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Abstract

In this report the reason why the spurious solution occurs in the interior eigenproblem using

real-part BEM and why the fictitious solution occurs in numerical computations of the exterior

Helmholtz integral equation at certain characteristic frequencies is investigated. It was recently

found that the real-part BEM for the interior problem results in spurious eigensolutions. The real-

part BEM results in spurious solutions for interior problems in a similar way that the singular

integral equation results in fictitious solutions for the exterior problem. All the two problems stem

from the rank deficiency of the influence matrix. Based on the circulant properties and degenerate

kernels, an analytical scheme in a discrete system of a circular case is achieved. Numerical

experiments are found to agree with the analytical results.

1、INTRODUCTION

Acoustic problems are generally modeled

using the wave equation. While the solution to

the original boundary value problem in the

domain exterior to the boundary is perfectly

unique for all wave numbers, this is not the

case for the corresponding integral equation

formulation, which breaks down at certain

frequencies known as irregular frequencies or

fictitious frequencies. This problem is

completely nonphysical because there are no

eigenvalues for the exterior problems. Schenck

[1] proposed a CHIEF (Combined Helmholtz

Interior integral Equation Formulation)

method, which is easy to implement and is

efficient but still has some drawbacks. Burton

and Miller [2] proposed an integral equation

that was valid for all wave numbers by

forming a linear combination of the singular

integral equation and its normal derivative. In

the case of a fictitious frequency, the resulting

coefficient matrix for the exterior acoustic

problems becomes singular or ill-conditioned.

This means that the boundary integral

equations are not linearly independent and the

matrix is rank deficient. In the fictitious-

frequency case, the rank of the coefficient

matrix is less than 2N, where 2N is the number

of boundary elements. The SVD (Singular

Value Decomposition) technique can be

employed to detect the fictitious frequency by

checking whether or not the first minimum

singular value, 1σ  is zero.

For interior problems, eigensolutions are

often encountered not only in vibration

problems but also in acoustics. Based on the

complex-valued boundary element method

(BEM) [3], the eigenvalues and eigenmodes
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can be determined. Nevertheless, complex

computation is required. To avoid complex

computation the MRM approach has been

proposed. In the other hand, Tai and Shaw [4]

employed only real-part kernels to solve the

eigenproblem. A simplified method using only

the real-part or imaginary-part kernel was also

presented by De Mey[5]. Although De Mey

found that the zeros for a real-part determinant

may be different from those for imaginary-part

determinant, the spurious solutions were not

discovered. Kang et al. [6] employed the

nondimensional dynamic influence function

method to solve the eigenproblem. Chen et al.

[7] commented that NDIF method is a special

case of imaginary-part BEM. The reason why

spurious eigenvalues occur in the real-part

BEM is the loss of the constraints, which was

investigated by Yieh et al. [8]. The fewer

number of constraint equations makes the

solution space larger. The spurious

eigensolutions can be filtered out using many

alternatives: e.g., the complex valued

formulation, the domain partition technique,

the dual formulation in conjunction with SVD

[9] and the CHEEF (Combined Helmholtz

Exterior integral Equation Formulation)

method [10].

Based on the circulant properties and

degenerate kernels, the reason why the

fictitious wave number and spurious

eigensolution occur can be easily understood.

We explore the mechanism of them and found

the relationship between the spurious

eigenvalue (interior problem) and fictitious

frequency (exterior problem).

2、AN UNIFIED FORMULATION FOR

HELMHOLTZ INTERIOR AND

EXTERIOR  PROBLEMS

The governing equation is the Helmholtz

equation as follows:
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22 Dxxxxuk ∈=+∇         (1)

where 2∇  is the Laplacian operator, D can be
iD  for interior problem and D can be eD for

exterior problem and k is the wave number,

which is angular frequency over the speed of

sound. The unified integral formulation for the

Helmholtz equation can be written as
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exterior problem, and ),( xsUU e= ,

),( xsTT e= , for interior problem. The kernels

of iU , eU , iT , and eT can be derived from

multipole expansion and the explicit forms of

the four kernels will be elaborated on later.

3 、 ANALYTICAL STUDY FOR THE

SPURIOUS AND FICTITIOUS

SOLUTIONS USING DEGENERATE

KERNELS AND CIRCULANTS

By using the two bases of first and second-

kind Bessel functions, )(kxJm  and )(kxYm ,

we can decompose the kernel functions into
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where x is specified by )0,(ρ  in polar

coordinate. The definitions of ρ , R and θ

for interior and exterior problems are shown in

Fig.1 and Fig.2, respectively. Based on the

circulants for the finite d.o.f. system by

discretizing 2N constant elements, we have
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where 12,,1,0 −= Nm Λ  and )(θG  can be
ieieiei MLLTTUU ,,,,,, and eM . By using

the similar properties for all the eight matrices

with respect to circulant, we have
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For the exterior radiation problem,

considering the Dirichlet radiation problem,

i.e., uxu =)(  is considered. Therefore, we

obtain the following equation,

}.]{[}]{[ uTtU =                      (22)

Based on the Eqs.(18) and (22), the possible

fictitious frequencies occur at the position k

which satisfies

0)())()(( =+− ρρρ kJkYkiJ lll            (23)

Since ))()(( ρρ kYkiJ ll +−  is never zero, the k

value satisfing Eq.(23), implies

0)( =ρkJ l                          (24)

Schenck used the CHIEF method, which

employs the boundary integral equations by

collocating the interior point as an auxiliary

condition to make up deficient constraint

condition. Combination of the integral

equations for the boundary points and those in

the interior points yields the over-determined
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equation system,
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where the superscript B denotes the boundary,

subscript i denotes the interior domain and a is

the number of additional points. Chen et al.

[11] suggested the optimum numbers and

proper positions for the collocation points in

the interior domain by using analytical study

and numerical experiments.

    Burton and Miller proposed an integral

equation by combining the singular integral

equation and its normal derivative,
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Eq.(26) was valid for all wave numbers.

    For the interior Dirichlet problem, the

complex-valued UT and LM formulation can

obtain the eigenequations

0)())()(( =+ ρρρ kJkiYkJ lll ,           (27)

and

0)())()(( '' =+− ρρρ kJkYkiJ lll
.            (28)

Since ))()(( ρρ kiYkJ ll +  and ))()(( '' ρρ kiYkJ ll +  are

never zero, the true eigenvalues are the roots
of 0)( =ρkJl

 for both UT and LM

eigenequations.

By employing the real-part UT equation (18),

we obtain the eigenequation,

.),1(,1,0,0)()( NNlkJkY ll −±±== Λρρ        (29)

The k values satisfying Eq.(29) may be
spurious eigenvalue ( 0)( =ρkYl

) or true

eigenvalue ( 0)( =ρkJ l
). If we employ the real-

part LM equation (19), we obtain the

eigenequation

.),1(,1,0,0)()(' NNlkJkY ll −±±== Λρρ       (30)

The k values satisfying Eq.(30) may be
spurious eigenvalue ( 0)(' =ρkYl

) or true

eigenvalue ( 0)( =ρkJ l
). After comparing

Eqs.(29) and (30) with Eqs.(18) and (19), it

can be realized that the reason why spurious

eigenvalues occur is due to the loss of

constraints in imaginary-part information.

Chen et al. [10] proposed the CHEEF method

by combining the integral equations for the

boundary points and those in the exterior

points. It yields the over-determined equation

system,
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where the subscript e denotes the exterior

domain. It can filter out the spurious

eigensolutions efficiently.

4、NUMERICAL EXAMPLES

Case 1. Fictitious frequency for exterior

problem

For the exterior acoustic problem, we consider

the Neumann problem (nonuniform radiation

of an infinite circular cylinder a=1.0m). This

problem was chosen because the exact

solution is known [12]. In this example we

computed the nonuniform radiation of an

infinite circular cylinder. The Neumann

boundary condition is applied to the cylinder

surface. The portion ( αθα <<− ) is assigned a

unit value, while the remaining portion is

assigned a homogeneous value. The exact

solution is given by

πθθ
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π
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where )1(
nH  and )1('

nH  denotes the first kind

Hankel function with order n and its derivative,

respectively.  Thirty-two elements are

adopted in the BEM mesh and 32/5πα =  for

this case. Using the singular (UT) equation,

the positions where the irregular values occur
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can be found in Fig.3 for the solution u(a,0;k)

versus k. It is found that irregular values occur

at the positions of 
mnJ ,
, which is the mth zero

of )(kaJ n
. It agrees well as predicted in

Eq.(24). Fig.4 show the solution u(a,0;k)

versus k using the LM equation, the positions

where the irregular values occur at the

positions of '
,mnJ , which is the mth zero of

)(' kaJ n
. Fig.5 show the solution u(a,0;k) versus

k using the Burton and Miller approach. Fig.6

show the solution u(a,0;k) versus k using the

CHIEF method. Both of these methods can

avoid the nonunique problem.

Case 2. Spurious eigensolution for interior

problem

For the numerical experiment, we considered a

circular cavity with a radius 1.0 m subjected to

the Dirichlet boundary condition. Fig.7 shows

the first minimum singular value, 1σ , versus k,

where the true and spurious eigenvalues are

obtained if only real-part UT equation is used.

In the range of 0<k<5, we have two true

eigenvalues ( )405.2(1,0J  and ))832.3(1,1J and five

spurious eigenvalues ( )894.0(1,0Y , )197.2(1,1Y ,

)384.3(1,2Y , )958.3(2,0Y  and )527.4(1,3Y ). It agrees

well as predicted in Eq.(29). Fig.8 shows the

ill-posed behavior [13]. Since only imaginary-

part UT equation is used. Theoretically

speaking, we can obtain the true and spurious

eigenvalues [14], but the coefficient matrix is

ill-posed in numerical computation. Fig.9

shows the absolute value of determinant using

the complex UT equation, only true

eigenvalues are obtained. Fig.10 shows the

first minimum singular value, 1σ , versus k,

where only the true eigenvalues are obtained if

the CHEEF method is used.

5、CONCLUSIONS

In this report, the mechanism of fictitious

frequency and spurious eigenvalue were

investigated using the degenerate kernels and

circulants for a discrete system of a circle. The

reason why spurious eigenvalues occur in the

real-part BEM and why fictitious frequencies

results from the rank deficiency of influence

matrix. The numerical results agree well with

the analytical prediction using circulants in the

circular case. The relationship between interior

eigensolution problem and exterior fictitious

frequency problem are summarized in Table 1.
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摘要

    本研究報告在於討論以積分方程求解

內域或外域 Helmholtz場在數值上產生的

真假特徵值及虛擬頻率的問題。在解外域

聲場時於某些特徵頻率會得到不唯一的

解。而在求解內域特徵值時如果僅採用實

部邊界元素法的奇異積分方程式，則會得

到假特徵值。而內域實數邊界元素法得到

假根與外域問題得到虛擬頻率的原因是類

似的。兩個問題的產生皆由於影響矩陣的

秩數不足所致。藉由圓形循環矩陣的特性

及退化核函數，可得知為何採用實部邊界

元素法會產生假根是因為少了虛數部的限

制而產生了假根。而虛擬頻率(或波數)的

產生則是數學上 0/0的問題。在解析上我

們以二維圓形問題來證明,並以設計的數值

實驗結果來驗證我們理論的正確性。


