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ABSTRACT 
In this paper, the Green’s function for the annular 

Laplace problem is first derived by using the image 
method which can be seen as a special case of method of 
fundamental solutions. Three cases, fixed-fixed, 
fixed-free and free-fixed boundary conditions are 
considered. Also, the Trefftz method is employed to 
derive the Green’s function by using T-complete sets. By 
employing the addition theorem, both solutions are found 
to be mathematically equivalent when the number of 
Trefftz bases and the number of image points are both 
infinite. On the basis of the finite number of degrees of 
freedom, the convergence rates of both methods are 
demonstrated and compared with each other. In the 
successive image process, the final two images freeze at 
the origin and infinity, where their singularity strengths 
can be analytically and numerically determined in a 
consistent manner. 
Keywords: Green’s function, method of fundamental 
solutions, image method, Trefftz method 

1. INTRODUCTION 
Trefftz in 1926 presented the Trefftz method for 

solving boundary value problems by superimposing the 
functions satisfying the governing equation, although 
various versions of the Trefftz method, e.g., direct and 
indirect formulations have been developed [1]. The 
unknown coefficients are determined by matching the 
boundary condition. 

In the potential theory, it is well known that the 
method of fundamental solutions (MFS) can solve 
potential problems when a fundamental solution is 
known. This method was proposed by Kupradze and 
Aleksidze [2] in 1964. Extensive applications in solving 
a broad range of problems such as acoustics [3] have 
been investigated. The MFS can be viewed as an indirect 
boundary element method (BEM) with concentrated 
sources instead of boundary distributions. The initial idea 
is to approximate the solution through a linear 
combination of fundamental solutions with sources 

located outside the domain of the problem. Moreover, it 
has certain advantages over BEM, e.g., no singularity and 
no boundary integral. However, ill-posed behavior is 
inherent in the regular formulation. Trefftz method and 
MFS are both mesh reduction methods. 

Green’s function has been studied and applied in 
many fields by mathematicians as well as engineers [4]. 
Green’s functions are useful building blocks for attacking 
more realistic problems. But only a few of simple regions 
allow a closed-form Green’s function for the Laplace 
equation. For example, one aperture or circular sector in 
the half plane, infinite strip, semi strip or infinite wedge 
can be mapped by elementary analytic functions, making 
their Green’s function expressed in a closed form. A 
closed-form Green’s function for the Laplace equation by 
using the mapping function becomes impossible for the 
complicated domain except for some simple cases. For 
the image method, Thomson [5] proposed the concept of 
reciprocal radii to find the image source to satisfy the 
homogeneous Dirichlet boundary condition. Chen and 
Wu [6] proposed an alternative way to find the location 
of image through the degenerate kernel. The Green’s 
function of a circular ring has been solved using complex 
variable by Courant and Hilbert [7]. However, it is 
limited to extend to three-dimensional space. 

Mathematical studies on the MFS have been 
investigated by some researchers. Bogomolny [8] studied 
the stability and error bound of MFS. Li et al. [9] used 
the effective condition number to study the collocation 
approaches of MFS and Trefftz method. They found that 
the condition number of MFS is much worse than that of 
the Trefftz method. Although the Trefftz method and 
MFS have a long history individually, the link between 
the two methods was not discussed in detail in the 
literature until the Chen et al.’s paper [10]. They proved 
the equivalence between the Trefftz method and the MFS 
for the Laplace and biharmonic problems with the 
circular domain. The keypoint is the use of the 
degenerate kernel or so-called the addition theorem. They 
only proved the equivalence by demonstrating a simple 
circle with angular distribution of singularity to link the 
two methods. Later, the similar viewpoint was also found 
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by Schaback [11]. However, Schaback claimed that MFS 
is closely connected to the Trefftz method but they are 
not equivalent in the error analysis. He found that the 
MFS for the source points on the far-away field yields a 
trial space that belongs to harmonic polynomials. 
However, an extension study for the equivalence of 
Trefftz method and MFS for a doubly-connected domain 
problem is not trivial. This is the main concern of this 
paper. Here, we put singularities along the radial 
direction in the method of image in stead of angular 
distributions. The Green’s function of Laplace equation 
was by using the image method for simple case in 
Greenberg [14]. 

In this paper, we focus on proving the mathematical 
equivalence between the Trefftz method and MFS on the 
Green’s function for annular Laplace problems subject to 
fixed-fixed, fixed-free and free-fixed boundary 
conditions. By employing the image method and addition 
theorem, the equivalence of the solution using two 
methods will be proved when the number of image points 
and number of the Trefftz bases are infinite. The image 
method is seen as a special case of MFS, since its image 
singularities locate outside the domain. The convergence 
rate on the basis of finite number of degrees of freedoms 
for the Trefftz method and MFS is also discussed. The 
final frozen image location in the successive mapping is 
also examined. Besides, the singularity strength can be 
analytically and numerically determined. The solution by 
using the image method also indicates that a free constant 
is required to be complete for the solution which is 
always overlooked in the conventional MFS. 
 
2. Derivation of the Green’s function for   

an annular case by using the image 
method 

   For a two-dimensional annular problem as shown in 
Fig. 1, the Green’s function satisfies 

( ) ( )2 , , ,G x x xζ δ ζ Ω∇ = − ∈  ( 1 )
where Ω  is the domain of interest and δ  denotes the 
Dirac-delta function for the source at ζ . For simplicity, 
the Green’s function is considered to be subjected to the 
Dirichlet boundary condition 

( ) 1 2, 0, ,G x x B Bζ = ∈ ∪  ( 2 )
where B1 and B2 are the inner and outer boundaries, 
respectively. We extend a circular case [6] to an annular 
case. An annular case can be seen as a combination of 
interior and exterior problems as shown in Fig. 2. As 
mentioned in [6], the interior and exterior Green’s 
functions can satisfy the homogeneous Dirichlet 
boundary conditions if the image source is correctly 
selected. The closed-form Green’s functions for both 
interior and exterior problems are written to be the same 
form 

( ), ln ln ln ln , ,G x x x a R xζζ ζ ζ Ω′= − − − + − ∈ ( 3 )

where a is the radius of the circle, ( ),0Rζζ = , ζR  is 
the distance form the source to the center of the circle, 
ζ ′  is the image source and its position is at ( )2 ,0a Rζ  

as shown in Fig. 3. 
By matching the homogeneous Dirichlet boundary 

conditions for the outer and inner boundaries, we 
introduce the image points 1ζ  and 2ζ , respectively. 
Since 2ζ  results in the nonhomogeneous boundary 
conditions on the outer boundary, we need to introduce 
an extra image point 3ζ . Similarly, 1ζ  results in the 
nonhomogeneous boundary conditions on the inner 
boundary and an additional image point 4ζ  is also 
required. Repeating the same procedure, we have a series 
of image sources locating at 
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Fig. 4 and Table 1 depict a series of images for the three 
annular problems. We consider the fundamental solution 

( , )U s x  for the source singularity at s such that 
2 ( , ) 2 ( ).U x s x sπδ∇ = −  ( 6 )

Then, we obtain the fundamental solution as follows: 
( , ) ln ,U x s r=  ( 7 )

where r is the distance between s and x ( | |)r x s≡ − . 
Based on the separable property of addition theorem or 
the so-called degenerate kernel, the fundamental solution 

( , )U x s  can be expanded into series form by separating 
the field point ( , )x ρ φ  and source point ( , )s R θ  in the 
polar coordinate [10]: 
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( 8 )

where the superscripts of I and E denotes the interior and 
exterior regions, respectively. It is noted that the leading 
term and the numerator in the above expansion involve 
the larger argument to ensure the log singularity and the 
series convergence, respectively. In order to iteratively 
match the inner and outer homogenous Dirichlet 
boundary conditions, combination of all the images 
yields the main part of the solution 

(

)
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( 9 )

2.1 Satisfaction of the boundary condition by 
using interpolation functions  

   Although ( , )mG x ζ  is the particular solution of the 
Green’s function, ( , )mG x ζ  in Eq. (9) can not satisfy 
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both the inner and outer boundary conditions of 
( , ) ( , ) 0 ,m a m bG x G xζ = ζ =  where ( , ) ,ax a φ=   

( , )bx b= φ , 0 2≤ ≤φ π . In order to satisfy both the 
inner and outer boundary conditions, we introduce 

ln ln( , ) ( , ) ( ) ( , )
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ln ln
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where ln ln( )
ln ln

a
b a
ρ−
−

 and ln ln( )
ln ln

b
b a

ρ−
−

 are interpolation 

functions with the Kroneker-delta property. Therefore, 
Eq. (10) can be rewritten as 
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after expanding the fundamental solutions of Gm in Eq. (9) 
by using the addition theorem. As N approaches infinity 
(i.e. many image points), Eq. (11) reduces to 
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due to 
2

2lim ( ) 0N
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=  and ( ) 1a
b

< . Eq.(12) indicates 

that not only image singularities at 4 3iζ − , 4 2iζ − , 4 1iζ −  
and 2iζ , 1, 2, 3, ,i =  but also one singularity of 
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case are required. The Green’s function in Eq. (12) 
satisfies the governing equation and boundary conditions 
at the same time. It is found that a conventional MFS 
loses a free constant and completeness may be 
questionable. Similarly, the image method can be 
extended to solve fixed-free and free-fixed cases. All the 
series solutions are analytically derived in Table 1 not 
only for fixed-fixed but also for fixed-free and free-fixed 
cases. 
2.2 Satisfaction of boundary conditions using two   

singularity strengths at the origin and infinity 
After successive image process, the final two image 

location freeze at the origin and infinity. There are two 
strength of singularity to be determined. Therefore, Eq.(9) 
can be rewritten as 

(
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(13)

where c(N) and d(N) are unknown coefficients which can 
be numerically determined by matching the inner and 
outer boundary conditions. 

After matching the inner and outer boundary 
conditions, the numerical values of unknown c(N) and 
d(N) are determined as shown in Figs. 5-7, for 
fixed-fixed, fixed-free and free-fixed cases, respectively. 
It is found that all the numerical values in Figs. 5-7 
match well with the analytical formulae of c(N) and d(N) 
in the Table 1 using the degenerate kernel. 
 
3. Derivation of the Green’s function for an 

annular case by using the Trefftz method 
The problem of annular case can be decomposed into 

two parts. One is infinite plane with a concentrated 
source (fundamental solution) and the other is annular 
circles subject to specified boundary conditions as shown 
in Fig. 8. The first part solution can be obtained from the 
fundamental solution as follows: 

ln
( , ) .

2F
x

G x
ζ

ζ
π
−

=  (14)

The second part is solved by using the Trefftz method. 
The solution can be superposed by using the Trefftz base 
as shown below: 

1
( , ) ,
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T j j
j

G x cζ Φ
=

= ∑  (15)

where jΦ  is the jth T-complete function and NT is the 
number of T-complete functions. Here, the T-complete 
functions are given as 1, cosm mρ φ , sinm mρ φ  for the 

interior case and ln ρ , cosm mρ φ− , sinm mρ φ−  for 
the exterior case. The complete bases for the annular 
problem can be represented by 

0 0
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where ( , )x ρ φ= , 0p , 0p , mp , mp , mq  and mq  
are unknown coefficients. By matching the boundary 
conditions, we substitute ( , )x a φ=  and ( , )x b φ=  in 
Eq. (15) to determine the unknown coefficients. Then, 
the series-form Green’s functions are obtained in Table 1 
for the three cases. For simplicity and without loss of 
generality, we prove the equivalence for the fixed-fixed 
case in the next section. 
 
4. Mathematical equivalence between the 

solutions using the MFS and Trefftz 
method 

4.1 Method of fundamental solutions (image      
method) 

The image method can be seen as a special case of 
MFS, since its singularities are located outside the 



中華民國力學學會第三十二屆全國力學會議                                   國立中正大學機械工程學系   97 年11 月28-29 日 

The 32nd National Conference on Theoretical and Applied Mechanics, November 28-29, 2008 

domain. The Green’s function of Eq. (12) can be 
expanded into series form by separating the field point 

( , )x ρ φ  and source point ( , )s R θ  for the fundamental 
solution in the polar coordinate of Eq. (8) as shown 
below: 

4 4 2

1 1 4 1 4 3
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Without loss of generality, the source in the annular 
domain can be chosen as ( ,0)Rζζ = . By using Eqs. (4) 
and (5), all the images result in the four geometric series 
with the common ratio of 2 2a b  which is smaller than 
one in Eq. (12) and can be rearranged into 
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after expanding all the image singularities. Regarding the 
optimal location for singularities of MFS, it is interesting 
to find that the optimal location may not be the 
expansion type of Fig. 9(a) or angular distribution of Fig. 
9(b) but a lumped singularity in one radial direction as 
shown in Fig. 9(c). In this paper, our image location in 
the MFS only lumps on the radial direction which agrees 
with the optimal location found by Alves and Antunes 
[12]. 
4.2 Trefftz method 

Since the angle of source can be set to zero without 
loss of generality, the coefficients in the Table 1 can be 
simplified. Then, the Green’s function in Eq. (16) can be 
rewritten as 

2 2 2 2 2 2 2 2
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(19)

After comparing Eq. (18) with Eq. (19), it is found that 
the two solutions Eqs. (12) and (16) have been proved to 
be mathematically equivalent through the use of addition 
theorem, when the number of images and the number of 
Trefftz bases are both infinite. The equivalence of 
solution using the Trefftz method and MFS(image 
method) is summarized in Fig. 10. Similarly, the 
mathematical proof of the equivalence between Trefftz 
and MFS solutions can be extended to fixed-free and 
free-fixed cases without any difficulty. All the results are 
shown in Table 1. 
 
5. Illustrative examples and discussions 

For simplicity, an annular problem subject to the 

Dirichlet boundary condition is considered here where 
the source is located at (7.5,0)ζ = . The two radii of 
inner and outer circles are 4 and 10, respectively. 
Although the Trefftz solution and MFS (image method) 
solution are proved to be mathematically equivalent in 
the infinite dimension ( N →∞  and TN →∞ ), they 
are not equivalent in the error analysis. The convergence 
rate under the finite number of degrees of freedoms is an 
interesting topic. Three approaches, (a) MFS with 
angular singularities, (b) MFS with images and (c) 
Trefftz method, are considered here. Their distributions 
of source and collocation points are shown in Fig. 11. 
The contour plots of analytic solutions using the Trefftz 
method and image method are shown in Figs. 12-14 for 
fixed-fixed, fixed-free and free-fixed cases, respectively. 
Figure 15 shows the potential at the point (6, 3)π  
versus the number of terms by using various approaches. 
It is found that the convergence rate of image method is 
better than those of Trefftz method and conventional 
MFS. However, the results of Trefftz method are the 
worst. Fig. 16 shows the normal derivatives along outer 
and inner boundaries. The norm error of normal 
derivatives for outer and inner boundaries versus the 
number of terms ( TN M= ) is shown in Fig. 17. Also, 
the results of the image method are better than those of 
the conventional MFS and the Trefftz method. 

In this example, all the three figures (Figs. 15-17) 
indicate that the image method is more efficient than 
MFS with angular singularities and Trefftz method. The 
reason can be explained that source points in MFS were 
optimally selected by using the image concept. 
According to the addition theorem, the Trefftz bases are 
all imbedded in the degenerate kernel. Trefftz bases and 
lnr singularity are both complete for representing the 
solution. Although it is proved that the solution derived 
by using the image method and the Trefftz method are 
equivalent when the number of degrees of freedom is 
infinite. Nevertheless, their efficiencies are different on 
the finite number of degree of freedoms. Here, we find 
that the radial distribution of singularity is better than the 
angular distribution in the MFS. Also, we proved that the 
bases of MFS are more efficient than that of the Trefftz 
method in the fixed-fixed cases. 

 
6. Concluding remarks 

In this paper, not only the image method (a special 
case of MFS) but also the Trefftz method were employed 
to solve the Green’s function of annular Laplace problem. 
Three cases, fixed-fixed, fixed-free and free-fixed were 
considered. The two solutions using the Trefftz method 
and MFS were proved to be mathematically equivalent 
by using addition theorem or so-called degenerate kernel. 
On the basis of finite number of degrees of freedoms, the 
results of image method are found to converge faster than 
those of Trefftz method and MFS with angular 
singularities. Also, the solution of image method shows 
the existence of the free constant which is always 
overlooked in the conventional MFS. Finally, we also 
found the final two frozen image points at the origin and 
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infinity where their strengths can be determined 
numerically and analytically in a consistent manner. 
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Fig. 2 An annular case composed of interior and 

exterior domains. 

Fig. 3 Sketch of position of image point for the interior  
and exterior cases. 

 
Fig. 4 The images for an annular problem. 
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Fig. 5 Values of c(N) and d(N) for the fixed-fixed case.
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Fig. 7 Values of c(N) and d(N) for the free-fixed case. 

 

 
 

 
Fig. 8 Sketch of the superposition approach. 

 

 
Fig. 9 Optimal locations for the MFS [11]. 

 
Fig. 10 Equivalence between the Trefftz method and 

MFS (image method). 

 
 
 

 
 
 
 

 
 

Fig. 11 Sketches of MFS, image method and Trefftz 
method. 

 
Fig. 12 Contour plot for the analytical solution 

(fixed-fixed boundary condition). 
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Fig. 6 Values of c(N) and d(N) for the fixed-free case.
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(a) Trefftz method (b) Image method 

Fig. 13 Contour plot for the analytical solution 
(fixed-free boundary condition). 

 

 
(a) Trefftz method (b) Image method 

Fig. 14 Contour plot for the analytical solution 
(free-fixed boundary condition). 

 

 
Fig. 15 Pointwise convergence test for the potential 

6
3

u( , )π  by using various approaches. 

 

 
 (a) Outer boundary 

 
 (b) Inner boundary 

Fig. 16 Normal derivative along the inner and outer 
boundaries by using various approaches. 

 

 
(a) Outer boundary 

 

 
(b) Inner boundary 

Fig. 17 L2 norm error ( 2 2
0 ˆ| ( ) ( ) |u x u x dπ θ−∫ ) versus the 

number of terms. 
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Table 1 Trefftz and image solutions for fixed-fixed, fixed-free and free-fixed annular Green’s functions. 
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