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Abstract

In this report the reason why the spurious solution occurs in the interior eigenproblem using
real-part BEM and why the fictitious solution occurs in numerical computations of the exterior
Helmholtz integral equation at certain characteristic frequencies is investigated. It was recently
found that the real-part BEM for the interior problem results in spurious eigensolutions. The real-
part BEM results in spurious solutions for interior problems in a similar way that the singular
integral equation results in fictitious solutions for the exterior problem. All the two problems stem
from the rank deficiency of the influence matrix. Based on the circulant properties and degenerate
kernels, an analytical scheme in a discrete system of a circular case is achieved. Numerical
experiments are found to agree with the analytical results.

1 I NTRODUCTI ON integral equation and its normal derivative. In
Acoustic problems are generally modeled  the case of afictitious frequency, the resulting
using the wave equation. While the solution to ~ coefficient matrix for the exterior acoustic
the original boundary value problem in the  problems becomes singular or ill-conditioned.
domain exterior to the boundary is perfectly @ This means that the boundary integral
unique for all wave numbers, this is not the  equations are not linearly independent and the
case for the corresponding integral equation  matrix is rank deficient. In the fictitious-
formulation, which breaks down at certain  frequency case, the rank of the coefficient
frequencies known as irregular frequencies or ~ matrix islessthan 2N, where 2N is the number
fictitious frequencies. This problem is  of boundary elements. The SVD (Singular
completely nonphysical because there are no  Vaue Decomposition) technique can be
eigenvalues for the exterior problems. Schenck  employed to detect the fictitious frequency by
[1] proposed a CHIEF (Combined Helmholtz ~ checking whether or not the first minimum
Interior integra Equation Formulation)  singular value, s, iszero.
method, which is easy to implement and is For interior problems, eigensolutions are
efficient but still has some drawbacks. Burton ~ often encountered not only in vibration
and Miller [2] proposed an integral equation  problems but also in acoustics. Based on the
that was valid for all wave numbers by  complex-valued boundary element method
forming a linear combination of the singular  (BEM) [3], the eigenvalues and eigenmodes
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can be determined. Nevertheless, complex
computation is required. To avoid complex
computation the MRM approach has been
proposed. In the other hand, Tai and Shaw [4]
employed only real-part kernels to solve the
eigenproblem. A simplified method using only
the real-part or imaginary-part kernel was also
presented by De Mey[5]. Although De Mey
found that the zeros for a real-part determinant
may be different from those for imaginary-part
determinant, the spurious solutions were not
discovered. Kang et al. [6] employed the
nondimensional dynamic influence function
method to solve the eigenproblem. Chen et al.
[7] commented that NDIF method is a special
case of imaginary-part BEM. The reason why
spurious eigenvalues occur in the real-part
BEM is the loss of the constraints, which was
investigated by Yieh et al. [8]. The fewer
number of constraint equations makes the
solution space larger. The  spurious
eigensolutions can be filtered out using many
dternatives. eg., the complex vaued
formulation, the domain partition technique,
the dual formulation in conjunction with SVD
[9] and the CHEEF (Combined Helmholtz
Exterior integral Equation Formulation)
method [10].

Based on the circulant properties and
degenerate kernels, the reason why the
fictitious wave number and spurious
eigensolution occur can be easily understood.
We explore the mechanism of them and found
the relationship between the spurious
eigenvalue (interior problem) and fictitious
frequency (exterior problem).

2 AN UNIFIED FORMULATION FOR
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HELMHOLTZ INTERIOR
EXTERIOR PROBLEMS

The governing equation is the Helmholtz
equation as follows:
(N? + k*)u(x,, %,) =0, (X, %,)T D, (@)
where 2 isthe Laplacian operator, D can be
D' for interior problem and D can be Defor
exterior problem and k is the wave number,
which is angular frequency over the speed of
sound. The unified integral formulation for the
Helmholtz equation can be written as

AND

0=QT(sXu(9)dB(9) - QU (s Mt(s)dB(s),  (2)

0=QM (s, Xu(s)dB(s) - QL(SX)t(9)dB(S) (3)
where (s = U and L(sX) = W(sx,
fing ' n,
M(sx=TU69, B denotes the boundary
TnTin,

enclosing D and U =U'(s,x), T=T'(s,x), for
exterior problem, and U =U°(s x),
T=T°(s,x), for interior problem. The kernels
of U', ue, T', and Tecan be derived from
multipole expansion and the explicit forms of
the four kernels will be elaborated on later.

3 ANALYTICAL STUDY FOR THE
SPURIOUS AND FICTITIOUS
SOLUTIONS USING DEGENERATE

KERNELSAND CIRCULANTS

By using the two bases of first and second-
kind Bessel functions, J (kx) and Y, (kx),
we can decompose the kernel functionsinto

:::Ui(q)= a

I n=-¥

S1-i3,0R)
+¥,(KRJJ, (kr ) cos(ng), R> r
& Bp-ig,00)

(4)
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! n (kr NIKKR cos(ng), R< r

@) = n_¥—[-iJn(kR)

_ : +Y,(kR]J, (kr )cos(ng), R>r (6)

L(s,X) =1 _¥ ko

:L(Q)— ¥—[ id,(kr)

; +Y,(kr )13, (kR cos(nq), R < r

M@= 3 —[ i3%KR

: +:( ¥k J, (ki R> (7)
M(s%) =i “(¥ kR)% o r')COS(nq), r

.:.ME(Q) = a 7[-Un(kr)

':“' +Y, (kr)]J®kR)cos(ng), R< r
where x is specified by (r,0) in polar
coordinate. The definitions of r, R and q

for interior and exterior problems are shown in
Fig.1l and Fig.2, respectively. Based on the

circulants for the finite d.o.f. system by
discretizing 2N constant elements, we have
€a & L @y, @yl
é a 8
o=@t B L A g O
é M L O M M U
é u
e a a L -1 % U
where
(m+1/2)Dg
8=, o, CEORAA > G@IRDG  (9)

where m=01L ,2N-1 and G(g) can be
u,ueT TeL',L5M'and M®. By using
the similar properties for all the eight matrices
with respect to circulant, we have

detfU'] =1 ol (oL 1y )0 oL 1o y) (10)
detfU°T =1l ((I,L 1 )0 oL Toy)  (2D)
det[T]=mm, (I . m_)(m,L m.y) (12
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det[L']=mym (I . m_,)(m,L M (n-3) (13)
det[T'] =uguy (UL uy (UL U n.g) (14)
det[L°] =uguy (L uy_ (U, L U (y.1) (15)
det[M '] = Kok (L Ky 1)(K 4L K (yqy)  (16)
delM ] = oy (i L k)5t K y)  (17)
where

=P (-id,(kr) + Y/ (kr))J, (kr), (18)
m =p2kr (-3 ()Y ()3, (o), (19)

=p?kr (-iJ (kr ) + Y (kr ))I®kr ), (20)
k =p2Kk%r i (k) +Y (kr))Ikkr ). (2D)

and |1 =0,#1+2,L *(N- 1),N.

For the exterior radiation problem,
considering the Dirichlet radiation problem,
I.e, u(x)=u is considered. Therefore, we
obtain the following equation,

[U1{t} =[TI{a}. (22)
Based on the EQs.(18) and (22), the possible
fictitious frequencies occur at the position k
which satisfies

(13 (kr )+, (kr ))J; (kr ) =0 (23)
Since (-iJ (kr)+Y/(kr)) IS never zero, the k
value satisfing Eq.(23), implies

Ji(kr)=0 (24)
Schenck used the CHIEF method, which
employs the boundary integral equations by
collocating the interior point as an auxiliary
condition to make up deficient constraint
condition. Combination of the integral
equations for the boundary points and those in
the interior points yields the over-determined



equation system,
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where the superscript B denotes the boundary,
subscript i denotes the interior domainand a is
the number of additional points. Chen et al.
[11] suggested the optimum numbers and
proper positions for the collocation points in
the interior domain by using analytical study
and numerical experiments.

Burton and Miller proposed an integral
eguation by combining the singular integra
eguation and its normal derivative,

o +ikL]{t} =T +ikM1{a}- (26)

Eq.(26) wasvalid for al wave numbers.

For the interior Dirichlet problem, the
complex-valued UT and LM formulation can
obtain the eigenequations

(3, (kr) +iY;(kr))J,(kr) =0, (27)
and
(i3, (kr )+ Y/ (kr ))J, (kr ) = 0. (28)

Since (3 (kr)+iv (k) and (Iikr) +iv/(kr)) are
never zero, the true eigenvalues are the roots
of Jw)=0 for both UT and LM
eigenequations.

By employing the real-part UT equation (18),
we obtain the elgenequation,

Y (kr)J,(kr)=0, 1=0%1L +(N-1),N. (29)
The k vaues satisfying EQ.(29) may be
spurious eigenvalue (Y (kr)=0) or true
eigenvalue (J,(kr ) =0). If we employ the real-
pat LM equation (19),
eigenequation

Y/ (kr)J,(kr)=0, 1=0%1L *(N-1),N. (30)

The k values satisfying EQ.(30) may be
spurious eigenvalue (y'(kr)=0) oOr true
eigenvalue (J,(kr)=0). After comparing

we obtan the
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Egs.(29) and (30) with Egs.(18) and (19), it
can bE( rﬁalszgd that the reason why spurious
eigenvalues occur is due to the loss of
constraints in imaginary-part information.
Chen et al. [10] proposed the CHEEF method
by combining the integral equations for the
boundary points and those in the exterior
points. It yields the over-determined equation
system,
5

é
é Vg

=0, (31)

u

where the subscript e denotes the exterior
domain. It can filter out the spurious
eigensolutions efficiently.

4 NUMERICAL EXAMPLES

Case 1. Fictitious frequency for exterior
problem

For the exterior acoustic problem, we consider
the Neumann problem (nonuniform radiation
of an infinite circular cylinder a=1.0m). This
problem was chosen because the exact
solution is known [12]. In this example we
computed the nonuniform radiation of an
infinite circular cylinder. The Neumann
boundary condition is applied to the cylinder
surface. The portion (- a <q <a ) isassigned a
unit value, while the remaining portion is
assigned a homogeneous value. The exact
solution is given by

2 ¥ dn(na) H®(kr)

—a
ki n HE (kg

u(r,q) =- cosng,r>a, 0<q<2p’

where H® and H® denotes the first kind
Hankel function with order n and its derivative,
respectively. Thirty-two elements are
adopted in the BEM meshand a =5p /32 for
this case. Using the singular (UT) equation,
the positions where the irregular values occur



can be found in Fig.3 for the solution u(a,0;k)
versusk. It isfound that irregular values occur

at the positions of j__, whichisthe mth zero

of J (ka). It agrees well as predicted in
Eq.(24). Fig.4 show the solution u(a,0;k)
versus k using the LM equation, the positions
where the irregular values occur a the

positions of j. , which is the mth zero of

J' (ka) . Fig.5 show the solution u(a,0;k) versus
k using the Burton and Miller approach. Fig.6
show the solution u(a,0;K) versus k using the
CHIEF method. Both of these methods can
avoid the nonunique problem.

Case 2. Spurious eigensolution for interior
problem

For the numerical experiment, we considered a
circular cavity with a radius 1.0 m subjected to
the Dirichlet boundary condition. Fig.7 shows
the first minimum singular value, s,, versusk,
where the true and spurious eigenvalues are
obtained if only real-part UT equation is used.
In the range of 0<k<5, we have two true

eigenvalu&s (30’1(2_405) and J,,(3.832)) and five

spurious eigenvalues (v, (0.8%4), Y, (2.197)

Y,,(3384), v,,(398) ad v, (4527)). It agrees

well as predicted in EQ.(29). Fig.8 shows the
ill-posed behavior [13]. Since only imaginary-
pat UT equation is used. Theoretically
speaking, we can obtain the true and spurious
eigenvalues [14], but the coefficient matrix is
ill-posed in numerical computation. Fig.9
shows the absolute value of determinant using
the complex UT equation, only true
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eigenvalues are obtained. Fig.10 shows the
first minimum singular value, s, versus Kk,
where only the true eigenvalues are obtained if
the CHEEF method is used.

5 CONCLUSIONS

In this report, the mechanism of fictitious
frequency and spurious eigenvalue were
investigated using the degenerate kernels and
circulants for a discrete system of acircle. The
reason why spurious eigenvalues occur in the
real-part BEM and why fictitious frequencies
results from the rank deficiency of influence
matrix. The numerical results agree well with
the analytical prediction using circulants in the
circular case. The relationship between interior
eigensolution problem and exterior fictitious
frequency problem are summarized in Table 1.
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