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ABSTRACT 
In this paper, the Laplace problem with overspecified 

boundary conditions is investigated by using the 
regularized meshless method. The solution is represented 
by a distribution of the kernel functions of double-layer 
potentials. By using the desingularization technique of 
adding-back and subtracting terms to regularize the 
singularity and hypersingularity of the kernel functions, 
the source points can be located on the real boundary and 
the diagonal terms of influence matrices are determined. 
The main difficulty of the coincidence of the source and 
collocation points then disappears. The accompanied 
ill-posed problem can be remedied by using Tikhonov 
regularization technique, linear regularization method 
and truncated singular value decomposition. The optimal 
parameters of the Tikhonov technique and linear 
regularization method and truncated singular value 
decomposition are derived by adopting L-curve concept. 
The numerical evidences of the regularized meshless 
method are given to verify the accuracy of the solutions 
after comparing with the results of analytical solution. 
The comparison of Tikhonov regularization technique, 
linear regularization method and truncated singular value 
decomposition are also discussed in the example. 
Keywords: regularized meshless method, Tikhonov 
technique, linear regularization method, truncated 
singular value decomposition, L-curve technique, 
Cauchy problem. 

1. INTRODUCTION 
Inverse problems are presently becoming more 

important in many fields of science and engineering 
[15,20]. They may be one of the following problems or 
their combinations. (Ⅰ) lack the determination of the 
domain, its boundary, or an inner unknown boundary, (Ⅱ) 
lack inference of the governing equation, (Ⅲ ) lack 
identification of boundary conditions and/or initial 
conditions (Cauchy problem), (Ⅳ) lack determination of 
the material properties involved, (Ⅴ) lack determination 
of the forces or inputs acting in the domain [18]. The 
Cauchy problem is focused in this paper. 

Sometimes, unreasonable results occur in the Cauchy 
problem subjected to the measured and contaminated 
errors on the overspecified boundary condition, because 
of the ill-posed behavior in the linear algebraic system 

[14,19]. Mathematically speaking, the Cauchy problem is 
ill-posed since the solution is very sensitive to the given 
data. Such a divergent problem could be avoided by 
using regularization methods [15,20]. For examples, 
truncated singular value decomposition (TSVD) [17], 
Tikhonov regularization technique [2] and linear 
regularization method [9] have been applied to treat with 
the divergent problems. The three methods can obtain the 
convergent solution more precisely and reasonably. The 
TSVD, Tikhonov regularization technique and linear 
regularization method, had been successfully applied to 
overcome the ill-posed problem of the Laplace equation 
[4,10]. In this paper, the comparison of three 
regularization techniques is made to obtain a better 
method. 

For the Cauchy problem, the influence matrix is often 
ill-posed such that the regularization technique which 
regularizes the influence matrix is necessary. The TSVD 
transform the ill-posed matrix into a well-posed one by 
choosing an appropriate truncated number for i. Similarly, 
the Tikhonov technique and linear regularization method 
transform into a well-posed one by choosing an 
appropriate parameter for H*λ  and λ  [3]. The 
appropriate truncated number (or parameter) can be 
determined according to a compromise point between 
regularization errors (due to data smoothing) and 
perturbation errors (due to noise disturbance) by 
implementing the L-curve concept [11,16]. The corner of 
the L-curve determines the optimal value of λ (or i) 
which will be employed to provide the compromise point 
and will be elaborated on later. 

During the last decade, scientific researchers have 
paid attention to the meshless methods for solving 
Cauchy problems in which the mesh or element is free 
[5]. The method of fundamental solutions (MFS) which 
is a kind of meshless methods has been extensively 
applied to solve some engineering problems [1,8]. 
However, the location of source and observation point is 
vital to the accuracy of the solution by implementing the 
conventional MFS. But it still accompanies some 
difficulties at the ill-posed problem. Consequently, a 
novel meshless method - regularized meshless method 
(RMM) [6,7,12,13] has been employed to solve the 
potential problems based on the potential theory as well 
as the desingularization of subtracting and adding-back 
technique to regularize the singularity and 
hypersingularity of the kernel functions. The proposed 
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method distributes the observation and source points on 
the coincident locations of the real boundary even using 
the singular kernels (double-layer potentials) instead of 
non-singular kernels and still maintains the spirit of the 
MFS. The diagonal terms of the influence matrices can 
be derived by using the proposed technique. 

In this paper, we are going to employ the RMM in 
conjunction with the TSVD, Tikhonov technique, linear 
regularization method and L-curve concept to circumvent 
the ill-posed problem. To obtain the optimal truncated 
number or parameter, L-curve concept is employed. 
Finally, the results of the example contaminated with 
artificial noise on the overspecified boundary condition 
are given to illustrate the validity of the proposed 
technique. Good agreements are observed as comparing 
analytical solutions. 
 
2. Formulation 
 
2.1 Governing equation and over-specified 
boundary condition 

To consider the inverse problem for Laplace equation 
with overspecified boundary condition as shown in Fig. 1 
satisfies: 

,0)(2 =∇ xφ    Dx∈ (1)
subjected to the boundary condition on BB1 as 

,)( φφ =x  ,)( ψψ =x   1Bx∈ (2)

where  is the Laplacian operator, D is the domain 

of interesting, 
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2.2 Method of solution 
 
2.2.1 Method of fundamental solutions 

By employing the radial basis functions (RBFs) 
concept [6], the representation of the solution for interior 
problem can be approximated in terms of the strengths 

of the singularities  as jα js
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The chosen RBFs of Eqs. (3) and (4) in this paper are 
the double-layer potentials in the potential theory as 
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2.2.1 Regularized meshless method 

It is noted that the double layer potentials have both 
singularity and hypersingularity when the source point 
and the observation point are coincided, which lead to 
troublesome singular kernels and controversially 
auxiliary boundary in the conventional MFS. The off-set 
distance between the off-set (auxiliary) boundary ( B′ ) 
and the real boundary (B) defined by as shown in Fig. 
2 (a) and (b) needs to be chosen deliberately. To 
overcome the abovementioned drawback, is 
distributed on the real boundary as shown in Fig. 2 (c) 
and (d) by using the proposed regularization technique. 

d

js

When the collocation point  approaches to the 
source point , Eqs. (3) and (4) become singular. Eqs. 
(3) and (4) for the interior problems need to be 
regularized by using subtracting and adding-back 
technique [6] as follows : 
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The detailed derivations of Eqs. (9) and (10) are 
given in reference [6]. The superscript of  )(e ),()( ije xsA
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and  denotes the exterior domain, the term of 

and  are the adding-back 

terms and the terms of  and  are 
the subtracting terms in two brackets for the special 
treatment technique. 
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2.2.3 Derivation of diagonal coefficients of 
influence matrices 

We can obtain the following linear algebraic system 
after collocating  observation points, , 
to the real boundary in Eq. (7) as : 
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in which  and ),()( iji
ij xsAa = .,,2,1, MNji += …  

In a similar way, Eq. (8) yields 
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in which  and ),()( iji
ij xsBb = .,,2,1, MNji += …  

Rearrange the influence matrices of Eqs. (11) and (15) 
together into the linearly algebraic solver system as 
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The linear equations in Eq. (19) can be generally 
written as 
[ ]{ } { }bxA =  (20) 

where  ,
][

][
][

)(1

)(1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

+×

+×

MNN

MNN

B

A
A { } 1)(}{ ×+= MNx α  and 

.
}{

}{
}{

11

11

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
×

×

N

Nb
ψ

φ  

For the Cauchy problem of the Laplace equation, the 
influence matrix [ ]A  is often ill-posed such that the 
regularization technique in section 2.2.4 which 
regularizes the influence matrix is necessary. 

 
2.2.4 Regularization techniques for Cauchy 
problem 

 
2.2.4.1 Truncated singular value decomposition 

In the singular value decomposition (SVD), the 
matrix [ ]A  is decomposed into 

[ ] [ ] [ ] [ ]TVUA Σ=  (21) 
where [ ] [ ]m21 u,,u,uU = and [ ] are column 
orthonormal matrices, with column vectors called left 
and right singular vectors, respectively, T denotes the 
matrix transposition, and [ ]

[ ]m21 v,,v,v  V =

),,,( diag  m21 σσσ=Σ  is a 
diagonal matrix with nonnegative diagonal elements in 
nonincreasing order, which are the singular values of 
[ ]A . 

A convenient measure of the conditioning of the 
matrix [ ]A  is the condition number Cond defined as 

 ,  Cond
m

1

σ
σ

=  (22) 

where 1σ  is the maximum singular value and mσ  is 
the minimum singular value  i.e. the ratio between the 
largest singular value and the smallest singular value. By 
means of the SVD, the solution  can be written as 0a
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k

1i
i

i

T
i0 ∑

=

=
σ

 (23) 

where k is the rank of [ ]A ,  is the element of the left 
singular vector and  is the element of the right 
singular vector. For an ill-conditioned matrix equation, 
there are small singular values, therefore the solution is 
dominated by contributions from small singular values 

iu

iv
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when noise is present in the data. One simple remedy to 
the difficulty is to leave out contributions from small 
singular values, i.e. taking  as an approximate 
solution, where  is defined as: 

pa
pa
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p
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i

i

T
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 (24) 

where p k is the regularization parameter, which 
determines when one starts to leave out small singular 
values. Note that if p= k, the approximate solution is 
exactly the least squares solution. This method is known 
as TSVD in the inverse problem community [4]. 

≤

 
2.2.4.2 Tikhonov technique 

Tikhonov proposed a method to transform this 
ill-posed problem into a well-posed one. Instead of 
solving  directly, the procedures of 
Tikhonov technique are written as follows: 

}{}]{[ bxA =

(Ⅰ). Minimize 2x  subject to ε≤− 2bAx  (25) 
where ε  is the prescribed error tolerance. 
(Ⅱ). The proposed problem in Eq. (25) is equivalent to 
[10] 
minimize 2bAx−  subject to *2 ε≤x , (26) 
and the Euler-Lagrange equation obtained from reference 
[10] can be written as 

bAxIAA TT =+ )( λ  (27) 
Where λ is the regularization parameter (Lagrange 
parameter). 
 
2.2.4.3 Linear regularization method 

The single central idea in inverse theory is the 
prescription [9] , 
minimize: [ ] [ ]xQxP λ+  (28) 
where  and  are two positive functions 
of 

0xP >][ 0xQ >][
x . 
Then, using equation  [9] , the minimization 

principle Eq.28 is 
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and T denotes matrix transposition. 
 

2.2.5 The L-curve and its applications 
The L-curve concept is proposed to aid us in selecting 

the optimal parameter λ (or i, truncated number). Two 
indices are frequently used, one represents the sensitivity 
of the influence matrix on the solution and the other 
represents the degree of distortion to the original system. 
Usually, the norm error is 

⎭
⎬
⎫

⎩
⎨
⎧= ∫

b

a

2
ee dxu-uu-u , where 

 is the numerical result and  is the analytical result, 
is chosen as the index of sensitivity and λ (or i) is chosen 
as the index of degree of distortion. A sketch diagram for 
the TSVD method 、 Tikhonov technique and Linear 
regularization method combined with the L-curve 
concept is illustrated in Fig. 3. One can find that when 
the regularization parameter, λ or i, is small, 

u eu

eu-u  
tends to very large even though λ (or i) is small. It is 
shown that the regularization parameter is too small such 
that not much improvement of ill-posed remedy in the 
influence matrix is done. On the other hand, when the 
regularization parameter, λ (or i), is large, λ (or i) tends to 
be very large even though eu-u  tends to small value 
which shows that the regularization parameter is too 
large such that the original system is distorted too much. 
Therefore, the compromised results of eu-u  and λ (or 
i) lead us to choose the corresponding value in the corner 
of the L-shape curve as the optimal regularization 
parameter. 
 
3. Numerical example 

To illustrate application of the TSVD, Tikhonov 
technique, linear regularization method and L-curve for 
the Laplace equation with overspecified B.C.s. A circle 
domain, R = 1, is chosen as a representation example. 
Three kinds of treatments in the problem is considered: 
TSVD, Tikhonov technique and Linear regularization 
method all for the inverse problem with noise. 

The present model of the inverse problem with noise 
can be described as shown in Fig. 4. By using random 
data simulation, we can obtain 1% random errors 
contaminating the input data, as shown in Fig.5. If 
regularization techniques are not employed, the results 
are unreasonable as shown in Fig. 6 . 

When the TSVD, Tikhonov technique and linear 
regularization method are applied in the analysis for the 
case, we can obtain solutions with many values of λ (or i), 
as shown in Fig. 7(a), 7(b), 7(c). Therefore, we can find 
the relationship between the norm error and the value of 
λ (or i); i.e., the L-curve, as shown in Fig. 8(a), 8(b), 8(c), 
can be constructed. As expected from the mathematical 
point of view, a corner is present in the L-curve. If the 
corner of the L-curve is chosen as an optimal point, the 
appropriate value is 104 for TSVD, 0.000042 for 
Tikhonov technique and 0.21 for linear regularization 
method, respectively. Therefore, the deconvolution 
results will be regularized to approximate the analytical 
solution, as shown in Fig. 9(a), 9(b), 9(c). We can find 
that the appropriate solutions obtained by using the 
regularization techniques look more reasonable in 
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comparison with the analytical solution than do the 
results obtained without using regularization. Although 
some differences still occur among TSVD, Tikhonov 
technique and linear regularization method. Therefore, 
we can find the differences among the L-curves of three 
treatments, as shown in Fig. 10. The results of three 
treatments are compared with the analytical solution, as 
shown in Fig. 11. Then we can figure out the norm error 
of the L-curve by linear regularization method is much 
lower than others, also the result after regularized by 
Linear regularization method is agree the analytical 
solution better than others. 
 
4. CONCLUSION 

In this paper, we used the RMM to solve the Laplace 
equation with overspecified boundary condition. Only 
the boundary nodes on the real boundary are required. 
The major difficulty of the coincidence of the source and 
collocation points in the conventional MFS is then 
circumvented. Besides, the regularization techniques 
using the TSVD, Tikhonov technique and linear 
regularization method, together with the L-curve, plays a 
role in determining the optimal parameter λ (or i) which 
can maintain the system characteristic and can make the 
system insensitive to contaminating noise. Furthermore, 
the numerical results obtained by using the linear 
regularization method for the case are in very close 
agreements with the analytical solutions and is superior 
to other regularization techniques. 
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Figure 1 Sketch diagram of the inverse problem 

with overspecified boundary condition. 

 5



中華民國力學學會第三十屆全國力學會議   彰化縣大葉大學機械與自動化工程學系   95 年12 月15-16 日 

The 30thNational Conference on Theoretical and Applied Mechanics, December 15-16, 2006, DYU, Changhwa, Taiwan, R.O.C. 
 

 
Figure 2 (a). 

 

 
Figure 2 (b). 

 

 
Figure 2 (c). 

 

 
Figure 2 (d). 

 
Figure 2 The source point and observation point 
distributions and definitions of ϕρθ ,,,r  by using 
the conventional MFS and the regularized meshless 
method for the interior and exterior problems: (a) 
interior problem (MFS), (b) exterior problem 
(MFS), (c) interior problem (proposed method), (d) 
exterior problem (proposed method). 

Figure 3 L-curve concept. 
 

 
Figure 4 Problem sketch. 

 

 
Figure 5 The random error. 

 

 
Figure 6 The boundary potential without 

regularization techniques. 
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Figure 7(a). 

 

 
Figure 7(b). 

 

 
Figure 7(c). 

 
Figure 7 The boundary potential with different 

values of λ(or i) by using (a) TSVD, (b) Tikhonov 
technique, (c) linear regularization method. 

 
Figure 8(a). 

 

 
Figure 8(b). 

 

 
Figure 8(c). 

 
Figure 8 L-curve by (a) TSVD, (b) Tikhonov 
technique, (c) linear regularization method. 
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Figure 9(a). 

 

 
Figure 9(b). 

 

 
Figure 9(c). 

 
Figure 9 The boundary potential with the optimal 
value of λ (or i) by (a) TSVD, (b) Tikhonov 
technique, (c) linear regularization method. 

 

 
Figure 10 L-curve by TSVD, Tikhonov technique 
and Linear regularization method. 

 
Figure 11 The boundary potential by TSVD, 
Tikhonov technique and Linear regularization 
method with optimal values. 
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吳國綸1 陳桂鴻2 陳正宗1 高政宏1

 
1國立台灣海洋大學河海工程學系 

2稻江科技暨管理學院資訊管理學系 

 

摘要 

 
本文是利用正規化無網格法求解過定邊界之拉普

拉斯問題，使用雙層勢能來表示整個場解，且使用一

加一減技巧來正規化處理奇異及超奇異核函數。使用

提出的數值方法有別於傳統基本解法須將源點佈在虛

假邊界上，可將奇異源放在真實的邊界上，並可獲得

線性代數方程。配合邊界條件，即可輕易的決定出線

性代數系統的未知係數。然而伴隨著的病態問題可藉

由截取式奇異值分解法、Tikhonov 技術及線性正規化

法來克服，在最佳化參數方面，則可用 L 曲線的觀念

來得到。所得之數值結果在與解析解作比較後可獲得

滿意的結果，並對其三種克服病態問題之方法加以比

較討論。 
關鍵詞：正規化無網格法、Tikhonov 技術、線性正規

化法、截取式奇異值分解法、L 曲線技術、柯西問題。 
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