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Abstract  In this paper, the two classical elasticity problems, Lamé problem and stress concentration 
factor, are revisited by using the null-field integral equation. The null-field integral formulation is utilized 
in conjunction with degenerate kernel and Fourier series. To fully utilize the circular geometry, the 
fundamental solutions and the boundary densities are expanded by using degenerate kernels and Fourier 
series, respectively. In the two classical problems of elasticity, the null-field BIE is employed to derive the 
exact solutions.The Kelvin solution is first separated to degenerate kernel in this paper. After employing 
the null-field BIE, not only the stress but also the displacement field are obtained. In a similar way, Lamé 
problem is solved without any difficulty. 
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1. INTRODUCTION  
 

Engineering problems always are simulated by using the mathematical models of boundary value 
problem, e.g., the steady state heat conduction problem [1], electrostatic potential [2] and torsion bar 
problems [3] are simulated by the Laplace equation; membrane vibration [4], acoustics [5] and water wave 
problems [6] are governed by the Helmholtz equation; plate vibration [7] and Stokes’ flow [8] are 
formulated by the biharmonic equation. In order to solve the boundary value problems, researchers and 
engineers have paid more attention on the development of boundary integral equation method (BIEM), 
boundary element method (BEM) and meshless method than domain type methods, finite element method 
(FEM) and finite difference method (FDM). Among various numerical methods, BEM is one of the most 
popular numerical approaches for solving boundary value problems. Although BEM has been involved as 
an alternative numerical method for solving engineering problems, some critical issues exist, e.g. singular 
and hypersingular integrals, boundary-layer effect, ill-posed system and mesh generation. 

Unlike the conventional BEM and BIEM, Waterman [9] introduced first the so-called T-matrix 
method for electromagnetic scattering problems. Various names, null-field approach or extended 
boundary condition method (EBCM), have been coined. The null-field approach or T-matrix method was 
used widely for obtaining numerical solutions of acoustics [10], elastodynamics [11] and hydrodynamics 
[12]. Boström [13] introduced a new method of treating the scattering of transient fields by a bounded 
obstacle in the three-dimensional space. He defined new sets of time-dependent basis functions, and use of 
these to expand the free space Green’s function and the incoming and scattered fields. The method is a 
generalization to the time domain of the null-field approach first given by Waterman [9]. A crucial 
advantage of the null-field approach or T-matrix method consists in the fact that the influence matrix can 
be computed easily. Although many works for acoustic, elastodynamic and hydrodynamic problems have 
been done, only a few articles on elastostatics can be found [14]. The idea of changing the singularity 
distribution from real boundary to fictitious boundary (fictitious BEM) or putting the observation point 
outside the domain (null-field approach) can remove the singular and hypersingular integrals. However, 
they may result in an ill-posed matrix. 

In the Fredholm integral equations, the degenerate kernel (or so-called separate kernel) plays an 
important role. However, its applications in practical problems seem to have taken a back seat to other 
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methods. This degenerate kernel can be seen as one kind of approximation for fundamental solution, i.e., 
the kernel function is expressed as finite sums of products by two linearly independent functions. The 
concept of generating “optimal” degenerate kernels has been proposed by Sloan et al. [15]. They also 
proved it to be equivalent to the iterated Petrov-Galerkin approximation. Later, Kress [16] proved that the 
integral equations of the second kind in conjunction with degenerate kernels have the convergence rate of 
exponential order instead of the linear algebraic order of conventional BEM. Recently, Chen et. al. have 
applied null-field integral equation in conjunction with degenerate kernel and Fourier series to solve 
Laplace [17], Helmholtz [18], biharmonic [19] and biHelmholtz [20] problems with circular holes. They 
claimed five advantages, (1) free of calculating principal values, (2) exponential convergence, (3) 
elimination of boundary-layer effect, (4) meshless, and (5) well-posed system, using the null-field 
approach. Following the successes, we extended this approach to deal with inclusion problems [21]. In the 
approach, the principal value is avoided and the collocating on the real boundary using the null-field 
formulation achieved. We also found the rate of convergence of their approach is in the exponential order. 
Although we used the concept of null-field integral equation, we can locate the observer point exactly on 
the boundary free of facing singularity due to the introduction of degenerate kernels. 

In this paper, we develope a systematic approach to deal with elasticity problems with circular 
boundaries. The null-field integral formulation is utilized in conjunction with degenerate kernel and 
Fourier series. To fully utilize the circular geometry, the fundamental solutions and the boundary densities 
are expanded by using degenerate kernels and Fourier series, respectively. This approach is seen as a 
semi-analytical method, since the error stems from the truncation of Fourier series in the implementation. 
The advantages, free of calculating principal value, meshless and well-posed system are expected. For the 
circular and annular problems, the analytical solution can be obtained by using the present method. 
Finally, the two classical problems, one is an infinite plate with a circular hole subject to remote tension 
(stress concentration factor problem) and another is an annular cylinder subject to uniform pressures 
(Lamé problem), were given to see the validity of the present approach. 
 
2. METHODS OF SOLUTION 

2.1 Problem statements 
The two classical problems in the Timoshenko and Goodier’s book [25] are revisted. One is an 

infinite plate with a circular hole subject to remote tension (stress concentration factor problem) and 
another is an annular cylinder subject to uniform pressures (Lamé problem) as shown in Figs. 1 and 2, 
respectively. The medium is considered as an isotropic, elastic and homogenous body. The governing 
equation is 

2( ) ( ( )) ( ) 0,G u x G u x x Dλ + ∇ ∇⋅ + ∇ = ∈ , (1)
where ( )u x  is the displacement, D  is the domain of interest, 2∇  is the Laplacian operator, and λ  and G  
are the Lamé constants for the isotropic elasticity. 
 

 

 
Fig. 1 An infinite plate with a circular hole subject 

to remote tesion 
Fig. 2 An annular cylinder subject to uniform 

pressures 

 

 

2.2 Dual null-field integral formulation 
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The direct formulation of boundary integral equation method stems from the reciprocal work 
theorem. We have the Somigliana’s identity [22], 

( ) ( , ) ( ) ( ) ( , ) ( ) ( ),j ij i ij iB B
u s U x s t x dB x T x s u x dB x s D= − ∈∫ ∫ , (2)

0 ( , ) ( ) ( ) ( , ) ( ) ( ), c
ij i ij iB B

U x s t x dB x T x s u x dB x s D= − ∈∫ ∫ , (3)
where ( , )ijU x s  and ( , )ijT x s  are the Kelvin free-space Green’s function of the ith direction respons for 
displacement and traction, respectively, due to a concentrated load in the jth direction at the point s , and 

cD  denotes the complementary domain. Equations (2) and (3) can be changed to 
( ) ( , ) ( ) ( ) ( , ) ( ) ( ),i k i k k i kB B

u x U s x t s dB s T s x u s dB s x D= − ∈∫ ∫ , (4)

0 ( , ) ( ) ( ) ( , ) ( ) ( ), c
k i k k i kB B

U s x t s dB s T s x u s dB s x D= − ∈∫ ∫ . (5)
The explicit form of ( , )k iU s x , or so-called Kelvin solution, is 

2

1( , ) (3 4 ) ln( )
8 (1 )

i k
k i k i

y y
U s x r

G r
ν δ

π ν
− ⎛ ⎞= − −⎜ ⎟− ⎝ ⎠

, (6)

where ν  is the Poisson ratio, i i iy s x= −  and 1,2i =  and 1,2k =  for the plane elasticity. Now, in order to 
obtain an additional independent equation, we apply the traction operator [23] to Eqs.(4) and (5).Then, we 
have 

( ) ( , ) ( ) ( ) ( , ) ( ) ( ),p kp k kp kB B
t x L s x t s dB s M s x u s dB s x D= − ∈∫ ∫ , (7)

0 ( , ) ( ) ( ) ( , ) ( ) ( ), c
kp k kp kB B

L s x t s dB s M s x u s dB s x D= − ∈∫ ∫ . (8)
Equations (4) and (7) are coined the dual boundary integral equations for the domain point and Eqs.(5) and 
(8) are called the dual null-field integral equations. When  the field point x  is collocated on the real 
boundary, the dual boundary integral equations for the boundary point ( x B∈ ) can be obtained as follows: 

( ) . . . ( , ) ( ) ( ) . . . ( , ) ( ) ( ) ,ij j k i k k i kB B
c u x R PV U s x t s dB s C PV T s x u s dB s x B= − ∈∫ ∫ , (9)
where R.P.V. is the Riemann principal value, C.P.V. is the Cauchy principal value, and ijc  is equal to 

ij ijδ −B  in which ijB  depends on the solid angle and on the configuration of the corner at x  of the 
boundary and on the Poisson ratio of the material of the body. At a smooth boundary, ijB  reduces to 2ijδ . 
By applying the traction operator to Eq.(9), we have 

( ) . . . ( , ) ( ) ( ) . . . ( , ) ( ) ( ),pj j kp k kp kB B
c t x C PV L s x t s dB s H PV M s x u s dB s x B= − ∈∫ ∫ , (10)
where H.P.V. denotes the Hadamard principal value. A detailed discussion for the dual boundary integral 
equations can be found in the original article by Hong and Chen [23] and a review article of Chen and 
Hong [24]. It is noted that the conventional null-field integral equations are not singular since s  and x  
never coincide. If the kernel functions in Eqs. (4), (5), (7) and (8) are substituted by using the appropriate 
degenerate (separable) kernels, we have 

( ) ( , ) ( ) ( ) ( , ) ( ) ( ),i k i k k i kB B
u x U s x t s dB s T s x u s dB s x D B= − ∈ ∪∫ ∫ , (11)

( ) ( , ) ( ) ( ) ( , ) ( ) ( ),p kp k kp kB B
t x L s x t s dB s M s x u s dB s x D B= − ∈ ∪∫ ∫ , (12)

0 ( , ) ( ) ( ) ( , ) ( ) ( ), c
k i k k i kB B

U s x t s dB s T s x u s dB s x D B= − ∈ ∪∫ ∫ , (13)

0 ( , ) ( ) ( ) ( , ) ( ) ( ), c
kp k kp kB B

L s x t s dB s M s x u s dB s x D B= − ∪ ∪∫ ∫ . (14)
It is found that the integral equations for the domain point or for the null-field point can include the 
collocation point on the real boundary since the appropriate degenerate kernels are used as elaborated on 
later. 
 
 
2.3 Expansions of the fundamental solution and boundary density 
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To fully utilize the property of circular geometry, the mathematical tools, separable kernel (or 
so-called degenerate kernel) and Fourier series, are utilized for an analytical study. 

 
2.3.1 Degenerate (separable) kernel for the fundamental solution 

In order to derive the degenerate kernel, the polar coordinate is utilized to substitute the Cartesian 
coordinate. Therefore, the source and collocation points are expressed as ( , )R θ  and ( , )ρ φ , respectively, in 
the polar coordinate. The position vector of source point is 1 2

i
s s s iz Re θ= + = . Similarly, the collocation 

point is 1 2
i

x x x iz e φρ= + = . The former term ( ln r ) in the bracket of Eq.(6) is the fundamental solution of 
Laplace equation and the degenerate kernel can be found in [17]. 

In order to expand the term ( 2
i ky y
r

) in Eq.(6) into separable form, we have 

1 2
2 2 2

1 1 ( cos cos ) ( sin sin )
( cos sin ) ( cos sin ) 2 cos( )x s

y iyR i R
z z i R iR R R r

ρ φ θ ρ φ θ
ρ φ ρ φ θ θ ρ ρ θ φ

−− − −
= = =

− − − − + − −
. (15)

For the exterior case( R ρ< ), Eq.(15) can be expanded as follows 
2 3 4

( )

0

1 1 1 1 11
1 ( / )

m
i ims s s s

mx s x s x x x x x x

z z z z Re e
z z z z z z z z z z

φ θ φ

ρ ρ

∞
− −

=

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥= = + + + + + = ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − ⎢ ⎥ ⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎣ ⎦⎣ ⎦
∑ . (16)

After comparing Eq.(15) with Eq.(16), we obtain 
1
2 2 2

0

2
2 2 2

0

( cos cos ) 1 cos( ( 1) ),
2 cos( )

( cos cos ) 1 sin(( 1) ).
2 cos( )

m

m

m

m

y R R m m
r R R

y R R m m
r R R

ρ φ θ θ φ
ρ ρρ ρ θ φ

ρ φ θ φ θ
ρ ρρ ρ θ φ

∞

=

∞

=

⎛ ⎞−
= = − +⎜ ⎟+ − − ⎝ ⎠

⎛ ⎞−
= = + −⎜ ⎟+ − − ⎝ ⎠

∑

∑
 (17)

Then, we have 
2
1
2

0 0

1 1

0 0

1 1cos ( ) cos( ( 2) )
2 2

1 1cos(( 1)( )) cos(( 1) ( 1) )
2 2

m m

m m

m m

m m

y R Rm m m
r

R Rm m m

θ φ θ φ
ρ ρ

θ φ θ φ
ρ ρ

∞ ∞

= =

+ +∞ ∞

= =

⎛ ⎞ ⎛ ⎞
= − + − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
− + − − − − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∑ ∑

∑ ∑
 (18)

2
2
2

0 0

1 1

0 0

1 1cos ( ) cos( ( 2) )
2 2

1 1cos(( 1)( )) cos(( 1) ( 1) )
2 2

m m

m m

m m

m m

y R Rm m m
r

R Rm m m

θ φ θ φ
ρ ρ

θ φ θ φ
ρ ρ

∞ ∞

= =

+ +∞ ∞

= =

⎛ ⎞ ⎛ ⎞
= − − − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
− + − + − − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∑ ∑

∑ ∑
 (19)

1 2
2

0 0

1 1

0 0

1 1sin ( ) sin( ( 2) )
2 2

1 1sin(( 1)( )) sin(( 1) ( 1) )
2 2

m m

m m

m m

m m

y y R Rm m m
r

R Rm m m

θ φ θ φ
ρ ρ

θ φ θ φ
ρ ρ

∞ ∞

= =

+ +∞ ∞

= =

⎛ ⎞ ⎛ ⎞
= − + − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
− + − + − − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∑ ∑

∑ ∑
. (20)

Similarly, we can obtain the separable form of terms of 2
i ky y
r

 for the interior case ( R ρ> ) as shown 

below﹕ 
2
1
2

0 0

1 1

0 0

1 1cos ( ) cos( ( 2) )
2 2

1 1cos(( 1)( )) cos(( 1) ( 1) )
2 2

m m

m m

m m

m m

y
m m m

R Rr

m m m
R R

ρ ρφ θ φ θ

ρ ρφ θ φ θ

∞ ∞

= =

+ +∞ ∞

= =

⎛ ⎞ ⎛ ⎞= − + − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞− + − − − − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑

∑ ∑
 (21)

2
2
2

0 0

1 1

0 0

1 1cos ( ) cos( ( 2) )
2 2

1 1cos(( 1)( )) cos(( 1) ( 1) )
2 2

m m

m m

m m

m m

y
m m m

R Rr

m m m
R R

ρ ρφ θ φ θ

ρ ρφ θ φ θ

∞ ∞

= =

+ +∞ ∞

= =

⎛ ⎞ ⎛ ⎞= − − − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞− + − + − − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑

∑ ∑
 (22)
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1 2
2

0 0

1 1

0 0

1 1sin ( ) sin( ( 2) )
2 2

1 1sin(( 1)( )) sin(( 1) ( 1) )
2 2

m m

m m

m m

m m

y y
m m m

R Rr

m m m
R R

ρ ρφ θ φ θ

ρ ρφ θ φ θ

∞ ∞

= =

+ +∞ ∞

= =

⎛ ⎞ ⎛ ⎞= − + − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞− + − + − − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑

∑ ∑
. (23)

According to Eqs. (18)-(20) and (21)-(23), the degenerate kernel for the fundamental solution ( , )k iU s x , is 
obtained as 

11
1

1

0 0

11

11

1 1( , ; , ) (3 4 ) ln ( ) cos( ( ))
8 (1 )

1 1 ( ) cos(( 2) ) ( ) cos(( 1) ( 1) ) , ,
2

( , )
1 1( , ; , ) (3 4 ) ln ( ) cos( ( )

8 (1 )

I m

m

m m

m m

E m

U R R m
G m R

m m m m R
R R

U s x
RU R m

G m

ρθ ρ φ ν θ φ
π ν

ρ ρθ φ θ φ ρ

θ ρ φ ν ρ θ φ
π ν ρ

∞

=

∞ ∞
+

= =

⎡ ⎛ ⎞= − − − −⎢ ⎜ ⎟− ⎝ ⎠⎣
⎤⎛ ⎞− + + − − + − − >⎥⎜ ⎟

⎝ ⎠⎦
=

= − − − −
−

∑

∑ ∑

1

1

0 0

)

1 1 ( ) cos( ( 2) ) ( ) cos(( 1) ( 1) ) , ,
2

m

m m

m m

R Rm m m m Rθ φ θ φ ρ
ρ ρ

∞

=

∞ ∞
+

= =

⎧
⎪
⎪
⎪
⎪
⎪⎪
⎨

⎡ ⎛ ⎞⎪
⎢ ⎜ ⎟⎪ ⎝ ⎠⎣⎪

⎪ ⎤⎛ ⎞
− + − + − − − + <⎪ ⎥⎜ ⎟

⎝ ⎠⎪ ⎦⎩

∑

∑ ∑

, 
(24)

1
12

0 0
12 21

1
12

0 0

1( , ; , ) ( ) sin(( 2) ) ( ) sin(( 1) ( 1) ) , ,
16 (1 )

( , ) ( , )
1( , ; , ) ( ) sin(( 2) ) ( ) sin(( 1) ( 1) ) , ,

16 (1 )

I m m

m m

E m m

m m

U R m m m m R
G R R

U s x U s x
R RU R m m m m R

G

ρ ρθ ρ φ θ φ θ φ ρ
π ν

θ ρ φ φ θ φ θ ρ
π ν ρ ρ

∞ ∞
+

= =

∞ ∞
+

= =

⎧ ⎛ ⎞
= + − − + − − >⎜ ⎟− ⎝ ⎠

= = ⎨
⎛ ⎞

= + − − + − − <⎜ ⎟− ⎝ ⎠

∑ ∑

∑ ∑

⎪
⎪

⎪
⎪⎩

, (25)

22
1

1

0 0

22

22

1 1( , ; , ) (3 4 ) ln ( ) cos( ( ))
8 (1 )

1 1 ( ) cos(( 2) ) ( ) cos(( 1) ( 1) ) , ,
2

( , )
1 1( , ; , ) (3 4 ) ln ( ) cos( ( )

8 (1 )

I m

m

m m

m m

E m

U R R m
G m R

m m m m R
R R

U s x
RU R m

G m

ρθ ρ φ ν θ φ
π ν

ρ ρθ φ θ φ ρ

θ ρ φ ν ρ θ φ
π ν ρ

∞

=

∞ ∞
+

= =

⎡ ⎛ ⎞
= − − − −⎢ ⎜ ⎟− ⎝ ⎠⎣

⎤⎛ ⎞
− − + − + + − − >⎥⎜ ⎟

⎝ ⎠⎦
=

= − − − −
−

∑

∑ ∑

1

1

0 0

)

1 1 ( ) cos( ( 2) ) ( ) cos(( 1) ( 1) ) , ,
2

m

m m

m m

R Rm m m m Rθ φ θ φ ρ
ρ ρ

∞

=

∞ ∞
+

= =

⎧
⎪
⎪
⎪
⎪
⎪⎪
⎨

⎡ ⎛ ⎞⎪
⎢ ⎜ ⎟⎪ ⎝ ⎠⎣⎪

⎪ ⎤⎛ ⎞
− − − + + − − + <⎪ ⎥⎜ ⎟

⎝ ⎠⎪ ⎦⎩

∑

∑ ∑

, 
(26)

and the three kernels ( ( , )k iT s x , ( , )k iL s x  and ( , )k iM s x ) can be obtained according to their definitions by 
using the traction operator in [23]. To the authors’ best knowledge, the degenerate kernel for elasticity was 
not found in the literature before. 
 
2.3.2 Fourier series expansion for boundary densities 

We apply the Fourier series expansion to approximate the boundary displacement ku  and traction kt  
on the boundary, 

0, , ,
1

0, , ,
1

( ) cos cos , , 1, 2

( ) cos cos , , 1, 2

j j j
k j k n k j n k j j j

n

j j j
k j k n k j n k j j j

n

u s a a n b n s B j

t s p p n q n s B j

θ θ

θ θ

∞

=

∞

=

= + + ∈ =

= + + ∈ =

∑

∑
 (27)

where ,
j

n ka , ,
j

n kb , ,
j

n kp  and ,
j

n kq  ( 1,2k = ) are the Fourier coefficients and jθ  is the polar angle. In the real 
computation, only M number of terms is used for the Fourier series. 
 
 
 
 
 
3. Illustrative examples 
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The first example for verifying our formulation is an infinite plate with a circular hole subject to 
remote tenser. Figure 1 shows an infinite plate with a circular hole subject to a uniform tension of 
magnitude S  in the x  direction. The radius of the hole is a . The problem can be decomposed into two 
parts by using the superposition technique as shown in Figures 3(a) and 3(b). One is an infinite plate 
subject to a uniform tension and another is an infinite plate with a hole. In the boundary of the hole, it 
needs to satisfy the boundary conditions of free traction, 1 0t =  and 2 0t = , for the superposing total 

solution. According to the definition of traction, we obtain 

1 11 1 12 2 2 21 1 22 2cos , 0t n n S t n nσ σ θ σ σ∞ ∞= ⋅ + ⋅ = − = ⋅ + ⋅ = , (28)
From the boundary conditions of free traction, the traction on the circular boundary in Figure 3(b) is 

1 2cos , 0h ht S tθ= =  (29)
By using Eq.(24), we have 

( )11 11 0,1 ,1 ,1
1 1

21 0,2 ,2 ,2
1 1

0 ( , ) cos ( ) ( , ) cos sin ( )

( , ) cos sin ( )

N N
I I h h h

n nB B
n n

N N
I h h h

n nB
n n

U s x S dB s T s x a a n b n dB s

T s x a a n b n dB s

θ θ θ

θ θ

= =

= =

⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

⎛ ⎞− + +⎜ ⎟
⎝ ⎠

∑ ∑∫ ∫

∑ ∑∫
, (30)

( )12 12 0,1 ,1 ,1
1 1

22 0,2 ,2 ,2
1 1

0 ( , ) cos ( ) ( , ) cos sin ( )

( , ) cos sin ( )

N N
I I h h h

n nB B
n n

N N
I h h h

n nB
n n

U s x S dB s T s x a a n b n dB s

T s x a a n b n dB s

θ θ θ

θ θ

= =

= =

⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

⎛ ⎞− + +⎜ ⎟
⎝ ⎠

∑ ∑∫ ∫

∑ ∑∫
, (31)

for the problem of an infinite plate with a hole in Figure 3(b). The kernels, 11( , )IU s x , 12 ( , )IU s x , 11( , )IT s x , 

12 ( , )IT s x , 21( , )IT s x  and 22 ( , )IT s x  can be substituted by using the separable forms. Through the procedure of 
comparing the coefficients, we obtain 

1,1 0,1 0,2 1,2 ,1 ,1
(1 ) 0 ( 2,3, )h h h h h h

n n
Saa a a a a a n

G
ν−

= = = = = = =  

1,2 1,1 ,1 ,2
(1 2 ) 0 ( 2,3, )

2
h h h h

n n
Sab b b b n

G
ν−

= − = = = =  
(32)

After determining the Fouries coefficients of boundary densities, the deformation fields are obtained by 
substituting the coefficients in Eq.(32) into Eq.(11). The representations of displacement fields are 

( )

( )

1 11 11 21

2 12 12 22

(1 ) (1 2 )( ) ( , ) cos ( ) ( , ) cos ( ) ( , ) sin ( )
2

(1 ) (1 2 )( ) ( , ) cos ( ) ( , ) cos ( ) ( , ) sin ( )
2

h E E E

B B B

h E E E

B B

aS aSu x U s x S dB s T s x dB s T s x dB s
G G

aS aSu x U s x S dB s T s x dB s T s x dB s
G G

ν νθ θ θ

ν νθ θ θ

− −⎛ ⎞ ⎛ ⎞= − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

− −⎛ ⎞ ⎛ ⎞= − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫ ∫ ∫

∫ ∫ B∫
 (33)

After substituting the degenerate kernels, the deformation fields are obtained as follows﹕ 
2 2 2

1 2

2 2 2

2 2

(1 )( ) cos 1 cos3
4

(1 2 )( ) sin 1 sin 3
2 4

h

h

S a S a au x
G G

S a S a au x
G G

ν φ φ
ρ ρ ρ

ν φ φ
ρ ρ ρ

⎛ ⎞−
= + −⎜ ⎟

⎝ ⎠
⎛ ⎞−

= − + −⎜ ⎟
⎝ ⎠

 (34)

  
 
 
 

 
 

Fig. 3(b) An infinite plate with a hole Fig. 3(a) An infinite plate subject to a 
uniform tension 
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For another part solution in Figure 3(a), it is simulated by using a circular plate with the radius b . When 
the radius b  approaches infinity, it is seen as an infinite plate. Based on this concept, we obtain the Fourier 
coefficients as shown beloow﹕ 

arbitraryaa == ∞∞
2,01,0  
∞∞ −= 2,11,1 ab  

1,1 ,1 ,2
(1 ) , 0 ( 2,3, )n n

Sba a a n
G
ν∞ ∞ ∞−

= = = =  

1,2 ,1 ,2, 0 ( 2,3, )
2 n n
Sbb b b n
G

ν∞ ∞ ∞= − = = =  

(35)

After determining the Fouries coefficients of boundary densities, the deformation fields are obtained by 
substituting the coefficients in Eq.(35) into Eq.(11).The coefficients, 0,1a∞ , and 0,2a∞  are the rigid-body 
terms, and to ezros for simplicity. The representations of deformation fields are 

1 1,1

2 1,1

(1 )( ) cos sin
2

( ) sin cos
2

Su x b
G b

Su x b
G b

ν ρ ρφ φ

ν ρ ρφ φ

∞ ∞

∞ ∞

−
= +

= − −
 (36)

Although there is a free coefficient ( 1,1b∞ ), it can be neglected for the near field since the outer radius b  is 
infinity. After determining the deformation fields for an infinite plate subject to a uniform tension and an 
infinite plate with a hole, the total deformation fields are 

2 2 2

1 2

2 2 2

2 2

(1 ) (1 )cos 1 cos3 cos
4 2

(1 2 ) sin 1 sin 3 sin
2 4 2

S a S a a Su
G G G

S a S a a Su
G G G

ν ν ρφ φ φ
ρ ρ ρ

ν ν ρφ φ φ
ρ ρ ρ

⎛ ⎞− −
= + − +⎜ ⎟

⎝ ⎠
⎛ ⎞−

= − + − −⎜ ⎟
⎝ ⎠

 (37)

Based on the displacement fields, the stresses are easily obtained as 
4 2 2 2 2 2

11 4

[2 3 cos 2 (3 2 )cos 4 ]a a a Sρ ρ φ ρ φσ
ρ

− + −
=  (38)

2 2 2 2

22 4

[ cos 2 (3 2 )cos 4 ]
2

a a Sρ φ ρ φσ
ρ

+ −
=  (39)

2 2 2 2

12 4

[ (6 4 )cos 2 ] sin 2
2

a a Sρ ρ φσ φ
ρ

− + −
=  (40)

By using the tensor transformation [25], the stresses in the polar coordinate can be represented as 
2 2 2 2 2

4

( )[ ( 3 )cos 2 ]
2rr

a a Sρ ρ ρ φσ
ρ

− + −
=  (41)

2 2 2 4 4

4

[ ( ) ( 3 )cos 2 ]
2

a a S
θθ

ρ ρ ρ φσ
ρ

+ − +
=  (42)

4 2 2 4

4

( 2 3 ) sin 2
2r

a a S
θ

ρ ρσ φ
ρ

+ −
=  (43)

When aρ = , Eqs. (41)-(43) are reduced to 

0rr rθσ σ= =  (44)

2 cos 2S Sθθσ φ= −  (45)
The hoop stress distribution in Eq.(45) is the same as that of  Timoshenko and Goodier’s book [25]. When 

2φ π=  or 3 2φ π= , the hoop stress ( θθσ ) reaches the maximum of 3S . However, it is not found for the 
displacement fields in the Timoshenko and Goodier’s book [25]. Only Airy stress function and stress were 
obtained in their book. If we would like to know the displacement fields, it is necessary to calculate the 
strain through the Hooke’s law. Then, the displacement fields can be determined from stress by integrating 
the strain. This procedure may be not straightforward and is time-consuming. In the proposed approach, 
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not only the stress but also the displacement fields can be obtained directly at the same time. In Figure 4(a), 
it is obvious to observe that the plate is elongated uniformly in the x-axis direction since a uniform tension 
is given. The parameters of the material are given as 1G =  and 0.3ν = . The deformation in Figure 4(b) 
occurs due to the boundary traction. Figure 4(c) shows the sketch of total deformation. Here, the 
magnitude S of the tension is 1, and the radius of the hole is 1. It can be found that the circular hole is 
distorted. The same result can be obtained by using the LM hypersingular formulation of Eq.(14) as well as 
using the UT singular formation of Eq.(13). Two alternatives are provided in the proposed formulation. 

  
Fig. 4(a) Deformation of an infinite plate subject to a 

uniform tension 
Fig. 4(b) Deformation of an infinite plate with a 

hole  

 
Fig. 4(c) Deformation of an infinite plate with a circular hole subject to remote tension  

The second expamle is an annular cylinder subject to uniform pressures (the Lamé problem). In this 
example, the problem subject to uniform pressures on the inner and outer surfaces are considered. Let a  
and b  denote the inner and outer radii of the annular cylinder where iP  and eP  are the uniform internal 
and external pressures as shown in Figure 2. Then the boundary conditions are shown below﹕ 

( )rr r a iPσ = = −  and ( )rr r b ePσ = = −  (46)
This problem was first solved by Lamé [26]. Therefore, it is also called the Lamé problem. According to 
the definition of the traction, the boundary conditions of tractions are 

1 11 1 12 2 2 21 1 22 2cos , sine et n n P t n n Pσ σ θ σ σ θ= ⋅ + ⋅ = − = ⋅ + ⋅ = −  (47)
on the outer boundary 1B  and 

1 11 1 12 2 2 21 2 22 2cos , sini it n n P t n n Pσ σ θ σ σ θ= ⋅ + ⋅ = = ⋅ + ⋅ =  (48)
on the inner boundary 2B . The unknown boundary densities of displacement can be represented by using 
the Fourier series 

1 0 2 0 1
1 1 1 1

cos sin , cos sin ,
N N N N

n n n n
n n n n

u a a n b n u a a n b n on Bθ θ θ θ
= = = =

= + + = + +∑ ∑ ∑ ∑ , (49)

1 0 2 0 2
1 1 1 1

cos sin , cos sin ,
N N N N

n n n n
n n n n

u c c n d n u c c n d n on Bθ θ θ θ
= = = =

= + + = + +∑ ∑ ∑ ∑ . (50)

By similarly using the null-field integral equation and Fourier series in Eq.(13), we obtain the Fourier 
coefficients as shown below﹕ 
0 0

0 0

1 1 1 1
2 2 2

1 1 2 2

2 2 2

1 1 2 2

[( (1 2 )) 2 (1 ) ]
2( )

[2 (1 ) ( (1 2 )) ]
2( )

0 ( 2,3, )

e i

e i

n n n n n n n n

a c arbitrary
a c arbitrary
b d a c arbitrary

b a b P a P
a b

a b G
a b P b a P

c d
a b G

a a b b c c d d n

ν ν

ν ν

= =

= =

= = − = − =

+ − − −
= =

−

− − + −
= =

−

= = = = = = = = =

 (51)

After determining Fourier coefficients in Eq.(51), the deformation fields of Eq.(11) yield 

=

+
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2

1 1 1 1 0
(1 2 ) (1 2 ) (1 2 ) 1( , ) cos cos cos cos sin
4 (1 ) 4 (1 ) 2(1 ) 2(1 )

e iP P a au a c b a
G G b b

ν ρ ν ν ρ ρρ φ φ φ φ φ φ
ν ν ρ ν ν ρ

− − − −
= + + + + +

− − − −
, (52)

( ) ( ) 2

2 1 1 1 0

1 2 1 2 (1 2 ) 1( , ) sin sin sin sin cos
4 (1 ) 4 (1 ) 2(1 ) 2(1 )

e iP P a au a c b a
G G b b

ν ρ ν ν ρ ρρ φ φ φ φ φ φ
ν ν ρ ν ν ρ

− − − −
= + + + − +

− − − −
. (53)

In Eqs. (52) and (53), the coefficients ( 1a and 1c ) are found in Eq.(51) and 1b  and 0a  are arbitrary values. 

The three terms ( 1 cosb
b
ρ φ , 0a  and 0a ) can be seen as rigid body terms. The stresses are obtained as shown 

below 
2 2 2 2 2

0 0
2 2 2

( ) ( )
( )

( )
i i

rr
a b P P a P b P

b a
ρ

σ ρ
ρ

− + −
=

−
 (54)

2 2 2 2 2
0 0

2 2 2

( ) ( )
( )

( )
i ia b P P a P b P

b aθθ
ρ

σ ρ
ρ

− + −
=

−
 (55)

( ) 0rθσ ρ =  (56)
For the special case of zero outer pressure 0eP = , Eqs (54) and (55) are reduced to 

2 22 2

2 2 2 2 2 2( ) 1 , ( ) 1
( ) ( )

i i
rr

a P a Pb b
b a b aθθσ ρ σ ρ

ρ ρ
⎛ ⎞ ⎛ ⎞

= − = +⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
 (57)

These stress distributions are the same as Timoshenko and Goodier’s solution [25]. As mentioned 
similarly in the Eample 1, only Airy stress function is found in their book. For the proposed approach, the 
displacement fields and stress can be obtained at the same time. The inner and outer radii are given 1 and 5, 
respectively. The uniform pressures are set as 1eP =  and 2iP = . The sketch of the deformation is shown in 
Fig. 5. Also, another alternative of the LM hypersingular formulation of Eq.(14) can be utilized to obtain 
the same result in the proposed approach. 

 
Fig. 5 Deformation of an annular cylinder subject to uniform pressures 

 
4. Concluding remarks 

For the elasticity problems with circular boundaries, we have proposed an analytical method by using 
the null-field integral formulation in conjunction with degenerate kernels and Fourier series. The 
advantages, free of calculating principal value, meshless and well-posed system were addressed. Besides, 
displacement as well as stress responses were both obtained at the same time. For the circular and annular 
cases, the analytical solutions were obtained by using the present method. Two illustrative examples, the 
stress concentration factor problem and the Lamé problem were demonstrated to see the validity of the 
analytical formulation. Good agreements were made after comparing the results with those of Timoshenko 
and Goodier’s textbook. 
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