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ABSTRACT 

In this paper, a regularized meshless method (RMM) is developed to solve the two-dimension Laplace problem 
with multiply-connected domain. The solution is represented by using the double layer potential. The source points 
can be located on the real boundary by using the proposed regularized technique to regularize the singularity and 
hypersingularity of the kernel functions. The difficulty of the coincidence of the source and collocation points in 
traditional method of fundamental solutions is avoided and thereby the diagonal terms of influence matrices are 
easily determined. The numerical results demonstrate the accuracy of the solutions after comparing with those of 
exact solution and BEM for the Dirichlet, mixed-type and arbitrary-shape problems with multiple holes. Good 
agreements are observed. 

 

1. INTRODUCTION 

  In recent years, science and engineering 
communities have paid much attention to the meshless 
method in which the element is free. Because of 
neither domain nor boundary meshing required for the 
meshless method, it is very attractive for engineers in 
model creation. Therefore, the meshless method 
becomes promising in solving engineering problems. 

The method of fundamental solutions (MFS) is one 
of the meshless methods and belongs to a boundary 
method of boundary value problems, which can be 
viewed as a discrete type of indirect boundary element 
method. The MFS was attributed to Kupradze in 1964 
[10], and had been applied to potential [9], Helmholtz 
[5], diffusion [4], biharmonic [11] and elasticity 
problems [3]. In the MFS, the solution is approximated 
by a set of fundamental solutions of the governing 
equations which are expressed in terms of sources 
located outside the physical domain. The unknown 
coefficients in the linear combination of the 
fundamental solutions are determined by matching the 
boundary condition. The method is relatively easy to 
implement. It is adaptive in the sense that it can take 
into account sharp changes in the solution and in the 
geometry of the domain and can easily incorporate 
complex boundary conditions [11]. A survey of the 
MFS and related method over the last thirty years can 
be found in Ref. [9]. However, the MFS is still not a 
popular method because of the debatable artificial 

boundary (off-set boundary) distance for source 
location in numerical implementation especially for a 
complicated geometry. The diagonal coefficients of 
influence matrices are divergent in conventional case 
when the off-set boundary approaches the real 
boundary. In spite of its gain of singularity free, the 
influence matrices become ill-posed when the off-set 
boundary is far away from the real boundary. It results 
in an ill-posed problem since the condition number for 
the influence matrix becomes very large. 
  Recently, Young et al. [13] developed a modified 
MFS, namely regularized meshless method (RMM), to 
overcome the drawback of MFS for solving the 
Laplace equation. The method eliminates the 
well-known drawback of equivocal artificial boundary. 
The subtracting and adding-back technique [13] can 
regularize the singularity and hypersingularity of the 
kernel functions. This method can simultaneously 
distribute the observation and source points on the real 
boundary even using the singular kernels instead of 
non-singular kernels [8]. The diagonal terms of the 
influence matrices can be extracted out by using the 
proposed technique. However, the problem solved in 
[13] is limited for simply-connected problems. For the 
Laplace problem with multiply-connected domain, the 
solutions can be obtained by using the finite difference 
method (FDM) [12] and the boundary element method 
(BEM) [1,6]. The conventional MFS has also been 
employed to solve the Laplace problem with multiple 
circular holes [7].  

Following the sources of [13] for simply-connected 
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problems, we extend to the multiply-connected 
problems by using the RMM in this paper. A 
general-purpose program is developed to solve the 
multiply-connected Laplace problems. The results will 
be compared with those of the BEM and analytical 
solutions. Furthermore, the sensitivity and convergent 
test will be studied through several examples to show 
the validity of our method. 

2. FORMULATION 

2.1 Governing equation and boundary 

conditions  

Consider a boundary value problem with a potential 
)(xu , which satisfies the Laplace equation as follows: 

,,0)(2 Dxxu ∈=∇  (1)

subject to boundary conditions, 

uxu =)( , u
pBx∈ , mp ,,3,2,1=  (2)

txt =)( , t
qBx∈ , mq ,,3,2,1=  (3)

where 2∇  is Laplacian operator, D is the domain of 

the problem, u(x)t(x) =
nx

∂
∂

, m is the total number of 

boundaries including m-1 numbers of inner boundaries 
and one outer boundary (the mth boundary), u

pB  is 
the essential boundary (Dirichlet boundary) of the pth 
boundary in which the potential is prescribed by u  

and tBq  is the natural boundary (Neumann boundary) 
of the qth boundary in which the flux is prescribed by 
t . Both uBp  and tBq  construct the whole boundary 
of the domain D as shown in Figure 1. 

2.2 Conventional method of fundamental 

solutions 

By employing the RBF technique [2], the 
representation of the solution for multiply-connected 
problem as shown in Figure 1 can be approximated in 
terms of the jα  strengths of the singularities at s j  

as 
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where ix  and js  represent ith observation point and 

jth source point, respectively, jα  are the jth 
unknown coefficients (strength of the singularity), 

121 ,,, −mNNN  are the numbers of source points 

on 1−m  numbers of inner boundaries, respectively, 

mN  is the number of source points on the outer 
boundary, while N is the total numbers of source points 

)( 21 mNNNN +++=  and 
ix

ij
ij n

xsT
xsM

∂
∂

=
),(

),( . 

The coefficients { }N
jj 1=

α  are determined so that BCs 

are satisfied at the boundary points. The distributions 
of source points and observation points are shown in 
Figure 2 (a) for the MFS. The chosen bases are the 
double layer potentials [3,4,5] as 

(( ), )
( , ) 2

x s ni j jT s xj i
rij

−
= , (6)

2(( ), )(( ), ) ( , )
( , ) 4 2

x s n x s n n ni j j i j i j iM s xj i
r rij ij

− −
= − , (7)

where (,) is the inner product of two vectors, rij  is 

ij xs − , jn  is the normal vector at js  and in  is 

the normal vector at ix . 
It is noted that the double layer potentials have both 

singularity and hypersingularity when source and filed 
points coincide, which lead to difficulty in the 
conventional MFS. The off-set distance between the 
off-set (auxiliary) boundary ( B′ ) and the real 
boundary ( B ), defined by d , shown in Figure 2 (a) 
needs to be chosen deliberately. To overcome the 
abovementioned shortcoming, js  is distributed on 
the real boundary as shown in Figure 2 (b), by using 
the proposed regularized technique as written in 
section 2.3. The rationale for choosing double layer 
potential instead of the single layer potential as used in 
the RMM for the form of RBFs is to take the 
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advantage of the regularization of the subtracting and 
adding-back technique, so that no off-set distance is 
needed when evaluating the diagonal coefficients of 
influence matrices which will be explained in Section 
2.4. The single layer potential can not be chosen 
because the following Eqs. (9), (12), (15) and (18) in 
Section 2.3 are not satisfied. If the single layer 
potential is used, the regularization of subtracting and 
adding-back technique fails. 

2.3 Regularized meshless method 

When the collocation point ix  approaches the 

source point js , the potentials in Eqs. (4) and (5) 
become singular. Eqs. (4) and (5) for the 
multiply-connected problems need to be regularized by 
using the regularization of subtracting and adding-back 
technique [13] as follows: 
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where 
i

Ix  is located on the inner boundary 

( 1,,3,2,1 −= mp ) and the superscript I  
and O  denote the inward and outward normal 
vectors, respectively, and 
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Therefore, we can obtain 
1

1 1

1

1 1

1 2

1 1

1

1 1

1

1

1

( ) ( , ) ( , )

            ( , )

            ( , )

            ( , )

           (

p

p

m

m

m

N i
I I I I I
i j i j j i j

j j N N

N N
I I
j i j

j i

N N
I I
j i j

j N N

N
O I
j i j

j N N

u x T s x T s x

T s x

T s x

T s x

T s

α α

α

α

α

−

−

−

−

−

= = + + +

+ +

= +

+ +

= + + +

= + + +

= + +

+ +

+

+

−

∑ ∑

∑

∑

∑
1

1 1 1

, ) ( , ) ,

           ,   1, 2, 3, , 1

p

P

N N
I I I I
j i i i i

j N N

I
i p

x T s x

x B p m

α
−

+ +

= + + +

⎡ ⎤
⎢ ⎥−
⎢ ⎥⎣ ⎦

∈ = −

∑

 

(10)

When the observation point O
ix  locates on the outer 

boundary (p=m), Eq. (8) becomes 
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where 
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Hence, we obtain 
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Similarly, the boundary flux is obtained as 
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Therefore, we can obtain 
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When the observation point locates on the outer 
boundary (p=m), Eq. (14) yields 
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The detailed derivations of Eqs. (9), (12), (15) and (18) 
are given in the reference [13]. According to the 
dependence of the normal vectors for inner and outer 
boundaries [13], their relationships are 
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where the left hand side and right hand side of the 
equal sign in Eqs.(20) and (21) denote the kernels for 
observation and source point with the inward and 
outward normal vectors, respectively. 

By using the proposed technique, the singular terms 
in Eqs. (4) and (5) have been transformed into regular 
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the subtracting terms in the two brackets for 
reqularization. After using the abovementional method 
of regularization of subtracting and adding-back 
technique [13], we are able to remove the singularity 
and hypersingularity of the kernel functions. 

2.4 Derivation of influence matrices for 

arbitrary domain problems 

By collocating N observation points to match with 
the BCs from Eqs. (10) and (13) for the Dirichlet 
problem, and the linear algebraic equation is obtained 
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For the Neumann problem, Eqs. (16) and (19) yield 
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in which 
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(31) 

For the mixed-type problem, a linear combination of 
Eqs. (22) and (27) is required to satisfy the mixed-type 
BCs. After the unknown density ( { }N

jj 1=
α ) are 

obtained by solving  the linear algebraic equations, 
the field solution can be solved by using Eqs. (4) and 
(5). 

3. NUMERICAL EXAMPLES 

Case 1: Dirichlet problem 

The multiply-connected Dirichlet problem is shown 
in Figure 3, and an analytical solution is 

1( , ) cos( )u r
r

θ θ= , (32)

The exact solution is plotted in Figure 4 . The field 
solutions by using the RMM (360 points) and the 
BEM (360 elements) are shown in Figure 5 (a) and 
Figure 5 (b). 

Case 2: Mixed-type problem 

The mixed-type problem for multiply-connected 
domain is shown in Figure 6, and an analytical 
solution is available as follows: 

)3cos(3 θru = , (33)
The exact solution is plotted in Figure 7. The defined 
norm error is 

∫ =−=
π

θθθ
2

0

2),5.0(),5.0( druruexact
 (34)

The norm error of the RMM versus the total number N 
of source points is shown in Figure 8 and the 
convergent result is found after distributing 200 points. 
The field solutions by using the RMM (400 points) 
and the BEM (800 elements) are shown in Figures 9 (a) 
and (b), respectively. After comparing Figure 9 (a) 
with Figure 9 (b) and Figure 7, the RMM result agrees 
with the exact solution and the BEM result. 

Case 3: Arbitrary-shape problem 

The arbitrary-shape problem for continuous 
boundary conditions are given in Figure 10. An 
analytical solution is available as follows: 

)cos(yeu x=  (35)
The field potential in Eq. (35) is shown in Figure 11 
(a). The field solutions by using the RMM (400 points) 
is shown in Figures 11 (b). The norm error is defined 
as 

∫ =−=
π

θθθ
2

0

2),9.0(),9.0( druruexact
 (36)

The norm error versus the total number N of source 
points is shown in Figure 12 and the convergent result 
is found after distributing over 200 points. 

4. CONCLUSIONS 

In this study, we used the RMM to solve the 
Laplace problems with multiply-connected domain 
subject to the Dirichle、mixed-type and arbitrary-shape. 
Only the boundary nodes on the real boundary are 
required. The major difficulty of the coincidence of the 
source and collocation points in the conventional MFS 
is then circumvented. Furthermore, the controversy of 
the off-set boundary outside the physical domain by 
using the conventional MFS no longer exists. 
Although it results in the singularity and 
hypersingularity due to the use of double layer 
potential, the finite values of the diagonal terms for the 
influence matrices have been extracted out by 
employing the regularization technique. The numerical 
results were obtained well by applying the developed 
program to three examples after compared with those 
of analytical solutions and BEM. 
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Figure 1 Laplace problem with holes 

 

Figure 2 (a) Conventional MFS 

 

Figure 2 (b) RMM 
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Figure 4 Exact solution for the case 1 
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Figure 5 (a) RMM for the case 1 
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Figure 5 (b) BEM for the case 1 

 

Figure 6 Problem sketch 

 

Figure 7 Exact solution for the case 2 
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Figure 8 The norm error along radius 0.5r =  versus 
total number of nodes 
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Figure 9 (a) RMM for the case 2 
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Figure 9 (b) BEM for the case 2 

 

Figure 10 Problem sketch 
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Figure 11 (a) Exact solution for the case 3 
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Figure 11 (b) RMM for the case 3 
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Figure 12. The norm error along the radius 9.0=r  
versus the number of nodes for the case 3. 
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