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Introduction

The damping characteristic is often utilized to suppress the vibration level using various energy
dissipation mechanisms. Damping models, e.g., viscous, Coulomb and hysteresis damping, have
been discussed in detail in the literature of structural dynamics and viscoelasticity. A great
deai of effort has been focused on the frequency domain approach, especially for the hysteretic
damping model. However, free vibration of a singie degree of freedom(SDOF) system with
damping of hysteretic type has not been exactly solved yet in the time domain to the authors’
fmowle'iige. Many researchers are of the opinion that the problem is still chailenging us now
1,2,3.4].
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FIG.1 Hysteretic damping model of a single degree of freedom

The governing equation in the time domain of the SDOF system shown in FIG.1 has been
formulated as{5|

mi+ E& +ku = Pei 6
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where m, h and k represent mass, hysteretic damping coefficient and stiffness, respectively, 2
and w are the amplitude of barmonic loading and exciting frequency, respectively. To make the
transfer functions conjugate for —w and w, the governing equation has been modified to bef6]

A .
mii + — + ku = De'* 2

Although good for harmonic motion,Eq.(2) is invalid for free vibration since, when (Pe~%* = 0)
is set to vanish, the presence of | w | in Eq.(2) is ambiguous. In this paper,the governing equation
for free vibration in the time domain is rewritten free of frequency and solved analyticaily by
the concept of phase plane. The decrement ratio of the maximum response and the damped
period of free vibration are aiso derived. Two examples, one subjected to initial disturbance of
displacement and the other initial velocity disturbance, are illustrated to show the validity of
the present formulation.

latio

The definition of hysteretic damping has been defined by Clough and Peqzienﬁ] where the
damping force is proportional to the amplitude of the displacement and is in phase with the
velocity. Therefore, the damping force, £y, of a SDOF system as shown in FIG.1 can be expressed-
as

fdghlui

(3)
The governing equation can be derived as
i +1.%:—:;. +ku=P(g) )
When P(1) is set to be Pei*, the steady state solution, u = @e™*, is expected. Eq.(4) can be
reformulated in frequency domain as follows;
-muG + k(1 Lin)i= P, + when w>0,— when w< (5)
where k(1 £ in) denotes complex stifiness k* with 5 denoting the loss factor by

n-g (6)

When w > 0, k* reduces to k{1 +in), which is the conventionai complex stiffpess. Nevertheless,
the conjugacy of compiex stiffness for positive and negative frequencies is crucial. Since w is not
presect, Eqs.{4) and (5) can be viewed as the governing equations of the SDOF system with
the bysteretic damping in the tima and the frequency domains, respectively. In the case of free
vibration P(t) = 0, Eq.(5) is not applicable, and Eq.(4) becomes

tol, e
mu+h'“| +ku=0 (n

1If we set the undamped (A = 0) atural frequency wa (o be
2

(8)
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then, Eq.(7) can be written as
[l

i+ wﬁul—‘_‘-it's +uwlu=0 (9

which is subject to the following initial conditions:
uw0) = ug (10)
w{0) = i (11)
By using the phase plane method, the analytical solution in each quadrant of the phase plane
of Eq.(9), with the prescribed initisl state (up, o) and 0.0 < 5 < 1.0, is
u(t) = ug cos @t + % sinait (12)

where

23§ wi(1+m) {10, %0) in the 18t of 3rd quadrant (13)
T wil-n) {ug, 80) in the 2nd or 4th quadram

The term & is tlie effective natural frequency, which is denoted as & in the Ist and 3rd quadrants
and &4 in the 2nd and 4th quadrants as shown in FIG.2.

u

A

Ba= @, (1-7 | T y= w1+

®r= o, (1472 | Ba= 0,(1-1)'?

FIG.2 The dependence of the effective natural frequency for four quadrants in the phase piane

Because the effective frequency depends on which quadrant the state is, the hysteretic
damping model is a time-varying system. Nevertheless, it is shown that the superpasition of
initial conditions i valid in view of Eq.(12); that is, the system with hysteretic damping as
discussed herein is a linear system. According to Eq.(12), the trace on the phase plane can be
shown as 3 .,

wep + S -3 2 (10
Eq.(12) together with Eq.(14) is a combination of four quarter ellipses, each in each quacrant
as shown in F1G.3, and the ratio of the intercepts between the two axes will be &y, or &3. The
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intercept ou the positive u-axis represents the maximum or minimum responses in a cycle, so
the ratio of two successive positive u intercepts is the ratio of decrement. The ratio of decrement

& can be derived as 4 ? 1
f2_(wmY _1-7
's'Al (Gu) L+7 (15)

The time to travel through the 1st or 3cd quadrants once is T3, asid the time to travel through
the 2nd or 4th quadrants once is T; as shown in FIG.23.

u
£ rty A i
T2=— _?;-;A' T1=—_
P 2w,
A= (BHA
= {5, Ay
- =2Ad 0
@04
TT b1
= —e— Ty e
K ~BA, ¥ 7,

FI1G.3 Typical trace of four elliptical curves in one cycle

Combining the four travelling times, the damped period, Ty, is

x 1 1.
n= (7w ) 4
The damped natursl frequency wy is

The envelope function of each maximum (or miaimmm) response is found to be
20 =m(5) % (18)

where A, is the maximum or minimun response occuring at time £;. In order to be a stabile
system, the loss factor is larger than sero. Therefore, the ratio of decrement is lower than one,
the envelope finction will decresse gradually to sero as ¢ increases to infinity.
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Examples

In this section, two free vibration problems, initial disturbance of displacernent -and initial ve-
locity disturbance are considered. The natural frequency, wq, of the SDOF system is 50 rad per
second, and the loss factor n is 0.1.

The responses of initial displacement disturbance are shewn in FIG.4, FIG.5 and FIG.8.
FIG.4 shows ihat the displacement oscillation decreases gradually as time elapses, the dashed
line representing the envelope function. FIG.5 shows that the velocity oscillation decreases with
time. Fig.6 shows-that the trace extends from the displacement axis to the velocity axis along
an elliptical track in the 4th quadraat and then follows a smaller elliptical track in the 3rd
quadrant. It also shows the same tendency in the 2nd and 1st quadrants. The tendencies of the
other cycles are similar to that of the first cycle, and the final point of trace will focus on the
origin of the phase plane. The responses of the initial velocity disturbance are shown in FIG.7,
FIG.8, and F1G.9 and the tendency is similac to that shown in FIG.4, FIG.5 snd FIG.6 except
for the different starting state.

Concluding remarks

The closed-form solution for the free vibration of the hysteretic damping model is obtained in
this paper. The hysteretic damping model reformulated in Eqs.(4) and (5) has been proved to
be a linear time varying system. It bas been found that each cycle contains four subcycles, and
the explicit formulae for the decrement ratio and the damped natural frequency, which depend
on the loss factor have aiso been obtained, The present note extends the applicability of the
hysteretic damping model from the the frequency domain to the time domain. It can treat
general loadings, harmonic or inharmenic, if the convolution integral is considered.
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FIG.4 Displacement history for disturbance
of initial displacement only
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FIG.5 Velocity history for disturbance of
initial displacement only
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FIG.6 Phase plane for disturbance of
initial displacement only
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FIG.7 Displacement history for disturbance

of initial velocity only
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FIG.8 Velocity history for disturbance of

initial velocity only
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FIG.9 Phase plane for disturbance of
initial velocity only



