch of the problem 
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 ( 
xE  and 

yE ) as shown in Fig. 1. Bleustein [12] has pointed out that if one takes the plane 

normal to the poling direction as the plane of interest, only the anti-plane displacement (w) couples 
with the in-plane electric fields (Ex and Ey). Therefore, only the anti-plane displacement and 
in-plane electric field are considered in this article such as u, v and Ez are the vanishing components. 
In the absence of the body forces and body charges, the governing equations coupled by the 
displacement and electric potential can be obtained as follows:  

02
15

2
44  ewc , 02

11
2

15  we , (1)

where 2  is the two-dimensional Laplacian operator, c44 is the elastic modulus, e15 is the 
piezoelectric constant, 11  is the dielectric constant, w is the anti-plane displacement and   is 
the in-plane electric potential. From Eq.(1), we can simplify the equaitons as 

02  w  and 02  . (2)
The constitutive equations coupled between the elastic filed and electric field are 

xzxzx Eec 1544   , yzyzy Eec 1544   , (3)

xzxx EeD 1115   , yzyy EeD 1115   , (4)

where zx  and zy  are the anti-plane shear strains, and Dx and Dy are the in-plane electric 

displacements. By taking free body technique, the problem can be decomposed into two parts. One 
is an infinite piezoelectric medium with N elliptical holes (Fig.2(a)) and the other is only 
N-inclusions problem (Fig.2(b)). For the problem in Fig.2(a), it can be superimposed by two parts 
as shown in Fig.3(a) and Fig.3(b). Both the two parts in Figs. 2(b) and 3(b) satisfy the Lapalce 

 

 

Figure 2(a) An infinite plane containing elliptical 
holes subject to remote shears and far-field 

in-plane electric fields 

Figure 2(b) Multiple elliptical inclusions 
 

 

 

Figure 3(a) An infinite medium subject to remote 
shears and far-field in-plane electric fields 

Figure 3(b) An infinite medium containing 

elliptical holes 
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equations as shown in Eq.(2). Besides, the interface between the matrix and inclusion is assumed 
perfectly bonded and it satisfies the following interface condition for stress fields and electric fields 

IM ww   and I
z

M
z     on kB , (5)

IM   and IM DD    on kB . (6)

 
2.2. Dual null-field boundary integral formulation 
2.2.1 Conventional version 

The integral equation for the domain point can be derived from the third Green’s identity, we 
have 

DdBtUdBwTw
BB

  xssxsssxsx ),()(),()()(),()( , (7)

DdBtLdBwMt
BB

  xssxsssxsx ),()(),()()(),()( , (8)

where B is the boundary, s and x are the source and field points, respectively, xnxx  )()( wt , 

( ) ( )t w   ss s n , sn  and xn  denote the outward normal vectors at the source point s and field 

point x, respectively, D is the domain of interest and the kernel function, rU ln
2

1
),(


xs  

( || sx r ), is the fundamental solution which satisfies 

)(),(2 sxsx  U , (9)
in which )( sx   denotes the Dirac-delta function. The other kernel functions, ),( xsT , ),( xsL , 
and ),( xsM , are defined by 

sn

xs
xs





),(

),(
U

T , 
xn

xs
xs





),(

),(
U

L , 
xs nn

xs
xs





),(

),(
2U

M . (10)

By moving the field point x to the boundary, the dual boundary integral equations for the boundary 
point can be obtained as follows:  

1
( ) . . . ( , ) ( ) ( ) ( , ) ( ) ( ),

2 B B
w C PV T w dB U t dB B   x s x s s s x s s x , (11)

1
( ) . . . ( , ) ( ) ( ) . . . ( , ) ( ) ( ),

2 B B
t H PV M w dB C PV L t dB B   x s x s s s x s s x , (12)

where C.P.V. and H.P.V. denote the Cauchy principal value and Hadamard (or called Mangler) 
principal value, respectively. Besides, once the field point x locates outside the domain ( cDx ), 
we obtain the dual null-field integral equations as shown below 

c

BB
DdBtUdBwT   xssxsssxs ),()(),()()(),(0 , (13)

c

BB
DdBtLdBwM   xssxsssxs ),()(),()()(),(0 , (14)

where cD  is the complementary domain. Equations (7), (8), (13) and (14) are conventional 
formulations where the point is not located on the real boundary. Singularity occurs and concept of 
principal values is required once Eqs.(11) and (12) are considered. The traction t(s) is the directional 
derivative of w(s) along the outer normal direction at s. In order to satisfy the interface condition, 
the collocation points are located on the boundary. For calculating the stress in the domain, the 
normal vector of an interior point is artificially given, e.g. xwt  )()( xx , if (1,0)xn  and 

ywt  )()( xx , if (0,1)xn . In other words, the selection of n  depends on the stress under 

consideration. 
 
2.2.2 Present version 

By introducing the degenerate kernels, the collocation point can be located on the real 
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boundary free of calculating principal value using a small circular bump. Therefore, the 
representations of integral equations including the boundary point for the interior problem can be 
written as 

BDdBtUdBwTw
B

i

B

i   xssxsssxsx ),()(),()()(),()( , (15)

BDdBtLdBwMt
B

i

B

i   xssxsssxsx ),()(),()()(),()( , (16)

and 

BDdBtUdBwT c

B

e

B

e   xssxsssxs ),()(),()()(),(0 , (17)

BDdBtLdBwM c

B

e

B

e   xssxsssxs ),()(),()()(),(0 , (18)

once the kernels are expressed in terms of an appropriate degenerate forms (denoted by subscripts i 
and e) instead of the closed-form fundamental solution. It is noted that x in Eqs.(15)-(18) can be 
exactly located on the real boundary. 

For the exterior problem, the domain of interest (D) is in the external region of the elliptical 
boundary and the complementary domain (Dc) is in the internal region of the ellipse. Therefore, the 
null-field boundary integral equations are represented as 

BDdBtUdBwTw
B

e

B

e   xssxsssxsx ),()(),()()(),()( , (19)

BDdBtLdBwMt
B

e

B

e   xssxsssxsx ),()(),()()(),()( , (20)

and 

BDdBtUdBwT c

B

i

B

i   xssxsssxs ),()(),()()(),(0 , (21)

BDdBtLdBwM c

B

i

B

i   xssxsssxs ),()(),()()(),(0 , (22)

Also, the observation point x in Eqs.(19)-(22) can be exactly located on the real boundary. For 
various problems (interior or exterior), we used different kernel functions (denoted by superscripts 
“i” and “e”) so that the jump behavior across boundary can be captured. Therefore, different 
expressions of the kernels for the interior and exterior observer points are used and they will be 
elaborated on later. 
 
2.2.3 Expansions of the fundamental solution and the boundary density 

Based on the separable property, the kernel function ),( xsU  can be expanded into degenerate 
form by employing the separating technique for source point and field point under the elliptical 
coordinates. The fundamental solution, ),( xsU , in terms of degenerate (separable) kernel is shown 
below:  
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(23)

where the position of the source point is ),( s  and the field point is ),( x , the 

superscripts “i” and “e” denote the interior (   ) and exterior (   ) cases, respectively. The 

other kernels in the boundary integral equation can be obtained by utilizing the operators of Eq.(10) 

with respect to the kernel ),( xsU . In the real computation, the degenerate kernel can be expressed 

as finite sums of products of functions of s alone and functions of x alone. 
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For the kth boundary densities, we apply the eigenfunction expansions to approximate the 
potential w(s) and its normal derivative t(s) on the boundary 











11

0 sincos)(
n

n
n

n nbnaaw s ,  (24)

)sincos(
1

)(
11

0 









n

n
n

n
s

nqnpp
J

t s , (25)

where 0a , na , nb , 0p , np  and nq  are the coefficients of the Fourier series,   is the angle 

(  20  ) and Js  is the Jocobian with respect to the source point and the definition is 
2 2( , ) (sinh cos ) (cosh sin )J c      s . (26)

Here, it can be observed that the terms of Js which may exist in the degenerate kernel, boundary 
density and boundary integral are cancelled out each other naturally in the boundary integration. 
Therefore, the elliptic integral is not required to deal with. In the real computation, only the finite M 
number of terms is used in the summation. The present method belongs to one kind of 
semi-analytical methods since error only attributes to the truncation of eigenfunction expansions. 
 
2.2.4 Linear algebraic system 

In order to calculate the Fourier coefficients, Np (Np=2M+1) boundary nodes for each elliptical 
boundary are needed and they are uniformly collocated on each elliptical boundary. After locating 
the null-field point xk exactly on the kth elliptical boundary in Eq.(17), we have 

BDdBtUdBwT c
N

j
jB

N

j
jB jj

 


xssxsssxs
11

),()(),()()(),(0 , (27)

where N is the number of boundary elements. Since the boundary integral equations are frame 
indifferent, i.e. objectivity rule is satisfied. The origin of observer system is adaptively chosen at the 
center of elliptical boundary under integration. For the Bj integral of the jth elliptical boundary, the 
kernels of ),( xsU  and ),( xsT  are expressed in terms of degenerate kernels, and )(sw  and )(st  
are substituted by using the Fourier series. For simplicity, a linear algebraic system is obtained 

}{][}{][ wTtU  , (28)
where [U] and [T] are the influence matrices with a dimension of )12(  MN  by )12(  MN , 

}{u  and }{t  denote the column vectors of Fourier coefficients with a dimension of )12(  MN  
by 1 in which  [U], [T], }{u  and }{t  can be defined as follows:  
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where the vectors }{ kw  and }{ kt  are in the forms of  Tk
M

k
M

kkk babaa 110 and 

 Tk
M

k
M

kkk qpqpp 110 , respectively; the first subscript “j” ( Nj ,,2,1  ) in [Ujk] and [Tjk] denotes 

the index of the jth ellipse where the collocation point is located and the second subscript “k” 
( Nk ,,2,1  ) denotes the index of the kth ellipse where the boundary data }{ kw  and }{ kt  are 

specified and M indicates the truncated terms of eigenfunction expansions.  
 
2.2.5 Solution procedures and interface conditions 

In the real computation, two problems in Figure 2(b) and Figure 3(b) are solved by using the 
present formulation. For the exterior problem of the matrix in Figure 3(b), we have 

}{}]{[}]{[ 0ttUwwT   MMMM , (30)
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}{}]{[}]{[ 0ΨΨUΦΦT   MMMM , (31)

from Eq.(22). For the interior problem of each inclusion in Figure 2(b), we have 

}{}]{[}]{[ 0tUwT  IIII , (32)

}{}]{[}]{[ 0ΨUΦT  IIII , (33)
from Eq.(18), where the subscripts “M” and “I” denote the matrix and inclusion, respectively. The 
four influence matrices, ][ MU , ][ MT , ][ IU  and ][ IT , are obtained from the degenerate kernels, 

while }{ Mw , }{ Mt , }{ Iw , }{ It , }{ MΦ , }{ MΨ , }{ IΦ , }{ IΨ  represent the coefficient vectors 
of eigenfunction expansions. Based on the continuity of displacement and equilibrium of traction 
between the interface of matrix and the kth inclusion as shown in Eqs.(6) and (7), we have 

}{}{}{ 0ww  IM , (34)

}{}]{[}]{[}]{[}]{[ 15154444 0ΨeΨetctc  IIMMIIMM , (35)

}{}{}{ 0ΦΦ  IM , (36)

}{}]{[}]{[}]{[}]{[ 11111515 0ΨεΨεtete  IIMMIIMM , (37)

where ][ 44
Mc , ][ 15

Me , ][ 11
Mε , ][ 44

Ic , ][ 15
Ie  and ][ 11

Iε  are the diagonal matrices to the material 

parameters. According to Eqs.(30)-(37), we have a linear system as follows:  
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(38)

where ][I  is the identity matrix and }{a  and }{b  are the forcing terms due to the remote shear 
stress as shown below 

}]{[}]{[}{   tUwTa MM , (39)

}]{[}]{[}{   ΨUΦTb MM . (40)

From Eq. (38), the unknown Fourier coefficients can be easily determined. 
 

3. Numerical examples and discussions 
To the authors’ knowledge, we don’t find any paper to discuss on the piezoelectricity with two 

or more than two elliptical inhomogeneities. Therefore, we consider the available case containing 
two circular inhomogeneities to demonstrate the validity of present approach for dealing with a 
problem containing two elliptical inhomogeneities. Besides, we also provide a numerical example 
for the case containing two elliptical inhomogeneities.  
 
Case1: An infinite medium with two circular inhomogeneities 

The first example considered here is an infinite medium with two elliptical inhomogeneities. 
Here, we used the limiting concept by numerically setting the semi-major and semi-minor axes to 
be near the same by using 1.000000 and 0.999999 for the first inclusion and 2.000000 and 1.999999 
for the second inclusion to compare with the available results of two circular inclusions subject to 
remote shears and electric fields. The mechanical and electric parameters of medium and 
inhomogeneities are  
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Figure 4(a) Tangential stress distribution for 

different ratios 1rd  with 31515 IM ee  
Figure 4(b) Tangential electric field distribution 

for different ratios 1rd  with 31515 IM ee  
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Figure 5(a) Tangential stress distribution for 

different ratios 1rd  with 51515 IM ee  
Figure 5(b) Tangential electric field distribution 

for different ratios 1rd  with 51515 IM ee  

given as 210
4444 1053.3 mNcc IM  , VmCIM 8

4444 1051.1  , 2
15 10 mCe I  . The remote shears are 

0
zx , 27105 mNzy   and far-field electric fields are given as 0

xE  and mVE y
610 . All 

the numerical results are given below by using the 30 terms of eigenfunction (M). In order to 
examine the generality of the present formulation for the problem containing two elliptical 

inclusions, the case of an infinite medium with the two circular inclusions ( 12 2rr  ) paralleled to 

the applied loadings (  90 ) is used to verify the present approach. Figures 4(a) and 4(b), 

respectively, show the tangential shear stress and tangential electric field distribution in the matrix 

along the boundary of the smaller inhomogeneity for the ratio of 31515 IM ee . After comparing with 

the results of Chao and Chang [10] and Chen and Wu [1], it can be found that good agreement is 
made. By changing the ratio of the piezoelectric constant, Figures 5(a) and 5(b), respectively, show 

the tangential stress and tangential electric field distribution corresponding to 51515 IM ee . The 

two figures also show the consistency between the present data and those of Chen and Wu [1]. 



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-9- 
 

However,  
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Figure 6(a) Tangential stress distribution for 

different ratios bd  with 31515 IM ee  
Figure 6(b) Tangential electric field distribution 

for different ratios bd  with 31515 IM ee  
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Figure 7(a) Tangential stress distribution for 

different ratios bd  with 51515 IM ee  
Figure 7(b) Tangential electric field distribution 

for different ratios bd  with 51515 IM ee  

in the Chao and Chang’s paper [10], it changes very sharply near  90  and is not consistent 

with our results when two inclusions are very close to each other ( 1rd =0.01 and 0.02). It is open 

for discussions why our results are different from those of Chao and Chang near  90 . 
 
Case2: An infinite medium with two elliptical inhomogeneities 

In this case, the two elliptical inhomogeneities arrayed paralleled to the applied loadings 

(  90 ) are considered. The semi-major (a) and semi-minor (b) axes are 2 and 1 for two 

inhomogeneities. The tangential stress and tangential electric field in the matrix along the boundary 

of the lower inhomogeneity for different ratios of bd  are plotted in Figures 6(a) and 6(b), 

respectively. For the different ratio of the piezoelectric constant ( 51515 IM ee ), the tangential stress 

and tangential electric field in the matrix along the lower inhomogeniety are given in Figures 7(a) 

and 7(b), respectively. It can be found that the stress concentration in the case of containing the 

elliptical inhomogeneities is greater than the case of containing circular ones. Since there are few 

literatures for discussions on the piezoelectricity containing two elliptical inhomogenieties, we used 

the limiting case as given in Case 1 to verify the validity of our program. Further, we provided a 
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case containing two identical elliptical inhomogenieties and it can be a benchmark for comparison 

when other numerical method is developed. 
 

4. Conclusion 
We have successfully proposed a systematic method to solve an infinite plane containing 

elliptical inclusions under remote anti-plane shears and in-plane electric fields. Although a Jacobian 
term may appear in the degenerate kernel, boundary density and boundary contour integral by using 
the elliptical coordinates, it can be cancelled out in our formulation to preserve the orthogonal 
condition. Although the work containing two elliptical inhomogenieties is not available in the 
literature, the piezoelectricity with two circular inclusions is used as a limiting case to demonstrate 
the validity of present approach. Besides, the case containing two identical elliptical 
inhomogenieties was provided as a benchmark example. The developed program can be generally 
used for piezoelectricity problems containing elliptical inhomogenieties of arbitrary number, 
position, size and inclination angle. 
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