
XML-IS

Our reference: MS 2123 P-authorquery-vx

AUTHOR QUERY FORM

Journal: MS

Please e-mail or fax your responses and any corrections to:

Article Number: 2123

E-mail: corrections.esch@elsevier.macipd.com

Fax: +44 1392 285878

Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen
annotation in the PDF file) or compile them in a separate list.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions.

Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the

proof. Click on the Q link to go to the location in the proof.

Location in
article

Query / Remark: click on the Q link to go

Please insert your reply or correction at the corresponding line in the proof

Q1 Please check the telephone/fax number of the corresponding author, and correct if necessary.

Q2 The number of keywords provided exceeds the maximum allowed by this journal. Please delete 1 keyword.

Thank you for your assistance.



1

3

5

7

9

11

13

15

17

19

21
Highlights

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ijmecsci

International Journal of Mechanical Sciences

International Journal of Mechanical Sciences ] (]]]]) ]]]–]]]Scattering of flexural wave in a thin plate with multiple circular inclusions
by using the multipole method

W.M. Lee a, J.T. Chen b

a Department ofQ1 Mechanical Engineering, China University of Science and Technology, Taipei, Taiwan
b Department of Harbor and River Engineering, National Taiwan Ocean University, Keelung, Taiwan

c Scattering of flexural wave by multiple circular inclusions was analytically solved. c Dynamic moment concentration factor and scattering

pattern were both investigated. c Scattering pattern can be used to detect the size and severity of structural anomaly. c The magnitude of DMCF

mainly depends on the separation of damage. c The effect of separation on the DMCF is opposite to that on the scattering pattern.

0020-7403/$ - see front matter & 2011 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijmecsci.2011.05.008

Please cite this article as: Lee WM, Chen JT. Scattering of flexural wave in a thin plate with multiple circular inclusions by using the
multipole method. International Journal of Mechanical Sciences (2011), doi:10.1016/j.ijmecsci.2011.05.008

International Journal of Mechanical Sciences ] (]]]]) ]]]–]]]

www.elsevier.com/locate/ijmecsci
dx.doi.org/10.1016/j.ijmecsci.2011.05.008
dx.doi.org/10.1016/j.ijmecsci.2011.05.008
dx.doi.org/10.1016/j.ijmecsci.2011.05.008


Q1

Q2

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

International Journal of Mechanical Sciences ] (]]]]) ]]]–]]]
Contents lists available at ScienceDirect
International Journal of Mechanical Sciences
0020-74

doi:10.1

n Corr

E-m

Pleas
mult
journal homepage: www.elsevier.com/locate/ijmecsci
Scattering of flexural wave in a thin plate with multiple circular inclusions by
using the multipole method
W.M. Lee a,n, J.T. Chen b

a Department of Mechanical Engineering, China University of Science and Technology, Taipei, Taiwan
b Department of Harbor and River Engineering, National Taiwan Ocean University, Keelung, Taiwan
a r t i c l e i n f o

Article history:

Received 13 June 2010

Received in revised form

18 May 2011

Accepted 19 May 2011

Keywords:

Scattering

Plate

Circular inclusion

Flexural wave

Dynamic moment concentration factor

Far-field scattering pattern

Addition theorem
03/$ - see front matter & 2011 Elsevier Ltd. A

016/j.ijmecsci.2011.05.008

esponding author. Tel.: þ886 2 27867048; fa

ail address: wmlee@cc.cust.edu.tw (W.M. Lee

e cite this article as: Lee WM, Chen
ipole method. International Journal
a b s t r a c t

The multipole method is presented to analytically solve the scattering of flexural wave by multiple

circular inclusions in an infinite thin plate. The near-field dynamic moment concentration factor

(DMCF) and the far-field scattering pattern are both investigated in this paper. The former has a

connection with the fatigue failures and the damages in plate-like structures can be detected by the

latter. Owing to the addition theorem, the multipole expansion for the multiple scattering fields can be

transformed into one coordinate system centered at one circle where continuity conditions are

required. In this way, a coupled infinite linear algebraic system is derived as an analytical model for

an infinite thin plate with multiple circular inclusions subject to an incident flexural wave. The

convergence analysis is conducted to provide the guideline of usage for the proposed method. The

effects of the size and thickness of the flexible inclusion, and the central distance between inclusions on

the near-field DMCF and the far-field scattering pattern are investigated in the numerical experiments.

It shows that the scattering pattern correlates closely with the size and thickness of damages, indicating

the importance of the scattering pattern to detect the various damages. In addition, the DMCF of two

corrosion damages is larger than that of one. Therefore, it is essential to evaluate structural safety when

multiple circular defects are very close to each other. The effect of the space between the inclusions on

the near-field DMCF is different from that on the far-field scattering pattern.

& 2011 Elsevier Ltd. All rights reserved.
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1. Introduction

Thin plates with multiple circular inclusions are commonly
observed in many practical engineering structures. These inclu-
sions, or inhomogeneities, usually take place in terms of either the
thickness reduction due to corrosion in a metallic plate or the
strength degradation caused by delamination in a quasi-isotropic
composite plate. The other examples can be found in the plates
with bolts or rivets, which are often used in the engineering
structure. The deformation and corresponding stresses induced by
dynamic loading are propagated throughout the structure by
means of wave. At the near field of inclusion (or obstacle), flexural
wave scattered in all directions recursively interacts with the
incident wave. It turns out that the scattering of the stress wave
induces dynamic stress concentration [1], which results in fatigue
failure and reduces the loading capacity. On the other hand, the
far-field scattering pattern can determine the size and severity of
structural damages in plate-like structure by using a quantitative
87
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JT. Scattering of flexural wa
of Mechanical Sciences (20
in situ structural health-monitoring system, one of the non-
destructive inspections.

One of the early research studies in the analytical approach to
the dynamic stress concentrations is that of Nishimura and
Jimbo [2]. The stresses in the vicinity of a spherical inclusion in
the elastic solid under a harmonic force were investigated. Pao [3]
studied the scattering of flexural waves and dynamic stress
concentrations around a circular hole, and proposed an analytical
solution. Thau and Lu [4] studied the dynamic stress concentra-
tion at a cylindrical inclusion in an elastic medium. Since then,
most research work has focused on the scattering of elastic wave
and the resulted dynamic stress concentration, and has led to a
rapid development of analytical or numerical approach such as
the method of wave function expansion, the complex variable
method, the boundary integral equation method and the bound-
ary element method [1].

Norris and Vemula [5] considered the scattering of flexural
waves by circular inclusions with different plate properties and
obtained numerical results. Squire and Dixon [6] applied the wave
function expansion method to study the scattering properties of
a single coated cylindrical anomaly located in a thin plate on
which flexural waves propagate. Wang and Chang [7] presented
a theoretical and experimental investigation of the scattering
93

ve in a thin plate with multiple circular inclusions by using the
11), doi:10.1016/j.ijmecsci.2011.05.008
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behavior of extensional and flexural plate waves by a cylindrical
inhomogeneity. Peng [8] investigated flexural wave scattering
and dynamic stress concentration in a heterogeneous plate with
multiple cylindrical patches by using acoustical wave propagator
technique. Recently Lee and Chen [9] proposed a semi-analytical
approach to solve the flexural wave scattered by multiple circular
inclusions in an infinite plate by using the null-field integral
equation method. In addition to the need of integration, this
collocation method belongs to a point-matching approach instead
of an analytical one. It also increases the effort of computation
since boundary nodes for collocation are required.

The concept of multipole method to solve multiply-connected
domain problems was firstly devised by Z _avi�ska [10] and used
for the interaction of waves with arrays of circular cylinders by
Linton and Evans [11]. In this paper, we extend it to the scattering
of flexural weave in an infinite thin plate with multiple circular
inclusions. By using the addition theorem and matching the
continuity conditions at the interface of the inclusions, a coupled
infinite system of simultaneous linear algebraic equations is
derived as an analytical model for the title problem. Finally
some numerical results are presented in the truncated finite
system. Once the displacement fields of each inclusion and
the surrounding plate are solved, the near-field DMCF and the
far-field scattering pattern can be determined in a theoretical
way. The effects of the size and thickness of the flexible inclusion,
and the space between inclusions on the near-field DMCF and
the far-field scattering pattern, respectively, are examined in
this paper.
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2. Problem statement and the general solution

An infinite thin plate containing H circular inclusions with
different thickness from the surrounding plate, subjected to the
incident flexural wave is shown in Fig. 1, where Hþ1 observer
coordinate systems are used: (x1, x2) are the global plane
Cartesian coordinates centered at O ðrp,fpÞ, p¼1, y, H are local
plane polar coordinates centered at Op, Rp denotes the radius of
the pth circular inclusion, hp and Bp are its corresponding
boundary and thickness.

When considering the time-harmonic motion exclusively, the
governing equation of the flexural wave for a uniform infinite thin
plate with distributed circular inclusions as shown in Fig. 1 is
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Fig. 1. Problem statement for an infinite thin plate with multiple circular

inclusions subject to an incident flexural wave.
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r4wðxÞ�k4wðxÞ ¼ 0, xAOe, ð1Þ

where r4 is the biharmonic operator, w(x) is the out-of-plane
elastic displacement and x is the field point, Oe is the unbounded
exterior region occupied by the infinite plate, k4 ¼o2r0h=D, k(2p/
wave length) is the wave number of elastic wave, o is the circular
frequency, r0 is the volume density, D¼ Eh3=12ð1�m2Þ is the
flexural rigidity, E denotes Young’s modulus, m is Poisson’s ratio
and h0 is the plate thickness.

The solution of the Bi-Helmholtz equation, Eq. (1), in the plane
polar coordinates can be represented as

wðr,fÞ ¼
X1

m ¼ �1

~wmðrÞeimf, ð2Þ

where ~wmðrÞ is defined by

~wmðrÞ ¼ c1
mJmðkrÞþc2

mYmðkrÞþc3
mImðkrÞþc4

mKmðkrÞ, ð3Þ

in which ci
m (i¼1–4) are the coefficients, Jm and Ym are the mth

order Bessel functions; and Im and Km are the mth order modified
Bessel functions. Based on the characteristics of functions at r¼0
and r-N, the appropriate Bessel function and the modified
Bessel function are chosen to represent the transverse displace-
ment field for the infinite plate and finite inclusion.

When harmonic forces are applied perpendicularly to a thin
plate and they are far enough from the inclusions, an incident
flexural wave with an incident wave number k and angle a with
respect to the x1-axis can be represented by

wðxÞ ¼w0eiðx1 cosaþ x2 sinaÞk, ð4Þ

where w0 is the amplitude of the incident wave. By substituting
x1 ¼ xp

1þrp cosðfpÞ and x2 ¼ xp
2þrp sinðfpÞ into Eq. (4), the inci-

dent flexural wave in the pth circular inclusion is given by

wðiÞðrp,fpÞ ¼w0cpeikrpcos ðfp�aÞ, p¼ 1,. . .,H, ð5Þ

where cp ¼ eikðxp
1

cosaþxp
2

sinaÞ is a phase factor associated with the
pth circular inclusion [11]. From Jacobi’s expansion [12], eix cosf ¼P1

m ¼ �1 imJmðxÞeimf, Eq. (5) can be expanded in a series form

wðiÞðrp,fpÞ ¼
X1

m ¼ �1

aðiÞm ðkrpÞe
imfp , p¼ 1,. . .,H, ð6Þ

where aðiÞm ðkrpÞ ¼w0cpimJmðkrpÞe
�ima.

Based on the displacement field, the slope, the bending
moment, the tangential bending moment and the effective shear
force can be derived by applying the following operators with
respect to the field point:

KYðUÞ ¼
@ðUÞ

@r , ð7Þ

Kmn ðUÞ ¼�D mr2
ðUÞþð1�mÞ @

2ðUÞ

@r2

" #
, ð8Þ

Kmt ðUÞ ¼�D r2
ðUÞþðm�1Þ

@2ðUÞ

@r2

" #
, ð9Þ

KvðUÞ ¼�D
@

@r
ðr2
ðUÞÞþð1�mÞ 1

r

� �
@

@f
@

@r
1

r
@ðUÞ

@f

� �� �� �
: ð10Þ

3. Analytical derivations for flexural wave scattered by
multiple circular inclusions in a thin plate

Assume that a time-harmonic incident flexural wave impinges
on an infinite thin plate containing H circular inclusions as shown
ve in a thin plate with multiple circular inclusions by using the
11), doi:10.1016/j.ijmecsci.2011.05.008
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in Fig. 1. The problem of flexural wave scattered by H circular
inclusions is to solve Eq. (1) subject to continuity conditions along
each interface between the plate and inclusions and a radiation
condition at infinity, i.e. the scattered field decaying as r�1=2

(or approaching to zero when r-1). Based on Eq. (3), the
scattered field of plate can be expressed as an infinite sum of
multipoles at the center of each circular inclusion as follows:

wðscÞðx;r1,f1,. . .,rH ,fHÞ

¼
XH

k ¼ 1

X1
m ¼ �1

ak
mHð1Þm ðkrkÞe

imfkþbk
mKmðkrkÞe

imfk

" #
, ð11Þ

where (r1,f1), y, (rH ,fH) are the polar coordinates of the field
point x with respect to each center of circular inclusion. The
Hankel function of the first kind (Jþ iY) and the modified Bessel
function K are chosen to represent an infinite plate due to their
finite values and outgoing propagation as r-1. Considering
the incident wave, the total displacement field of the plate is
defined by

wðxÞ ¼wðiÞðxÞþwðscÞðxÞ: ð12Þ

Similarly, from Eq. (3), the displacement field of the pth inclusion
can be expressed as

wi
pðx;rp,fpÞ ¼

X1
m ¼ �1

cp
mJmðkrpÞe

imfpþdp
mImðkrpÞe

imfp

� �
ð13Þ

for p¼1, y, H. The Bessel function J and the modified Bessel
function I are chosen to represent a finite inclusion due to their
finite values at r¼0.

The coefficients of ak
m, bk

m, ck
m and dk

m, k¼1, y, H; m¼0, 71,
72, y can be determined by the following continuity conditions
at each interface, 0rfpr2p, p¼ 1,:::,H

wðrp,fpÞ ¼wi
pðrp,fpÞ

���
rp ¼ Rp

, ð14Þ

yðrp,fpÞ ¼ yi
pðrp,fpÞ

���
rp ¼ Rp

, ð15Þ

mðrp,fpÞ ¼mi
pðrp,fpÞ

���
rp ¼ Rp

, ð16Þ

vðrp,fpÞ ¼ vi
pðrp,fpÞ

���
rp ¼ Rp

: ð17Þ

For the pth circular interface, substituting both Eqs. (12) and (13)
into Eq. (14) yields

X1
m ¼ �1

aðiÞm ðkrpÞe
imfpþ

XH

k ¼ 1

X1
m ¼ �1

ak
mHð1Þm ðkrkÞe

imfkþbk
mKmðkrkÞe

imfk

" #

�
X1

m ¼ �1

cp
mJmðkrpÞe

imfpþdp
mImðkrpÞe

imfp

� �
9rp ¼ Rp

¼ 0: ð18Þ

To determine these unknown coefficients, the other three Eqs.
(15)–(17) are required by applying three operators of Eqs. (7),
(8) and (10) into Eq. (18). Not only does this procedure involve the
higher-order derivatives, Eq. (18) also involves multi-variables.
Therefore, it is difficult to determine the unknown coefficients by
using the procedure mentioned above. This problem can be solved
by using the addition theorem [12], which can convert multi-
variables into one variable so that the higher-order derivatives
can be easily determined.

Graf’s addition theorem for the Bessel function can be
expressed as follows:

JmðkrkÞe
imfk ¼

X1
n ¼ �1

Jm�nðkrkpÞe
iðm�nÞykp JnðkrpÞe

infp , ð19Þ
Please cite this article as: Lee WM, Chen JT. Scattering of flexural wa
multipole method. International Journal of Mechanical Sciences (20
ImðkrkÞe
imfk ¼

X1
n ¼ �1

Im�nðkrkpÞe
iðm�nÞykp InðkrpÞe

infp , ð20Þ

Hð1Þm ðkrkÞe
imfk ¼

X1
n ¼ �1

Hð1Þm�nðkrkpÞe
iðm�nÞykp JnðkrpÞe

infp , ð21Þ

KmðkrkÞe
imfk ¼

X1
n ¼ �1

ð�1ÞnKm�nðkrkpÞe
iðm�nÞykp InðkrpÞe

infp , ð22Þ

for rporkp, where (rp,fp) and (rk,fk) as shown in Fig. 1 are the
polar coordinates of the field point x with respect to Op and Ok,
respectively, which are the origins of two polar coordinate
systems and (rkp,ykp) are the polar coordinates of Op with respect
to Ok.

By substituting the addition theorem for the Bessel functions
Hð1Þm ðkrkÞ and KmðkrkÞ into Eq. (18), only the pth coordinates are
involved and then the displacement continuity condition in the
circular boundary Bp (p¼1, y, H) is given by

X1
m ¼ �1

aðiÞm ðkrpÞe
imfpþ

X1
m ¼ �1

ap
mHð1Þm ðkrpÞþ

X1
m ¼ �1

bp
mKmðkrpÞ

" #
eimfp

þ
XH

k¼ 1

kap

X1
m ¼ �1

ak
m

X1
n ¼ �1

Hð1Þm�nðkrkpÞe
iðm�nÞykp JnðkrpÞ

"

þ
X1

m ¼ �1

bk
m

X1
n ¼ �1

ð�1ÞnKm�nðkrkpÞe
iðm�nÞykp InðkrpÞ

#
einfp

�
X1

m ¼ �1

cp
mJmðkrpÞe

imfpþdp
mImðkrpÞe

imfp

� ����
rp ¼ Rp

¼ 0: ð23Þ

Furthermore, it can be rewritten as

X1
m ¼ �1

eimfp fHð1Þm ðkrpÞa
p
mþKmðkrpÞb

p
m

þ
XH

k¼ 1

kap

X1
n ¼ �1

Ak
mnðkrpÞa

k
nþ

X1
n ¼ �1

Bk
mnðkrpÞb

k
n

" #

�JmðkrpÞc
p
m�ImðkrpÞd

p
mþaðiÞm ðkrpÞg

���
rp ¼ Rp

¼ 0, ð24Þ

where

Ak
mnðkrpÞ ¼Hð1Þn�mðkrkpÞe

iðn�mÞykp JmðkrpÞ, ð25Þ

Bk
mnðkrpÞ ¼ ð�1Þmeiðn�mÞykp ImðkrpÞKn�mðkrkpÞ: ð26Þ

By applying Eq. (7) into Eq. (24), the normal slope continuity
condition in the circular boundary Bp (p¼1, y, H) is given by

X1
m ¼ �1

eimfp kfHð1Þ0m ðkrpÞa
p
mþK 0mðkrpÞb

p
m

þ
XH

k¼ 1

kap

X1
n ¼ �1

Ck
mnðkrpÞa

k
nþ

X1
n ¼ �1

Dk
mnðkrpÞb

k
n

" #

�J0mðkrpÞc
p
m�I0mðkrpÞd

p
mþbðiÞm ðkrpÞg

���
rp ¼ Rp

¼ 0, ð27Þ

where

Ck
mnðkrpÞ ¼Hð1Þn�mðkrkpÞe

iðn�mÞykp J0mðkrpÞ, ð28Þ

Dk
mnðkrpÞ ¼ ð�1Þmeiðn�mÞykp I0mðkrpÞKn�mðkrkpÞ, ð29Þ

bðiÞm ðkrpÞ ¼ cpimJ0mðkrpÞe
�ima: ð30Þ
ve in a thin plate with multiple circular inclusions by using the
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Using Eq. (8), the normal bending moment continuity condition in
the circular boundary Bp (p¼1, y, H) yields

X1
m ¼ �1

eimfp aH
mðkrpÞa

p
mþa

K
mðkrpÞb

p
m

n

þ
XH

k¼ 1

kap

X1
n ¼ �1

Ek
mnðkrpÞa

k
nþ

X1
n ¼ �1

Fk
mnðkrpÞb

k
n

" #

�aJ
mðkrpÞc

p
m�a

I
mðkrpÞd

p
mþcðiÞm ðkrpÞ

o���
rp ¼ Rp

¼ 0, ð31Þ

where

Ek
mnðkrpÞ ¼Hð1Þn�mðkrkpÞe

iðn�mÞykpaJ
mðkrpÞ, ð32Þ

Fk
mnðkrpÞ ¼ ð�1Þmeiðn�mÞykpaI

mðkrpÞKn�mðkrkpÞ, ð33Þ

cðiÞm ðkrpÞ ¼ cpimaJ
mðkrpÞe

�ima, ð34Þ

in which the moment operator aX
mðkrÞ from Eq. (8) is defined as

aX
mðkrÞ ¼D ð1�mÞX

0
mðkrÞ
r
� ð1�mÞm

2

r2
8k2

� �
XmðkrÞ

	 

, ð35Þ

where the upper (lower) signs refer to X¼ J, Y, H, (I, K), respectively.
The differential equations for the Bessel functions have been used to
simplify aX

mðkrÞ.
Similarly, the effective shear operator bX

mðkrÞ derived from
Eq. (10) can be expressed as

bX
mðkrÞ ¼D m2ð1�mÞ7ðkrÞ2

h iX0mðkrÞ
r2

�m2 1�m
� �XmðkrÞ

r3

	 

, ð36Þ

and the effective shear force continuity condition in the circular
boundary Bp (p¼1, y, H) is given by

X1
m ¼ �1

eimfp bH
mðkrpÞa

p
mþb

K
mðkrpÞb

p
m

n

þ
XH

k¼ 1

kap

X1
n ¼ �1

Gk
mnðkrpÞa

k
nþ

X1
n ¼ �1

Hk
mnðkrpÞb

k
n

" #

�bJ
mðkrpÞc

p
m�b

I
mðkrpÞd

p
mþdðiÞm ðkrpÞ
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where Gk
mnðkrpÞ, Hk

mnðkrpÞ and dðiÞm ðkrpÞ are determined by repla-

cing aX
mðkrpÞ in Eqs. (35)–(37) with bX

mðkrpÞ, respectively.

Applying the orthogonal property of {eimfP } to Eqs. (24), (27),
(31) and (37), respectively, gives
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8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð38Þ

for m¼0, 71, 72, y, n¼0, 71, 72, y, and p¼1, y, H. Eq. (38)
is a coupled infinite system of simultaneous linear algebraic
equations which is the analytical model for the flexural scattering
of an infinite plate containing multiple circular inclusions. In
order to present the numerical results in the following, the
infinite system of Eq. (38) is truncated to a (4H)(2Mþ1) system
of equations for (4H)(2Mþ1) unknown coefficients, i.e. m¼0,
71, 72, y., 7M. Once the coefficients ak

m, bk
m, ck

m and dk
m(k¼1,

y, H; m¼0, 71, 72, y, 7M) are determined, the displacement
fields of both an infinite plate and inclusions can be determined
by substituting them into Eqs. (12) and (13).
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3.1. Dynamic moment concentration factors

In the polar coordinates, the bending slope, the normal bend-
ing moment, the tangential bending moment and the effective
shear force of an infinite plate and each inclusion induced by the
incident wave can be determined by substituting Eqs. (12) and
(13) into Eqs. (7)–(10), respectively. By setting the amplitude of
incident wave to be one (w0 ¼ 1), the amplitude of normal bending
moment produced by the incident wave is

M0 ¼Dk2 ð39Þ

The dynamic moment concentration factor (DMCF) at any field point
x is defined as

DMCFðxÞ ¼mtðxÞ=M0, ð40Þ
85

  0.5

  1

  1.5

  2

30

210

60

240

90

270

120

300

150

330

0081

h/h0 =0.0005
h/h0 =0.5
h/h0 =0.75

Fig. 5. DMCF along the circular boundary of a flexible inclusion at different

thicknesses, solid line for h/h0¼0.0005, dashed line for h/h0¼0.5 and dotted line

for h/h0¼0.75 (ka¼1.0).

  0.5

  1

  1.5

  2

30

210

60

240

90

270

120

300

150

330

0180

h/h0 =0.0005
h/h0 =0.5
h/h0 =0.75

Fig. 4. DMCF along the circular boundary of a flexible inclusion at different

thicknesses, solid line for h/h0¼0.0005, dashed line for h/h0¼0.5 and dotted line

for h/h0¼0.75 (ka¼0.5).

Please cite this article as: Lee WM, Chen JT. Scattering of flexural wa
multipole method. International Journal of Mechanical Sciences (20
where the tangential bending moment mtðxÞ is determined by the
following equations:

mtðx;rp,fpÞ ¼

X1
m ¼ �1

eimfp

8>>><
>>>:

f ðiÞm ðkrpÞþg
H
mðkrpÞa

p
mþg

K
mðkrpÞb

p
m

þ
XH

k¼ 1

kap

X1
n ¼ �1

E
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mnðkrpÞa
k
nþF
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mnðkrpÞb
k
n

" #9>>>=
>>>;

for the plate,

X1
m ¼ �1

eimfp fgJ
mðkrpÞc

p
mþg

I
mðkrpÞd

p
mg, for the inclusion,

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð41Þ

where E
k

mnðkrpÞ,F
k

mnðkrpÞ and f ðiÞm ðkrpÞ are obtained by replacing

aX
mðkrpÞ in Eqs. (32)–(34) with gX

mðkrpÞ, respectively, and the

tangential bending moment operator gX
mðkrÞ derived from Eq. (9)
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is given by

gX
mðkrÞ ¼D ðm�1Þ

X0mðkrÞ
r
� ðm�1Þ

m2

r2
8mk2

� �
XmðkrÞ
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3.2. Scattered far-field amplitude

For the most part of scattering applications, it is interesting to
measure the scattered field far away from the scatterer. On the
other hand, the asymptotic behavior or uniqueness of fundamen-
tal solutions is an important issue for the numerical computa-
tion. Therefore, we examine the behavior of the scattered
response in the far field. The scattered far-field amplitude f ðfÞ
[5] is defined as

f ðfÞ ¼ lim
r-1

ffiffiffiffiffiffi
2r

p
U wðscÞðxÞ
�� ��: ð43Þ

In this paper, the radius of the field point is taken as 90 m because
f ðfÞ converges a steady value when this radius is more than about
90 m.
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4. Numerical results and discussions

To demonstrate the theoretical formulation in the previous
section, the FORTRAN code was implemented to solve the flexural
wave scattered by multiple circular inclusions in an infinite thin
plate. The near-field DMCF as well as the far-field scattering
amplitude is numerically determined in the truncated finite
system from Eq. (38). In all cases, the thickness of plate h0 is
0.002 m unless otherwise specified. The following dimensionless
variables are utilized in the next computation: the incident wave
number is ka, the space between inclusions is L/a and the
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thickness of flexible inclusion is h/h0, where a is the radius of a
circular inclusion and L is the central distance between inclusions.
For the special case of a hole, it can be modeled by reducing the
value of h/h0 to be 0.0005 in the numerical simulation.

Case 1: An infinite plate with one circular inclusion:
An infinite plate with one circular flexible inclusion of radius a

subject to the incident flexural wave with a¼ 0 was firstly
considered. Considering a flexible inclusion with h/h0¼0.5,
Fig. 2 shows the DMCF on the circular boundary, at p/2, versus
the dimensionless wave number by using different number of
coefficients. The convergence analysis for one inclusion indicates
that the rate of convergence is fast and it essentially depends on
the incident flexural wave number for this case. For the case of
ka¼0.005 and h/h0¼0.0005, Fig. 3 shows the proposed quasi-
static DMCF along the circular boundary of a flexible inclusion.
The maximum of DMCF occurs at f¼ p=2, �p/2 and its value is
1.8514, which agrees with the analytical solution of an infinite
plate with one hole [1].

Figs. 4–6 show the distribution of DMCF along the circular
boundary of a flexible inclusion when the different size of a
circular damage (ka¼0.5, 1.0 and 3.0) and the different corrosion-
induced thinning (h/h0¼0.0005, 0.5 and 0.75) were considered.
When ka or the size of a circular damage is small, the distribution
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of DMCF has the symmetry of the y-axis. This symmetry gradually
becomes broken as ka increases, viz., the size of a circular damage
or incident wave number increases. In addition, the distribu-
tion of DMCF become skewed toward backward scattering
(h/h0¼0.0005) from forward scattering (h/h0¼0.5) as h/h0

becomes small and ka¼3.0. In general, the magnitude of DMCF
increases as h/h0 decreases. However, it is not the case for some
azimuthal coordinates like f¼ 0 when ka is as large as 3.0,
indicating that region of the fatigue failure will vary as the size
of a circular damage or incident wave number increases.

For the case of one flexible inclusion with h/h0¼0.5, Fig. 7
shows the far-field backscattering amplitude versus the dimen-
sionless wave number by using different number of coefficients.
The convergence analysis for the far-field backscattering ampli-
tude also shows a fast rate of convergence, where twenty terms of
Fourier series in the BIEM are used for comparison. Fig. 8 indicates
the far-field backscattering amplitude versus the dimensionless
wave number when three different dimensionless thicknesses of
inclusion (h/h0¼0.0005, 0.5 and 0.75) were considered. As h/h0

increases, the ka occurring at first trough increases, the far-field
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amplitude decreases and oscillates with ka. The proposed results
match well with those of Norris and Vemula [5]. It can be found that
the scattering amplitude in the far field is O (r�1=2) to satisfy the
radiation condition. Fig. 9 shows the far-field scattering pattern for a
flexible inclusion with h/h0¼0.0005 at various dimensionless wave
numbers ka¼0.1, 1.0, 3.0 and 5.0. Some results (ka¼1.0 and 5.0)
match well with those of Norris and Vemula [5]. It indicates that the
scattering patterns vary appreciably as the size of a circular damage
or incident wave number increases.

Case 2: An infinite plate with two circular inclusions:
A case of an infinite thin plate with two identical flexible

circular inclusions subject to the incident flexural wave with an
incident angle a was considered in Fig. 10. Taking a¼0 was
investigated in the following computation. Figs. 11–14 show the
convergence analysis for the near-field DMCF and the far-field
scattering amplitude, respectively, when the different dimension-
less central distance (L/a¼2.1 and 4.0) were considered. Fig. 11
shows DMCF on the upper circular boundary (y¼�p=2) versus
  1
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the dimensionless wave number by using different number of
coefficients when L/a¼2.1. It indicates that the convergence is
fast achieved as the value of M increases. The proposed results
with M¼20 match well with those provided by the BIEM [9] in
which thirty terms of Fourier series are used. Compared with
the convergence analysis in [9], the fictitious frequency appearing
in the BIEM [9] does not appear in the present formulation.
During the convergence analysis, the maximum of the allowable
truncated number M is limited by the minimum value of ka

concerned, for instance here ka¼0.1. The reason for this is that
the Bessel functions of YmðkRpÞ and ImðkRpÞ of Eq. (38) become
large when k is small. Actually, the truncated number M can be
increased while the concerned minimum value of ka increases.
When the value of L/a increases to 4.0 as shown in Fig. 12, the rate
of convergence becomes faster and the required truncated num-
ber M can be reduced, where twenty terms of Fourier series in the
BIEM are used for comparison.
85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

115

119

121

123

125

127

129

131

133

  1

  2

  3

  4

30

210

60

240

90

270

120

300

150

330

0081

h/h0 =0.0005
h/h0 =0.5
h/h0 =0.75

Fig. 16. DMCF along the circular boundary of the upper flexible inclusion at

different thicknesses, solid line for h/h0¼0.0005, solid line for h/h0¼0.0005,

dashed line for h/h0¼0.5 and dotted line for h/h0¼0.75 (ka¼1.0 and L/a¼2.1).

  1

  2

  3

  4

30

210

60

240

90

270

120

300

150

330

0081

h/h
0
=0.0005

h/h
0
=0.5

h/h
0
=0.75

Fig. 17. DMCF along the circular boundary of the upper flexible inclusion at

different thicknesses, solid line for h/h0¼0.0005, dashed line for h/h0¼0.5 and

dotted line for h/h0¼0.75 (ka¼3.0 and L/a¼2.1).

ve in a thin plate with multiple circular inclusions by using the
11), doi:10.1016/j.ijmecsci.2011.05.008

dx.doi.org/10.1016/j.ijmecsci.2011.05.008
Original Text:
Case 2An infinite plate with two circular inclusions



1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

W.M. Lee, J.T. Chen / International Journal of Mechanical Sciences ] (]]]]) ]]]–]]] 9
The corresponding convergence analysis for the far-field scat-
tering amplitude is shown in Figs. 13 and 14, where twenty terms
of Fourier series in the BIEM are used for comparison. It indicates
that the required number of M is unrelated to the value of L/a. In
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addition, it can be seen that the convergence rate of the far-field is
faster than that of the near field. The complicated calculation for
the near-field DMCF can account for this fact. In summary, for the
near-field DMCF, when the value of L/a is small, the required
number of M mainly depends on the considered minimum
dimensionless central distance L/a. When the value of L/a is large
(such as 4.0 or 10.0) or one inclusion is considered, the value of M

can be reduced and depends on the value of ka of the incident
wave. Through the numerical experiments, it is found that the
required number of M can be taken from 20 to 8 for the minimum
separation distance L/a ranged from 2.1 to 10.0. As regards the far
field, taking M¼8 or 10 can make results accurate enough.

For the case of L/a¼2.1, Figs. 15–17 show the distribution of
DMCF along the circular boundary of the upper flexible inclusion
when the different size of a circular damage (ka¼0.5, 1.0 and 3.0)
and the different corrosion-induced thinning (h/h0¼0.0005,
0.5 and 0.75) were considered. It is observed that the distribution
of DMCF of two circular inclusions is different from that of one,
where the maximum of DMCF increases nearly three times since
the two inclusions are close to each other. This high dynamic
stress concentration inevitably results in the fatigue failure of
engineering structures and this region should be taken care in the
design phase. The variation of DMCF along the azimuthal coordi-
nate is significant when ka or the size of a circular damage
increases. Comparing with the result of one inclusion shown in
Fig. 8, the more intensity of the far-field backscattering is
observed in Fig. 18 and in general the tendency is comparable
but the case of the hole. For the case of L/a¼2.1, Fig. 19 shows the
variation of far-field scattering patterns of two flexible inclusions
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with a corrosion-induced 30% reduction in thickness, as the size
of a circular damage or incident wave number increases (ka¼0.1,
1.0, 3.0 and 5.0). Comparing with the results of one inclusion
shown in Fig. 9, the larger intensity of the far-field scattering is
observed. The scattering patterns vary considerably and become
more skewed towards forward scattering as ka increases.

In the case of L/a¼4.0, Figs. 20–22 show the distribution of
DMCF along the circular boundary of the upper flexible inclusion
when the different size of a circular damage (ka¼0.5, 1.0 and 3.0)
and the different corrosion-induced thinning (h/h0¼0.0005,
0.5 and 0.75) were considered. Comparing Fig. 4 with 20, the
central distance is large enough so that the DMCF distribution of
two inclusions is similar to that of one. But the characteristics
of far-field are not the case. From viewing Figs. 8, 18 and 23, the
far-field backscattering amplitude of L/a¼4.0 is similar to that of
L/a¼2.1 rather than that of one inclusion. Similar results for the
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variation of the far-field scattering pattern as ka increases can be
seen from Figs. 9, 19 and 24.

As seen from the numerical results shown above, it indicates
that the effect of the space between inclusions on the near-field
DMCF is different from that on the far-field scattering pattern.
Only when concerning the DMCF, the multiple scattering can be
simplified by the simple scattering while the space between
inclusions is large enough. But the prediction of the far-field
multiple scattering cannot do such simplification.
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successively solved by using the multipole method with the aid of
the addition theorem. The near-field DMCF and the far-field
scattering pattern were mainly concerned in this study. The
former is important in the mechanical design in particular for
the fatigue failures and the latter can be applicable to the
structural health-monitoring system to detect the structural
damage. The convergence analyses of these two parameters were
conducted by using different numbers of coefficient in the multi-
pole expansion. These results can be employed as guide lines for
the usage of the proposed method. Numerical results show that
the scattering patterns vary significantly as the size and thickness
of a circular damage change, indicating the importance of the
scattering pattern to detect the size and severity of structural
anomaly in plate structures. In addition, the distribution of DMCF
of two damages is different from that of one, where the maximum
of DMCF increases nearly three times, indicating the importance
of the dynamic stress concentration to avoid from fatigue failures.
The magnitude of DMCF is mainly depends on the separating
space of damage and next on the incident wave number and its
incident angle. The effect of the space between inclusions on the
near-field DMCF is different from that on the far-field scattering.
This finding is helpful to further study the multiple scattering of
flexural wave.
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