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Abstract

In this thesis, the multipole Trefftz method and the null-field integral equation are

employed to deal with 2-D and 3-D eigenproblems, respectively. In the chapter 2,

the null-field integral equation in conjunction with degenerate kernels and spherical

harmonics are utilized to solve the eigenproblem of a concentric sphere. By

expanding the fundamental solution into degenerate kernels and expressing the

boundary density in terms of spherical harmonics, all boundary integrals can be

analytically determined. By using the updating terms and updating document of

singular value decomposition (SVD) technique, true and spurious eigenvalues can

be extracted out, respectively. Besides, true and spurious boundary eigenvectors are

obtained in the right and left unitary vectors in the SVD structure of the influence

matrices. This finding agrees with that of 2-D cases. In the chapter 3, we succeed to

extend the conventional Trefftz method to the multipole Trefftz method in

eigenproblems. The multipole Trefftz method is used to deal with eigenproblems

with a multiply-connected domain. By introducing the addition theorem, the

collocation technique is not required to construct the linear algebraic system. The

eigenvalues can be found by employing the direct searching technique. Solving

eigenproblems by using this method is free of pollution of spurious eigenvalues.

Keywords: degenerate kernel, null-field integral equation, multipole Trefftz method,

eigenproblem, spurious eigenvalue
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摘要

本文利用多極 Trefftz 方法與零場積分方程，分別處理二維與三維的特徵值問

題。在第二章，零場積分方程引入退化核與球形諧和函數解同心圓球的特徵值

問題。透過退化核函數展開基本解與利用球形諧和函數表示邊界物理量，則邊

界積分便可以解析求得。真假特徵值分別透過奇異值分解的補充列與補充行技

巧焠出。此外，真假邊界特徵向量可以在影響係數矩陣的奇異值分解結構中左

酉與右酉矩陣的行向量發現。這些發現與二維例子吻合。第三章，在特徵值問

題上成功地將傳統 Trefftz 方法推展到多極 Trefftz 方法。利用多極 Trefftz 方法

處理多連通定義域的特徵值問題。因為引入了加法定理，所以無須佈點的技巧

即可建構出一個線性代數系統。特徵值可以透過直接搜尋的技巧獲得。利用此

法解特徵值問題將無假根的污染產生。

關鍵字：退化核、零場積分方程、多極 Trefftz 方法、特徵值問題、假根
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Chapter 1 Introduction 
 
1.1 Motivation and literature overview  
 
Acoustic analysis becomes a more and more important issue in new product design 

process. Many scholars have studied the sound radiation behavior and tried to find the 

connection between the sound radiation and vibration. Since exact or analytical 

solutions aren’t always available, they aimed to find a numerical approach to 

decouple the sound radiation. Many well-developed numerical methods such as the 

finite difference method (FDM), the finite element method (FEM) and the boundary 

element method (BEM) have been adopted. The FDM approximates the derivatives in 

the differential equations which govern problems using some types of truncated 

Taylor expansion and thus express them in terms of the values at a number of discrete 

mesh points. The main difficulty of this technique is the consideration of curved 

geometries and the application of boundary condition.  

For the case of general boundaries, the regular finite difference grid is unable to 

accurately reproduce the geometry of the problem. In the past decade, the FEM has 

been widely applied to carry out many engineering problems. The FEM utilizes a 

weighted residual method of the minimum potential energy theorem. The 

disadvantages of the FEM are inconvenient in modeling infinite regions and dealing 

with quantities of data, especially for three-dimensional problems. The governing 

equation in BEM is an integral equation different from those in the others. The 

integral equation was introduced by Fredholm in 1903. The origin of the boundary 

element method can be traced to the work carried out by some researchers in the 

1960’s on the applications of boundary integral equations to potential flow and stress 

analysis problems. In the 1960 period, the BEM was utilized to solve 2-D elasticity by 

Rizzo (1967) and 2-D elastodynamics problem by Cruse and Rizzo (1968). In 1978, 

the first book on boundary elements in its title was published (Brebbia, 1978), and the 

first international conference on the topic was organized. From 1978 to 1986, the 

mathematical foundation of the BEM is focused on the singular integral equation with 

the Cauchy kernel. In order to solve the problems with degenerate boundaries, Hong 
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and Chen (1988) introduced the dual BEM with the hypersingular formulation. 

Another break through of the BEM is the introduction of degenerate kernels which 

makes fast multipole BEM possible. A brief history of the BEM is shown in Fig. 1-1. 

The BEM has become popular in recent years due to its advantage of the reduction of 

dimensionality. Although the capability of the BEM has been verified for solving 

engineering problems, there are five critical issues as given below. 

 

(1) Treatment of weak, strong and hypersingular singularities 

It’s well-known that improper integral should be handled particularly when the BEM 

is used. In the dual BIEM/BEM formulation, the singular and hypersingular integrals 

need special care by using the sense of Cauchy and Hadamard principal values (CPV 

and HPV), respectively. How to determine accurately the free terms had received 

more attentions in the past decade and a large amount of the papers can be found. Two 

conventional techniques, bump contour approach (Guiggiani, 1995) and the limiting 

process (Gray and Manne, 1993) as shown in Figs. 1-2 and 1-3, were employed to 

regularize the singular and hypersingular integrals. Another alternative to avoid the 

singularity, such as fictitious BEM and null-field approach (off boundary approach; 

Achenbach, Kechter and Xu, 1988) can be considered. However, they result in an 

ill-posed matrix. How to extract principle values of singular and hypersingular 

integrals using the well-posed model is an interesting object. 

 

(2) Ill-posed model  

By moving the null-field points to the real boundary or adjusting the fictitious 

boundary to the real boundary, the system can be changed to be well-posed. However, 

CPV and HPV need to be calculated. Instead of determining the CPV or HPV, the 

kernel function is separable since the double-layer potential is discontinuous across 

the boundary. Therefore, the degenerate kernel, namely separable kernel, is employed 

to represent the potential of the perforated domain which satisfies the governing 

equation. 
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(3) Boundary-layer effect 

Boundary-layer effect in the BEM occurs when the collocation point approaches the 

vicinity near boundary. Kisu and Kawahara (1988) proposed a concept of relative 

quantity to eliminate the boundary-layer effect. Chen and Hong in Taiwan (1994) as 

well as Chen et al. in China (2001) independently extended the idea of relative 

quantity to two regularization techniques which the boundary densities are subtracted 

by constant and linear terms. For the stress calculation, Sladek et al. (1991) used a 

regularized version of the stress boundary integral equation to compute the correct 

values of stresses close to the boundary. Others proposed a regularization of the 

integrand by using variable transformations. For example, Telles (1987) used a cubic 

transformation such that its Jacobian is the minimum at the point on the boundary 

close to the collocation point and can smooth the integrand. Similarly, Huang and 

Cruse (1993) proposed rational transformations which regularized the nearly singular 

integrals. We concern how to develop a BIEM formulation free of boundaries-layer 

effect. 

 

(4) Convergence rate 

The BEM is very popular for boundary value problems with general geometries since 

it requires discretization on the boundary only. Regarding constant, linear and 

quadratic elements, the discretization scheme does not take the special geometry into 

consideration. However, it leads to the slow convergence rate. Convergence rate of 

exponential order by using the null-field integral equation was achieved as 

demonstrated by Hsiao (2005). Moreover, the present method can be directly applied 

to problems with general boundaries without any difficulty once the fundamental 

solution can be separated in other coordinate system, such as Cartesian coordinates or 

the elliptic coordinates. 

 

(5) Mesh generation 

Although BEM is free of domain discretization, boundary mesh generation is still 

required since collocation point is on the boundary. We introduce the generalized 

Fourier coefficients for problems with circular boundaries. Boundary type methods, 
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the BEM, MFS and Trefftz method, have received more attention in the recent years. 

In analogy of clinical medicine, the FEM behaves like operation, the BEM is similar 

to diagnosis by feeling the pulse and boundary collocation method behaves like 

acupuncture and moxibustion (Chen and Lee, 2007). 

 

For the Helmholtz equations, it is well-known that the complex-valued BEM can 

determine the eigensolutions by using direct searching scheme (De Mey, 1976). 

Nevertheless, complex-valued computation is time consuming and not simple. A 

simplified method using only the real-part or imaginary-part kernel was also 

presented by De Mey (1977). Although De Mey found the zeros for real-part 

determinant, the spurious solutions were discovered if only a real-part formulation 

was employed. Spurious and fictitious frequencies occur and stem from 

non-uniqueness solution problems. They appear in different aspects on computational 

mechanics. For example, hourglass modes in the FEM using the reduced integration 

occur due to the rank deficiency (Winkler and Davies, 1984). Also, loss of 

divergence-free constraint for the incompressible elasticity results in spurious modes. 

In the other aspect of numerical solution for the differential equation using the FDM, 

the spurious eigenvalue also appears due to discretization (Greenberg, 1998; Fujiwara, 

2007; Zhao, 2007). If the incomplete set is adopted in the solution representation such 

as the real-part BEM (Kuo et al., 2000) or MRM (Chen and Wong, 1997; Chen and 

Wong, 1998; Yeih et al., 1998; Yeih et al., 1999(a)(b); Chen et al., 2003(a)), spurious 

eigensolutions occur in solving eigenproblems with simply-connected domain. Even 

though the complex-valued kernel is adopted in the BEM, the spurious eigensolution 

also occurs for multiply-connected problems (Chen et al., 2003(b)) as well as the 

appearance of fictitious frequency for exterior acoustics (Chen et al., 2006(a)). 

Spurious solutions and fictitious frequencies in the integral formulation belong to 

spectral pollution since it cannot be suppressed by refining the mesh. The origin of 

spurious modes arises from an improper approximation of null space of the integral 

operator (Schroeder, 1994). Based on successful experiences, how spurious 

eigenvalues in 3-D concentric sphere occur is one of our concerns in this thesis. We 

do not only consider 3-D eigenproblems using BIEM but also focus on finding a 
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meshless method free of spurious eigenvalue.  

In recent years, meshless methods started to capture the interest of the researchers in 

the community of computational mechanics because these methods are mesh free and 

only boundary nodes are necessary (Young et al., 2005; Chen et al., 2006(b); Atluri et 

al., 1999; Atluri and Shen, 2002). Among meshless methods, the Trefftz method is a 

boundary-type solution procedure using only the T-complete functions which satisfy 

the governing equation (Li et al., 2008). Since Trefftz presented the Trefftz method for 

solving boundary value problems in 1926 (Trefftz, 1926), various Trefftz methods 

such as direct formulations and indirect formulations (Kita and Kamiya, 1995) have 

been developed. The key issue in the use of the indirect Trefftz method is the 

definition of T-complete function set, which ensures the convergence of the 

subsequent field variable expansions towards the analytical solutions. Many 

applications to the Laplace equation (Karageorghis and Fairweather, 1999), the 

Helmholtz equation (Fairweather and Karageorghis, 1998), the Navier equation (Jin et 

al., 1990 and 1993) and the biharmonic equation (Jirousek and Wroblewski, 1996) 

were done. Readers can consult with Li et al.’s book (Li et al., 2008). However, all the 

applications seemed to be limited on simply-connected domains. The concept of 

multipole method to solve exterior problems was firstly devised by Zaviska  (1913) 

and used for the interaction of waves with arrays of circular cylinders by Linton and 

Evans (1990). Recently, Martin (2006) reviewed several methods to solve problems of 

the multiple scattering in acoustics, electromagnetism, seismology and 

hydrodynamics. However, the interior eigenproblems were not mentioned therein. 

Extension to interior multiply-connected problems by using the multipole Trefftz 

method is also our concern. 

 
1.2 Organization of the thesis 
 
In this thesis, the multipole Trefftz method and the null-field integral equation are 

employed to deal with 2-D and 3-D eigenproblems, respectively. The null-field 

integral equation in conjunction with degenerate kernels and spherical harmonics are 

utilized to solve the eigenproblem of a concentric sphere. The multipole Trefftz 
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method is used to deal with eigenproblems with a multiply-connected domain. The 

organization of each chapter is summarized below. 

In the chapter 2, we derive the unified formulation of the null-field integral equation 

approach for 3-D eigenproblems. By expanding the fundamental solution into  

degenerate kernels and expressing the boundary density in terms of the spherical 

harmonics, all boundary integrals can be analytically determined. By using the 

updating terms and updating document of singular value decomposition (SVD) 

technique, true and spurious eigenvalues can be extracted out, respectively. 

In the chapter 3, we employ the addition theorem to expand the Bessel (J) and Hankel 

(H) functions (Graf, 1893) in the solution representation for matching the boundary 

conditions in an analytical way. The so-called multipole Trefftz method is analytical 

and effective in solving problems with the multiply-connected domain. By 

introducing the addition theorem, the collocation technique is not required to 

construct the linear algebraic system. The eigenvalues can be found by employing the 

direct searching technique. Solving eigenproblems by using this method is free of 

pollution of spurious eigenvalues. Finally, we draw out some conclusions item by 

item and reveal some further topics in the chapter 4.
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Figure 1-1 A brief history of the BEM 
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Figure 1-2 Bump contour 

 
  

 
 
 
 
 
 

 
 

 
Figure 1-3 Limiting process 
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Figure 1-4 Comparison for convergence rate (Hsiao, 2005)
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Chapter 2 Eigenproblems with spherical boundaries by
using the BIEM

Summary

In this chapter, the null-field integral equation method is employed to study the

occurring mechanism of spurious eigenvalues for a concentric sphere. By expanding the

fundamental solution into degenerate kernels and expressing the boundary density in

terms of spherical harmonics, all boundary integrals can be analytically determined. It is

noted that our null-field integral formulation can locate the collocation point on the real

boundary thanks to the degenerate kernel. In addition, the spurious eigenvalues are

parasitized in the formulations while true eigensolutions are dependent on the boundary

condition such as the Dirichlet or Neumann problem. By using the updating terms and

updating document of the SVD technique, true and spurious eigenvalues can be

extracted out, respectively. Besides, true and spurious boundary eigenvectors are

obtained in the right and left unitary vectors in the SVD structure of the influence

matrices. This finding agrees with that of the 2-D cases (Chen et al., 2009).

2.1 Introduction

The application of eigenanalysis is gradually increasing for vibration and acoustics. The

demand for eigenanalysis calls for an efficient and reliable method of computation for

eigenvalues and eigenmodes. Over the past three decades, several boundary element

formulations have been employed to solve the eigenproblems (Ali, Rajakumar and

Yunus, 1995), e.g., determinant searching method, internal cell method, dual reciprocity

method, particular integral method and multiple reciprocity method. In this chapter, we

will focus on the determinant searching method with emphasis on spurious eigenvalues

when using the BIEM for 3-D problems with an inner hole. Spurious and fictitious

solutions stem from non-uniqueness solution problems which appear in different aspects

in computational mechanics. First of all, hourglass modes in the finite element method

(FEM) using the reduced integration occur due to rank deficiency (Winkler and Davies,

1984). Also, loss of divergence-free constraint for the incompressible elasticity results

in spurious modes. On the other hand, while solving the differential equation by using
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the finite difference method (FDM), the spurious eigenvalue also appears due to

discretization (Greenberg, 1998; Fujiwara, 2007; Zhao, 2007). In the real-part BEM

(Kuo et al., 2000) or the MRM formulation (Chen and Wong, 1997 and 1998; Yeih et la.,

1998; Yeih, Chen and Chang, 1999; Yeih et al.(a)(b), 1999; Chen and Kuo, 2003),

spurious eigensolutions occur in solving eigenproblems. Even though the

complex-valued kernel is adopted, the spurious eigensolution also occurs for the

multiply-connected problem (Chen et al., 2001; Chen, Liu and Hong, 2003) as well as

the appearance of fictitious frequency for the exterior acoustics (Chen et al., 2006(a)).

Spurious eigenvalues in the method of fundamental solutions (MFS) for 3-D problems

were also studied by Tsai et al. (2006). In this chapter, a simple case of 3-D concentric

sphere will be demonstrated to see how spurious eigensolutions occur and how they are

suppressed by using SVD.

In the recent years, the SVD technique has been applied to solve problems of

fictitious-frequency (Chen et al., 2006(a)) and continuum mechanics (Chen et al., 2002).

Two ideas, namely updating term and updating document (Chen et al., 2006(a)), were

successfully applied to extract the true and spurious solutions, respectively. In this

chapter, the three-dimensional eigenproblem of a concentric sphere is studied in both

numerical and analytical ways. Owing to the introduction of degenerate kernel, the

collocation point can be located exactly on the real boundary. Besides, true and spurious

equations can be found by using the null-field integral equation in conjunction with

degenerate kernels and spherical harmonics. Surface distributions of the inner and outer

boundaries can be expanded in terms of spherical harmonics. Since a spurious

eigenvalue is embedded in the numerical method and has no physical meaning, the

remedies, SVD updating term and SVD updating document, are used to extract or filter

out true and spurious eigenvalues, respectively. Finally, an example with various

boundary conditions is utilized to validate the present approach by using singular and

hypersingular formulations.

2.2 Null-field integral equation formulation

2.2.1 Problem statements

The governing equation for the eigenproblem of a concentric sphere is the Helmholtz

equation as follows:
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Dxxuk  ,0)()( 22 , (2-1)

where 2 , k and D are the Laplacian operator, the wave number and the domain of

interest, respectively. The concentric sphere is depicted in Fig. 2-1. The inner and outer

radii are a and b, respectively.

2.2.2 Dual null-field integral formulation — the conventional version

The dual boundary integral formulation (Zhao, 2007) for the domain point is shown

below:
( )

4 ( ) ( , ) ( ) ( ) ( , ) ( ), ,
B B

s

u s
u x T s x u s d B s U s x d B s x D

n
 

  
  (2-2)

( ) ( )
4 ( , ) ( ) ( ) ( , ) ( ) , ,
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x s

u x u s
M s x u s d B s L s x d B s x D

n n
 

  
   (2-3)

where x and s are the field and source points, respectively, B is the boundary, nx and ns

denote the outward normal vectors at the field point and the source point, respectively,

and the kernel function U(s,x) is the fundamental solution which satisfies
2 2( ) ( , ) 4 ( )k U s x x s    . (2-4)

where  is the Dirac-delta function. The other kernel functions can be obtained as

sn
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


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),(
),( , (2-5)
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


),(
),( , (2-6)

xs nn
xsU
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




),(
),(

2

. (2-7)

If the collocation point x is on the boundary, the dual boundary integral equations for the

boundary point can be obtained as follows:

( )
2 ( ) . . . ( , ) ( ) ( ) . . . ( , ) ( ), ,

B B
s

u s
u x C P V T s x u s dB s R P V U s x dB s x B

n
 

  
  (2-8)

( ) ( )
2 . . . ( , ) ( ) ( ) . . . ( , ) ( ), ,

B B
x s

u x u s
H P V M s x u s dB s C P V L s x dB s x B

n n

 

  
   (2-9)

where R.P.V., C.P.V. and H.P.V. are the Riemann principal value, the Cauchy principal

value and the Hadamard (or called Mangler) principal value, respectively. By

collocating x outside the domain, we obtain the null-field integral equation as shown

below:
( )

0 ( , ) ( ) ( ) ( , ) ( ), ,c

B B
s

u s
T s x u s dB s U s x dB s x D

n


  
  (2-10)
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( )
0 ( , ) ( ) ( ) ( , ) ( ), ,c

B B
s

u s
M s x u s dB s L s x dB s x D

n


  
  (2-11)

where cD denotes the complementary domain.

2.2.3 Dual null-field integral formulation — the present version

By introducing the degenerate kernels, the collocation points can be located on the real

boundary without facing the principal value. Therefore, the representations of integral

equations including the boundary point can be written as
( )

4 ( ) ( , ) ( ) ( ) ( , ) ( ), ,I I

B B
s

u s
u x T s x u s d B s U s x d B s x D B

n



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  (2-12)

( ) ( )
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B B
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u x u s
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n n
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and
( )

0 ( , ) ( ) ( ) ( , ) ( ), ,E E c
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n
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( )
0 ( , ) ( ) ( ) ( , ) ( ), ,E E c

B B
s

u s
M s x u s dB s L s x dB s x D B

n


   
  (2-15)

once the kernel is expressed in terms of an appropriate degenerate form. It is found that

the collocation point is categorized to three positions, domain (Eqs.(2-2)-(2-3)),

boundary (Eqs.(2-8)-(2-9)) and complementary domain (Eqs.(2-10)-(2-11)) in the

conventional formulation. After using the degenerate kernel for the null-field BIEM,

both Eqs.(2-12)-(2-13) and Eqs.(2-14)-(2-15) can contain the boundary point. The

resulted linear algebraic systems derived from Eqs. (2-12)-(2-13) and Eqs. (2-14)-(2-15)

are the same (Chen et al., 2006(a)), i.e. we can move to the boundary either from the

domain point or null-field point.

2.2.4 Expansions of the fundamental solution and boundary density

The fundamental solution as previously mentioned is

( , ) ,
ikre

U s x
r



 (2-16)

where xsr  is the distance between the source point and the field point and i is

the imaginary number with 12 i . To fully utilize the property of spherical geometry,

the mathematical tools, degenerate (separable or finite rank) kernel and spherical

harmonics, are utilized for the analytical calculation of boundary integrals.
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2.2.4.1 Degenerate (separable) kernel for fundamental solutions

In the spherical coordinate, the field point ( x ) and source point ( s ) can be expressed

as ( , , )x  and ( , , )s  in the spherical coordinate, respectively. By employing

the addition theorem for separating the source point and field point, the kernel functions,

),( xsU , ),( xsT , ),( xsL and ),( xsM , are expanded in terms of degenerate kernel as

shown below:
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where the superscripts “I”and “E”denote the interior and exterior regions, nj and
(2)
nh are the nth order spherical Bessel function of the first kind and the nth order

spherical Hankel function of the second kind, respectively, m
nP is the associated
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Lengendre polynomial and m is the Neumann factor,









.,,2,1,2

,0,1
m

m
m (2-21)

It is noted that U and M kernels in Eqs. (2-17) and (2-20) contain the equal sign of

  while T and L kernels do not include the equal sign due to discontinuity in Eqs.

(2-18) and (2-19). Besides, the potential across the boundary is also addressed here. For

2-D Laplace and Helmholtz equations, the continuous and jump behavior across the

boundary were studied respectively in (Chen and Chen, 2007) and (Chen et al., 2007).

After using the Wronskian property of mj  and my , we have
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The jump behavior is well captured by
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Similarly, the potentials due to IL and EL kernels are discontinuous across the

boundary.

2.2.4.2 Spherical harmonics for boundary densities

We used the spherical harmonics to approximate the boundary density and its normal

derivative as expressed by
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where vwA and vwB are the unknown coefficients.

2.3 Proof of the existence of spurious eigensolutions for a concentric

sphere

In order to fully utilize the geometry of spherical boundary, the potential u and its

normal derivative t can be approximated by employing the spherical harmonic

functions. Therefore, the following expressions can be obtained
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where i
vwA and i

vwB are the spherical coefficients on iB ( 1,2i  ). When the field

point is located on the inner boundary 1B , substitution of Eqs. (2-26)-(2-29) into the

null-field integral equations yields
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( )!

cos ( ) cos cos( ) cos( ) sin( ) .

n v
m

n n n
n m v w

m w
n v

n m
j k h kR P

n m

m w P P R d d



 

       

 

   










(2-30)

When the field point is located on the outer boundary 2B , we have

       

2
2 1 (2)

1
0 0 0 00 0

2
1

1 (2)
1

0 0 0 00

( )!
0 (2 1) ( ) ( ) (cos( ))

( )!

cos ( ) cos cos( ) cos( ) sin( )

( )!
(2 1) ( ) ( ) (

( )!

n v
m

m vw n n n
n m v w

m w
n v

n v
m

m vw n n n
n m v w

n m
ik A n j kR h k P

n m

m w P P R d d

n m
ik B n j kR h k P

n m





  

       

 

 

   

 

   

   





 







       

       

2

0

2
1

2
2 2 (2)

2
0 0 0 00 0

2
2

2

cos( ))

cos ( ) cos cos( ) cos( ) sin( )

( )!
(2 1) ( ) ( ) (cos( ))

( )!

cos ( ) cos cos( ) cos( ) sin( )

(2 1

m w
n v

n v
m

m vw n n n
n m v w

m w
n v

m vw

m w P P R d d

n m
ik A n j kR h k P

n m

m w P P R d d

ik B n







       

  

       



 

   





   




 





       

2
(2)

2
0 0 0 00 0

2
2

( )!
) ( ) ( ) (cos( ))

( )!

cos ( ) cos cos( ) cos( ) sin( ) .

n v
m

n n n
n m v w

m w
n v

n m
j kR h k P

n m

m w P P R d d



 

       

 

   










(2-31)

For the Dirichlet problem, Eqs. (2-30) and (2-31) can be reduced to
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2 1 (2)

0 0

2 2 (2)

0 0

0 ( ) ( ) (cos( ))cos( )

( ) ( ) (cos( ))cos( ),

n
m

nm n n n
n m

n
m

nm n n n
n m

a kB j ka h ka P m

b kB j ka h kb P m

 

 



 



 








(2-32)

2 1 (2)

0 0

2 2 (2)

0 0

0 ( ) ( ) (cos( ))cos( )

( ) ( ) (cos( ))cos( ).

n
m

nm n n n
n m

n
m

nm n n n
n m

a kB j ka h kb P m

b kB j kb h kb P m

 

 



 



 








(2-33)

According to Eqs. (2-32) and (2-33), the spherical coefficients 1
nmB and 2

nmB satisfy

the relations:
2 (2)

2 1
2 (2)

( ) ( )
,

( ) ( )
n n

nm nm
n n

a j ka h ka
B B

b j ka h kb
 (2-34)

2 (2)
2 1

2 (2)

( ) ( )
.

( ) ( )
n n

nm nm
n n

a j ka h kb
B B

b j kb h kb
 (2-35)

To seek the nontrivial data for the spherical coefficients 1
nmB and 2

nmB , we obtain the

eigenequation:
(2) (2) (2)( ) ( ) ( ) ( ) ( ) ( ) 0n n n n n nj ka h kb j kb h ka j ka h kb    (2-36)

For the Neumann problem, Eqs. (2-30) and (2-31) are reduced to
2 1 (2) 2 2 (2)

0 0 0 0
0 ( ) ( ) ( ) ( ),

n n

nm n n nm n n
n m n m

a A j ka h ka b A j ka h kb
 

   
    (2-37)

2 1 (2) 2 2 (2)

0 0 0 0
0 ( ) ( ) ( ) ( ).

n n

nm n n nm n n
n m n m

a A j ka h kb b A j kb h kb
 

   
    (2-38)

According to Eqs. (2-37) and (2-38), the spherical coefficients 1
nmA and 2

nmA satisfy

the relations:
2 (2)

2 1
2 (2)

( ) ( )
,

( ) ( )
n n

nm nm
n n

a j ka h ka
A A

b j ka h kb





(2-39)

2 (2)
2 1

2 (2)

( ) ( )
.

( ) ( )
n n

nm nm
n n

a j ka h kb
A A

b j kb h kb





(2-40)

To seek the nontrivial data for the spherical coefficients 1
nmA and 2

nmA , we obtain the

eigenequation:
(2) (2) (2)( ) ( ) ( ) ( ) ( ) ( ) 0.n n n n n nj ka h kb j kb h ka j ka h kb       (2-41)

According to Eqs. (2-36) and (2-41), the spurious eigenequation of the singular

formulation is ( ) 0nj ka  , which is also the true eigenequation of the sphere of radius a

with the fixed boundary condition. The latter parts in the bracket of Eqs. (2-36) and

(2-41) are the true eigenequations,
(2) (2)( ) ( ) ( ) ( ) 0n n n nj kb h ka j ka h kb  for the Dirichlet problem (2-42)
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(2) (2)( ) ( ) ( ) ( ) 0n n n nj kb h ka j ka h kb     for the Neumann problem (2-43)

The spurious and true eigenequations of the concentric sphere subject to various

boundary conditions are listed in Table 2-1. It is interesting to find that spurious

eigenvalue of UT singular method results in trivial outer boundary modes for the

fixed-fixed case. Besides, spurious eigenvalue of LM hypersingular method results in

the trivial outer boundary modes of free-free case.

2.4 Proof the existence for the spurious eigensolutions of the concentric

sphere

In order to prove that the spurious eigensolutions is the true eigenvalue of the associated

problem bounded by inner boundary, we first derive the true eigenvalue of the

eigenproblem bounded by the inner boundary. Now, we consider the sphere with a

radius a in the continuous system. By using the null-field integral equation and

collocating the point on the boundary, we obtain the true eigenequation
( ) 0nj ka  , (2-44)

and the corresponding true eigenmode is nmB , where 0nmB  . By collocating

the point in the complementary domain ( c cx D ) as shown in Fig. 2-2, the null-field

equation yields

1
0 ( , ) ( ) ( ),E c c c

B U s x t s dB s x D  . (2-45)

We can obtain the null-field response for cx as shown below
1 ( 2 )( ) ( ) (cos( )) cos( ) 0,m
nm n n nB j ka h ka P m   (2-46)

where n and m belong to nature number and k satisfies Eq. (2-44). Secondly, we

consider the spherical case with the fixed-fixed boundary condition as shown in Fig. 2-3.

By selecting a nontrivial inner boundary mode for the boundary mode and trivial outer

boundary mode, we have ( ) 0nj ka  and
1

2 0
nmnm

nm

BB
B

   
   
  

(2-47)

This indicates that spurious eigenevalues of ( ) 0nj ka  and the nontrivial boundary

mode of Eq. (2-47) satisfy Eqs. (2-32) and (2-33) due to ( , ) ( , )I EU s a U x a  .

Therefore, spurious eigenvalues in conjunction with the trivial outer boundary mode

happen to be the true eigenvalue of the domain bounded by the inner boundary.

Similarly, the concentric sphere subjected to the Neumann boundary condition by using
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the hypersingular formulation results in the trivial outer boundary mode.

2.5 SVD technique for extracting out true and spurious eigenvalues by

using updating terms and updating documents

2.5.1 Method of extracting the true eigensolutions (updating terms)

SVD technique is an important tool in the linear algebra. The matrix A with a

dimension M by N can be decomposed into a product of the unitary matrix  (M by

M), the matrix  (M by N) with positive or zero elements, and the unitary matrix

 (N by N)

    ,
H

M N M M M N N N   
A    (2-48)

where the superscript “H”is the Hermitian operator,  and  are both unitary

matrix that their column vectors which satisfy
,H

i j ij   
 

(2-49)

,H
i j ij   
 

(2-50)

in which  H

M M
I   and   N N




I   . For the eigenproblem, we can

obtain a nontrivial solution for the homogeneous system from a column vector  i of

 when the corresponding singular value ( i) is zero. For the direct BEM, we have

Singular formulation (UT method)

  0 ,E Eu t       T U (2-51)

Hypersingular formulation (LM method)

  0 ,E Eu t       M L (2-52)

where u and t are the boundary densities. For the Dirichlet problem, Eq. (2-51)

and (2-52) can be combined to have

 0 .
E

E
t

 
 

 

U
L

(2-53)

By using the SVD technique, the two submatrices in Eqs. (2-51) and (2-52) can be

decomposed into
( ) ( ) ( ) HE U U U          U    or   ( ) ( ) ( ) ,

HE U U U
j j j

j

   U    (2-54)

( ) ( ) ( ) HE L L L          L    or   ( ) ( ) ( ) HE L L L
j j j

j

   L    . (2-55)

where the superscripts, (U) and (L), denote the corresponding matrices. For the linear
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algebraic system, t is a column vector of  i in the matrix  corresponding

to the zero singular value ( 0i ). By setting t as a vector of  i in the right

unitary matrix for the true eigenvalue tk , Eqs. (2-51) and (2-52) reduces to

  ( ) 0 ,E
t ik   U  (2-56)

  ( ) 0 .E
t ik   L  (2-57)

According to Eqs. (2-54) and (2-55), we have

  ( ) ( ) 0 ,U U
j j   (2-58)

  ( ) ( ) 0 .L L
j j   (2-59)

We can easily extract out the true eigenvalues, ( ) ( ) 0U L
j j   , since there exists the

same eigensolusion (  it  ) for the Dirichlet problem by using Eqs. (2-53) or (2-56)

and (2-58). In a similar way, Eqs. (2-51) and (2-52) can be combined to have

 ( )
0 ,

( )

E
t

E
t

k
u

k

 
 

 

T
M

(2-60)

for the Neumann problem. We can easily extract out the true eigenvalues for the

Neumann problem with respect to the jth zero singular values of ( ) ( ) 0T M
j j   .

2.5.2 Method of filtering out the spurious eigensolutions (updating

documents)

By employing the LM formulation in the direct BEM, we have

  .E Eu t p       M L (2-61)

Since the spurious eigenvalue sk is embedded in both the Dirichlet and Neumann

problems, we have

 0 ,H
ip  (2-62)

where i satisfies

 ( ) 0
HE

s ik   L  for the Dirichlet problem, (2-63)

 ( ) 0
HE

s ik   M  for the Neumann problem, (2-64)

according to the Fredholm alternative theorem. By substituting Eq. (2-61) into Eqs.

(2-62), (2-63) and (2-64), we have

  ( ) 0
HH E

s iu k   M  for the Dirichlet problem, (2-65)

  ( ) 0
HH E

s it k   L  for the Neumann problem. (2-66)

Since u and t can be arbitrary boundary excitation for the Dirchlet problem and
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Neumann problem, respectively, this yields

 ( ) 0
HE

s ik   M  for the Dirichelt problem (2-67)

 ( ) 0
HE

s ik   L  for the Neumann problem (2-68)

By combining Eq. (2-63) with Eq. (2-67) for the Dirichlet problem, we have

 0

HE

iHE

     
     

L

M
 or  0 .H E E

i
        L M (2-69)

It indicates that two matrices have the same spurious boundary mode i
corresponding to the ith zero singular values. By using the SVD technique, two matrices

in Eq. (2-69) ca be decomposed into
( ) ( ) ( )H HE L L L          L    or   ( ) ( ) ( ) ,

HE L L L
j j j

j

   L    (2-70)

( ) ( ) ( )H HE M M M          M    or   ( ) ( ) ( ) .
HE M M M

j j j
j

   M    (2-71)

By substituting Eqs. (2-70) and (2-71) into Eqs. (2-65) and (2-66), we have

  ( ) ( ) 0 ,L L
j j   (2-72)

  ( ) ( ) 0 .M M
j j   (2-73)

We can easily extract out the spurious eigenvalues since there exists the same spurious

boundary mode i corresponding the ith zero singular value, ( ) ( ) 0L M
i i   .

Similarly, the spurious eigenvalue parasitized in the UT formulation can be obtained by

using SVD updating documents. To summarize the SVD structure for the four influence

matrices, Table 2-2 (a) and (b) show that the spurious and true boundary modes are

imbedded in the left and right unitary vectors, respectively. Besides, the nontrivial

interior boundary mode and trivial outer boundary mode are also given in Table 2-2 (b).

2.6 Illustrative examples and discussions

Case 1: A concentric sphere subject to the Dirichlet boundary condition ( 1 2u = u = 0 )
A concentric case with radii a and b ( 0.5a  and 1.0b  ) is shown in Fig. 2-1.

The analytical solution can be obtained by using the null-filed integral formulation,

degenerate kernel and spherical harmonics. The common drop locations in Figs. 2-4(a)

and 2-4(b) indicate the true eigenvalues. We employ the SVD updating term
U
L




to

extract the true eigenvalues for the Dirichlet problem as shown in Fig. 2-4(c). It’s found 

that all the spurious eigenvalues are filtered out.
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Case 2: A concentric sphere subject to the Neumann boundary condition ( 1 2t = t = 0 )

Similarly, the common drop locations in Figs. 2-4(d) and 2-4(e) indicate the true

eigenvalues. Extraction of true eigenvalues by using the SVD updating term
T
M
 
 
 

is

shown in Fig. 2-4(f). The common drop locations in Figs. 2-5(a) and 2-5(b) indicate the

spurious eigenvalues for the singular formulation. Similarly, the same drop locations in

Figs. 2-5(d) and 2-5(e) indicate the spurious eigenvalues for the hypersingular

formulation. The spurious eigenequations for the singular and hypersigular formulation

are

  0,nj ka  (2-74)

  0,nj ka  (2-75)

respectively. It’s found that spurious eigenvalues depend on the inner boundary instead

of the outer boundary. Finally, we employed the SVD updating document to filter out

the spurious eigenvalues. The spurious eigenvalues for singular formulation and

hypersingular formulation are extracted as shown in Figs. 2-5(c) and 2-5(f),

respectively.

2.7 Conclusions

Spurious eigenvalues for a concentric sphere were studied analytically and numerically.

One example was demonstrated to see how the spurious eigenvalues occur in the

concentric sphere. Spurious eigenvalues depend on the inner boundary and are

independent of the outer boundary. The trivial outer boundary densities were examined

in case of the spurious eigenvalue which is found to be the true eigenvalue for the

domain bounded by the inner boundary. The contribution of the work is to show the

existence of spurious eigenvalue for a concentric sphere in an analytical manner by

using the degenerate kernels and the spherical harmonics.
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Table 2-1 Eigensolutions and boundary modes for the concentric sphere subject to different boundary conditions

BC

Solution

Fixed-fixed
021 uu

Free-fixed
021 ut

Fixed-free
021 tu

Free-free
021 tt

True
eigenequation

( ) ( )

( ) ( ) 0
n n

n n

j ka y kb

j kb y ka 

( ) ( )

( ) ( ) 0
n n

n n

j ka y kb

j kb y ka



 

( ) ( )

( ) ( ) 0
n n

n n

j ka y kb

j kb y ka



 

( ) ( )

( ) ( ) 0
n n

n n

j ka y kb

j kb y ka

 

  

Spurious
eigenequation

( ) 0nj ka  ( ) 0nj ka  ( ) 0nj ka  ( ) 0nj ka 

Inner boundary
mode

0nmB  0nmA  0nmB  0nmA 
UT formulation

Outer boundary
mode

2
2 1

2

( )

( )
n

nm nm
n

a j ka
B B

b j kb


2
2 1

2

( )

( )
n

nm nm
n

a j ka
B A

b j kb




2
2 1

2

( )

( )
n

nm nm
n

a j ka
A B

b j kb




2
2 1

2

( )

( )
n

nm nm
n

a j ka
A A

b j kb






True
eigenequation

( ) ( )

( ) ( ) 0
n n

n n

j ka y kb

j kb y ka 

( ) ( )

( ) ( ) 0
n n

n n

j ka y kb

j kb y ka



 

( ) ( )

( ) ( ) 0
n n

n n

j ka y kb

j kb y ka



 

( ) ( )

( ) ( ) 0
n n

n n

j ka y kb

j kb y ka

 

  

Spurious
eigenequation

( ) 0nj ka  ( ) 0nj ka  ( ) 0nj ka  ( ) 0nj ka 

Inner boundary
mode

0nmB  0nmA  0nmB  0nmA 
LM formulation

Outer boundary
mode

2
2 1

2

( )

( )
n

nm nm
n

a j ka
B B

b j kb


2
2 1

2

( )

( )
n

nm nm
n

a j ka
B A

b j kb




2
2 1

2

( )

( )
n

nm nm
n

a j ka
A B

b j kb




2
2 1

2

( )

( )
n

nm nm
n

a j ka
A A

b j kb






2B

1B

ba



- 25 -

Table 2-2(a) SVD structure of the four influence matrices for the Dirichlet and Neumann problems in the case of true eigenvalue.
Dirichlet problem ( D

T
k k ) Neumann problem ( N

T
k k )

  1

0 H
U D
      

     HT T T      HU U U     1

0 H
T N
      

 

U T U T

L M L M

True eigenvalue

T
k

( D

T
k , N

T
k )

  1

0 H
L D
      

 
   HM M M      HL L L     1

0 H
M N
      

 

where D

T
k and N

T
k devotes the true eigenvalues for the Dirichlet and Neumann problems, respectively.

The same 1
N


The same 1
D

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Table 2-2(b) SVD structure of the four influence matrices by using the UT singular formulation and LM hypersigular formulation in the case of
spurious eigenvalue.

UT singular formulation ( UT

S
k k ) LM hypersingular formulation ( LM

S
k k )

Dirichlet Neumann Dirichlet Neumann


1

1

0

0

HD

UT



           

 
 1

0 HUT T
      

 
   1

0 HLM L
 

 
 

    
1

1

0
0

HN

LM



  
  

  
 

Spurious eigenvalue

S
k

( UT

S
k , LM

S
k )

U T L M
where UT

S
k and LM

S
k devotes the spurious eigenvalues by using UT singular and LM hypersigular formulation, respectively.

The same 1
UT


The same 1
LM

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Figure 2-1 Sketch of a concentric sphere

Figure 2-2 Collocation point on the sphere

boundary from the null-field point

( a  )

Figure 2-3 Collocation point of the concentric

sphere ( a  )
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(a) Determinant versus the wave number by
using the singular formulation for the
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Figure 2-4 True eigenvalues for a concentric sphere by using the SVD updating terms
( 0.5a  and 1.0b  ).

T: True eigenvalue
(): Analytical solution

( ) ( ) ( ) ( ) 0j ka y kb j kb y kan n n n 

T: True eigenvalue
(): Analytical solution

( ) ( ) ( ) ( ) 0j ka y kb j kb y kan n n n    

T: True eigenvalue
(): Analytical solution

( ) ( ) ( ) ( ) 0j ka y kb j kb y kan n n n 

T: True eigenvalue
(): Analytical solution

( ) ( ) ( ) ( ) 0j ka y kb j kb y kan n n n    

T: True eigenvalue
(): Analytical solution

( ) ( ) ( ) ( ) 0j ka y kb j kb y kan n n n 

T: True eigenvalue
(): Analytical solution

( ) ( ) ( ) ( ) 0j ka y kb j kb y kan n n n    

D
et

er
m

in
an

to
ft

he
in

fl
ue

nc
e

m
at

ri
x

fo
rU

ke
rn

el
D

et
er

m
in

an
to

ft
he

in
fl

ue
nc

e
m

at
ri

x
fo

rL
ke

rn
el

D
et

er
m

in
an

to
ft

he
in

fl
ue

nc
e

m
at

ri
x

D
et

er
m

in
an

to
ft

he
in

fl
ue

nc
e

m
at

ri
x

fo
rT

ke
rn

el
D

et
er

m
in

an
to

ft
he

in
fl

ue
nc

e
m

at
ri

x
fo

rM
ke

rn
el

D
et

er
m

in
an

to
ft

he
in

fl
ue

nc
e

m
at

ri
x

The wave number (k) The wave number (k)

The wave number (k) The wave number (k)

The wave number (k) The wave number (k)



- 29 -

Singular formulation

0 2 4 6 8 10

The wave number ( k )

400

410

420

430

440

450

T
he

de
te

rm
en

to
f

th
e

in
fl

ue
nc

e
m

at
ri

ce
fo

r
U

ke
rn

el

S
6.280

(6.283)

S
8.990
(8.987)

Hypersingular formulation

0 2 4 6 8 10

The wave number ( k )

670

680

690

700

710

720

T
he

de
te

rm
en

to
f

th
e

in
fl

ue
nc

e
m

at
ri

ce
fo

r
L

ke
rn

el

S
4.160

(4.163)

S
6.680
(6.684)

S
9.030

(9.028)

(a) Determinant versus the wave number by
using the singular formulation subject to the
Dirichlet condition.

(d) Determinant versus the wave number by
using the hypersingular formulation subject
to the Dirichlet condition.
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(b) Determinant versus the wave number by
using the singular formulation subject to the
Neumann condition.

(e) Determinant versus the wave number by
using the hypersingular formulation subject
to the Neumann condition.
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(c) Extraction of the spurious eigenvalues for
the singular formulation by using the SVD
updating document.

(f) Extraction of the spurious eigenvalues for
the hypersingular formulation by using the
SVD updating document.

Figure 2-5 Extraction of spurious eigenvalues for a concentric sphere by using the SVD updating
documents ( 0.5a  and 1.0b  ).
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Chapter 3 Eigenproblems with a multiply-connected
domain by using the multipole Trefftz
method

Summary

In this chapter, 2D eigenproblems with the multiply-connected domain are studied by

using the multipole Trefftz method. We extend the conventional Trefftz method to the

multipole Trefftz method by introducing the multipole expansion. The addition theorem

is employed to expand the Trefftz bases to the same polar coordinates centered at one

circle, where boundary conditions are specified. Owing to the introduction of the

addition theorem, collocation technique isn’t required to construct the linear algebraic 

system. The eigenvalues can be found by employing the SVD. To deal with the

eigenproblems by using the present method is free of pollution of spurious eigenvalues.

Both the eigenvalues and eigenmodes are compared well with the analytical solutions

and those of BEM for illustrative examples.

3.1 Introduction

Eigenproblems become more and more important issues in new product design process.

Many scholars have studied the sound radiation behavior and tried to find the

connection between the sound radiation and vibration. They aimed to find an approach

to decouple the sound radiation. Many well-developed numerical methods such as the

finite element method (FEM), finite difference method (FDM) and boundary element

method (BEM) can be adopted. Especially, the BEM has become popular in recent years

due to its advantage of the reduction of dimensionality. However, spurious and fictitious

frequencies occur and stem from non-uniqueness solution problems. They appear in

different aspects on computational mechanics. For example, hourglass modes in the

FEM using the reduced integration occur due to the rank deficiency (Winkler and

Davies, 1984). Also, loss of divergence-free constraint for the incompressible elasticity

also results in spurious modes. In the other aspect of numerical solution for the

differential equation using the FDM, the spurious eigenvalue also appears due to

discretization (Greenberg, 1998; Fujiwara, 1998; Zhao, 2007). If the incomplete set is

adopted in the solution representation such as the real-part BEM (Kuo et al., 2000) or
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the multiple reciprocity method (MRM; Chen and Wong, 1997; Chen and Wong, 1998;

Yeih et al., 1998; Yeih et al., 1999(a)(b); Chen et al., 2003(a)), spurious eigensolutions

occur in solving eigenproblems with simply-connected domain. Even though the

complex-valued kernel is adopted in BEM, the spurious eigensolution also occurs for

multiply-connected problems (Chen et al., 2003(b)) as well as the appearance of

fictitious frequency for exterior acoustics (Chen et al., 2006(a)). Spurious solutions and

fictitious frequencies in the integral formulation belong to spectral pollution since it

cannot be suppressed by refining the mesh. The origin of spurious modes arises from an

improper approximation of null space of the integral operator (Schroeder, 1994). This

chapter focuses on finding a meshless method free of spurious eigenvalue.

In the recent years, the meshless methods started to capture the interest of the

researchers in the community of computational mechanics because these methods are

mesh free and only boundary nodes are necessary (Young et al., 2005; Chen et al.,

2006(b); Atluri et. al., 1999; Atluri and Shen, 2002). Among meshless methods, the

Trefftz method is a boundary-type solution procedure using only the T-complete

functions satisfying the governing equation (Li et al., 2008). Since Trefftz presented the

Trefftz method for solving boundary value problems in 1926 (Trefftz, 1926), various

Trefftz methods such as direct formulations and indirect formulations (Kita and Kamiya,

1995) have been developed. The key issue in the use of the indirect Trefftz method is

the definition of T-complete function set, which ensures the convergence of the

subsequent field variable expansions towards the analytical solutions. Many

applications to the Laplace equation (Karageorghis and Fairweather, 1999), the

Helmholtz equation (Fairweather and Karageorghis, 1998), the Navier equation (Jin et

al., 1990 and 1993) and the biharmonic equation (Jirousek and Wroblewski, 1996) were

done. Readers can consult with the Li et al.’s book (Li et al., 2008). However, all the

applications seemed to be limited on simply-connected domains. The concept of

multipole method to solve exterior problems was firstly devised by Zaviska (1913) and

used for the interaction of waves with arrays of circular cylinders by Linton and Evans

(1990). Recently, Martin (2006) reviewed several methods to solve problems of the

multiple scattering in acoustics, electromagnetism, seismology and hydrodynamics.

However, the interior eigenproblems were not mentioned therein. Extension to interior

multiply-connected problems by using the multipole Trefftz method is also our concern
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of this chapter.

This chapter employs the addition theorem to expand the Bessel (J) and Hankel (H)

functions (Graf, 1893) in the solution representation for matching the boundary

conditions in an analytical way. The so-called multipole Trefftz technique is analytical

and effective in solving problems with the multiply-connected domain. Numerical

experiments were preformed to verify the present method. For the multiply-connected

problem, the mode shapes were plotted by using the multipole Trefftz method and were

compared with the other available results, e.g. exact solutions and BEM data (Chen et

al., 2001; Chen et la., 2004).

3.2 Multipole Trefftz method for multiply-connected problems with

circular boundaries

3.2.1 Problem statement

The governing equation for the eigenproblem is the Helmholtz equation as follows:

 2 2 ( ) 0, ,k u D   x x (3-1)

where 2 , k and D are the Laplacian operator, the wave number and the domain of

interest, respectively. The multiply-connected domain with circular boundaries is

depicted in Fig. 3-1. The radius of the jth circle and the position vector of its center are

jR and jO , respectively.

3.2.2 Conventional Trefftz method for the simply-connected domain

In the Trefftz method, the field solution ( )u x for a simply-connected domain is

superimposed by the T-complete functions, ( )m x , as follows:

( ) ,
M

m m
m M

u


x x (3-2)

where m x is the Trefftz base with respect to the origin O,  2 1M  is the number

of complete functions and m is the mth unknown coefficient which can be

determined by matching the boundary conditions. This chapter focuses on problems

with a circular boundary, so the polar coordinates are utilized and the field point x is

expressed as ( , )x . For the circular boundary with a radius R , the complete
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functions for 2D Helmholtz problems are shown below:

 
 (1)

( , ) , , interior case, = 0, 1, 2, ,M,

( , ) , , exterior case, = 0, 1, 2, , M,

I im
m m

m E im
m m

J k e R m

H k e R m

    
   








   


   
(3-3)

where the superscripts of “I” and “E” denote the interior and exterior domains, 

respectively.

3.2.3 Graf’s addition theorem

According to the Graf’s addition theorem (Graf, 1893) for   pim
m pJ k e  and

 (1) pim
m pH k e  , we have

     

   

( )

( ) ,

p pq q

q pq

im i m n in
m p m n pq n q

n

i m n in
m n q n pq

n

J k e J kb e J k e

J k e J kb e

  

 

 








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


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
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


(3-4)
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   

( ) (1)

(1)

( )(1)

,
,

,

pq q

p

pq q

i m n in
m n pq n q pq q

im n
m p

i m n in
m n pq n q pq q

n

J kb e H k e b
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H kb e J k e b












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





 
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 

 


 
(3-5)

where  ,pq pqb  is the position vector (the polar coordinates) of the qth center with

respect to the pth center as shown in Fig. 3-2.

3.2.4 Multipole Trefftz method

Since the multiply-connected domain is considered, both the interior and exterior

complete functions are required. The field solution can be represented by

   00 (1)
0 0 1 1 0

1

( ; , , , , , , ) ,j
N

imim j
N N m m m m j

m j m

u J k e H k e         
 

  

  x (3-6)

where j
m is the unknown coefficient of the mth complete function for jO and the

position vector of the field point x with respect to jO is noted  ,j j  ,

0,1, 2, ,j N  . as shown in Fig. 3-3. In order to enforce the boundary condition on B0

 0 0R , we must express each term as a function of  0 0,R  for the solution

representation. By translating  (1) nim
m nH k e  in terms of functions of  0 0,  using

the addition theorem of Eq. (3-5), we have
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where j, m and n in the three summation symbols denote indexes of the number of the

circular holes, number of the Trefftz bases and number of terms in the addition theorem,

respectively. For the Dirichlet problem, the boundary condition on B0 is 0 0u  . By

comparing the coefficient of 0ime  , we have

      0( )0 (1)
0 0 0

1

0, 0, 1, 2, .j
N

i n mj
m m m n n m j

j n

J kR H kR J kb e m 





 

      (3-8)

If we consider to enforce the boundary condition on Bl  l lR ,   0
0

im
mJ k e  and

 (1) jim
m jH k e  , 1, 2, , andj N j l  , in Eq. (3-6) are required to translate into

 ,l l system using the addition theorem. The field solution of Eq. (3-6) yields
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(3-9)

where
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By satisfying the boundary condition 0lu  and comparing with coefficients, we have
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(3-11)

Equations (3-8) and (3-11) form a system of equations of simultaneous linear algebraic

equations for the coefficients 0
m and j

m , 0, 1, 2,m M    and

0, 1, 2,..., ,n M    as shown below:

        1 2 1 11 2 1 1 2 1
0 ,

N MN M N M                  
 c (3-12)

where
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in which  is dimension of   1 2 1N M   by   1 2 1N M   , c

denotes the column vector of unknown coefficients with a dimension of

  1 2 1N M   by 1. The submatrix, pq  , denotes the potential of the qth

circular boundary respect to pO . pq  can be written as

 
 

 

 
 

 
 

0

0

0

0
( 1)

1 0

0

(1)

( 1)(1)
1

(1)

0 0 0
0 0 0

, 0,
0 0 0
0 0 0

0 0 0

0 0 0
, 0,

0 0 0

0 0 0

p

p

p

P

pq

iM
M

i M
M

iM
M

iM
M p

i M
M p

iM
M p

iM
M P M

J kR e
J kR e

p q

J kR e

H kR e

H kR e
p q

H kR e

J kR e J


















 
 




 
 


 

   

 
 
    
 
  
 
 
 

  
 
 
  





       

         

         

0 0

0 0

0 0

0 0

(1) (1)

(1

,

0 and 0

p pP

p pP P

p qp p qp

i M M i M MiM
M p M P M M p

i M M i M MiM iM
M P M M p M P M M p

iM i M M iM i M M
M p M M qp M p M M qp

M

kb e J kR e J kb e

J kR e J kb e J kR e J kb e

p q

H kR e J kb e H kR e J kb e

H

 

  

   

   
   

 
 

     
     

 
 
 
 
  

 


  




  

         ) (1)

,

otherwise.

p qp p qpiM i M M iM i M M
p M M qp M p M M qpkR e J kb e H kR e J kb e    

 























 
 
 
 
  




(3-15)

Moreover, the gradient of ( )u x is
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For the Neumann problem, we have the normal derivative
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For satisfying the boundary conditions on B0 ( 0 0t  ) and Bl ( 0lt  ) and comparing with

coefficients, we have
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Equations (3-18) and (3-19) form a system of simultaneous linear algebraic equations

for the coefficients 0
m and j

m , 0, 1, 2,m     . By applying the SVD technique

for the matrix  , the determinant versus k is used to detect eigenvalues and

nontrivial vector of c . The eigenmode is obtained by searching the right unitary

vector for c corresponding to the zero singular value. The number of the zero

singular values implies the multiplicity of roots.

3.3 Illustrative examples

We consider two cases of Helmholtz eigenproblem with a multiply-connected domain

subjected to the Dirichlet boundary conditions.

Case 1: a circular membrane with eccentric hole (special case: annulus)

The eccentric domain is shown in Table 3-1. The radii of the outer and inner circular
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boundaries are 0 2R  and 1 0.5R  , respectively. The eccentricity 01 10e b b  is 0.5.

Both the boundary conditions are 0, 0,1ju j  . Extraction of eigenvalues free of

pollution of spurious eigenvalues by using the SVD technique is shown in Fig. 3-4. The

eigenvalues and modes can be obtained as shown in Tables 3-1 and 3-2. The results of

this approach agree well with those of BEM (Chen et al., 2001).

A special case of eccentric ring is an annular domain which is also considered in Table

3-1 and the radii of the outer and inner circles are the same as the eccentric case. The

two circles are concentric hence the distance between the two poles is zero

 01 10 0b b  . The linear algebraic system reduces to that derived by the conventional

Trefftz method. Moreover, the analytical solution could be derived by using this

approach. Eqs. (3-8) and (3-11) can be rewritten as

   0 1 (1)
0 0 0, 0, 1, 2, ,m m m mJ kR H kR m       (3-20)

   0 1 (1)
1 1 0, 0, 1, 2, .m m m mJ kR H kR m       (3-21)

According to Eqs. (3-20) and (3-21), the analytical equation is found as below:

       0 1 1 0 0, 0, 1, 2, ,m m m mJ kR Y kR J kR Y kR m      (3-22)

where is the Bessel function of the second kind. The analytical eigenvalues are also

shown in Table 3-1. By using the SVD technique, the determinant of the influence

matrix versus the wave number is shown in Fig. 3-5. The true eigenvalues and modes

are shown in Tables 3-1 and 3-3, respectively. Although the mode shape corresponding

to the eigenvalues 2k and 3k seem different from the results of the BEM, mode

shapes of the present method can be linearly superimposed by using the two

independent mode shapes of BEM, and vice versa.

Case 2: a circular membrane with four circular holes

The outer boundary with a radius 0 1R  and four holes of equal size with radii

0.1, = 1, 2, 3, 4jR j are considered and the former five eigenvalues are shown in

Table 3-4. The positions of the four centers of the circular holes are

   0.5, 0 , 0, 0.5 , 0.5, 0 and  0, 0.5 . Chen et al. (2004) also used the BEM for

finding the eigenvalues of Dirichlet problems. The eigenvalules extracted out by the
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SVD are shown in Fig. 3-6. Eigenvalues and eigenmodes using BEM and the present

method are shown in Tables 3-4 and 3-5, respectively. Although the shapes of modes 2

and 3 seem different from the results of the BEM, mode shapes of the present method

can be linearly superimposed by using the two independent mode shapes of BEM, and

vice versa. Good agreement is made.

3.4 Conclusions

In this chapter, the Graf’s addition theorem was used to reform the awkward situation of 

the classical Trefftz method for multiply-connected problems. This approach was coined

the multipole Trefftz method. The multipole Trefftz method has successively provided

an analytical model for solving eigenvalues and eigenmodes of a circular membrane

containing multiple circular holes. The numerical experiments of the

multiply-connected problems were performed to demonstrate the validity of the present

approach. Good agreements between the results of the multipole Trefftz method and the

BEM were made. In addition, the ability of detecting the multiplicity of roots can be

achieved in the multipole Trefftz method by using the SVD technique free of pollution

of spurious eigenvalues. Numerical results show high accuracy and fast rate of

convergence thanks to the analytical approach.
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Table 3-1 The first five eigenvalues for a multiply-connected problem with an eccentric
annulus and a concentric annulus using different approaches.

eccentric annulus concentric annulus

Multipole Trefftz
method

BEM
(Chen et al.

2001)

Multipole
Trefftz
method

BEM
(Chen et
al., 2001)

Analytical
solution

1k 1.74 1.75 2.05 2.06 2.04884

2k 2.13 2.14 2.22 2.23 2.22375

3k 2.46 2.47 2.22 2.23 2.22375

4k 2.77 2.78 2.66 2.67 2.65993

5k 2.96 2.98 2.66 2.67 2.65993

1R 0R

01b

1R 0R
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Table 3-2 The first five modes for a multiply-connected problem with an eccentric hole.

Mode No. 1 2 3 4 5

eigenvalue 1.74 2.13 2.46 2.77 2.96

Multipole Trefftz
method
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eigenvalue 1.74 2.14 2.47 2.78 2.97

BEM
(Chen et al., 2001)
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Table 3-3 The first five modes for a multiply-connected problem with a concentric hole.

Mode No. 1 2 3 4 5

eigenvalue 2.05 2.22 2.22 2.66 2.66

Multipole Trefftz
method
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eigenvalue 2.06 2.23 2.23 2.67 2.67

BEM
(Chen et al., 2001)
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Table 3-4 The first five eigenvalues for a multiply-connected problem with four equal holes using different approaches.

Multipole Trefftz method
BEM

(Chen et al., 2004)

1k 4.499 4.47

2k 5.369 5.37

3k 5.369 5.37

4k 5.549 5.54

5k 5.949 5.95

3R 1R

2R

4R

0R
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Table 3-5 The first five modes for a multiply-connected problem with four equal holes.

Mode No. 1 2 3 4 5

eigenvalue 4.499 5.369 5.369 5.549 5.949

Multipole Trefftz
method

-1 -0.5 0 0.5 1
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1

eigenvalue 4.47 5.37 5.37 5.54 5.95

BEM
(Chen et al., 2004)
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Figure 3-1 A multiply-connected domain with circular boundaries

Figure 3-2 Notations of the Graf's addition theorem
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Figure 3-3 Notations in the multipole Trefftz method
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Figure 3-4 Determinant versus the wave number by using the multipole Trefftz
method for the eccentric case
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Figure 3-5 Determinant versus the wave number by using the multipole Trefftz
method for the concentric case
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Figure 3-6 Determinant versus the wave number by using the multipole Trefftz
method for the multiply-connected case with four equal holes
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Chapter 4 Conclusions and further research

4.1 Conclusions

In this thesis, we solved eigenproblems by using two methods. One of the approaches

is via the null-field integral equation emphasizing on the two issues of avoiding the

singular and hypersingular integrals and the boundary-layer effect. The key idea is to

approximate the boundary unknowns via truncated spherical harmonics on the

spherical boundaries and to expand kernels of the integral operators into degenerate

form. Those are the fundamental solution by truncating the addition theorem to have

the degenerate kernels. The other one employed the addition theorem to expand the

potential free of the adaptive observer system and the tensor transformation technique.

Based on the proposed formulations for solving the eigenproblems involving circular

and spherical boundaries, some concluding remarks are drawn below. The first four

items are the conclusions of the BIEM, while the other items are the points for the

multipole Trefftz method.

1. A systematic approach to solve eigenproblems for Helmholtz equation with

spherical boundaries was adopted in this thesis by using the null-field integral

equation in conjunction with degenerate kernels and spherical harmonics.

2. Spurious eigenvalues of a concentric sphere case were studied analytically and

numerically in BIEM. One example was demonstrated to see how the spurious

eigenvalues occur in the concentric sphere. It’s found that spurious eigenvalues

depend on the inner boundary and are independent of the outer boundary.

3. By using the updating term and updating document of SVD technique, true and

spurious eigenvalues can be extracted out, respectively. Besides, true and spurious

boundary eigenvectors are imbedded in the right and left unitary vectors of the

SVD structure in the influence matrices, respectively.
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4. The trivial outer boundary densities were examined in case of the spurious

eigenvalue which is found to be the true eigenvalue for the domain bounded by

the inner boundary. We also examined the existence of spurious eigenvalue for a

concentric sphere in an analytical way by using the degenerate kernels and the

spherical harmonics.

5. Based on the successful experiences on multipole scattering in Martins’ book, the

conventional Trefftz method was extended to the multipole Trefftz method by

introducing the addition theorem. The addition theorem is employed to expand the

Trefftz bases to the same polar coordinates centered at one circle, where boundary

conditions are specified.

6. The multipole Trefftz method has successively provided an analytical model for

solving eigenvalues and eigenmodes of a circular membrane containing multiple

circular holes. The numerical experiments of the multiply-connected problems

were performed to demonstrate the validity of this approach.

7. In addition, the ability of detecting the eigenvalues of the 2-D multiply-connected

eigenproblems was demonstrated in the multipole Trefftz method free of pollution

of spurious eigenvalues. Numerical results show high accuracy thanks to the

analytical approach.

4.2 Further research

In this thesis, the multipole Trefftz method and the null-field integral equation were

both employed to deal with 2-D and 3-D eigenproblems, respectively. However, there

are several issues which can be further studied.

1. In the thesis, the fundamental solutions are expanded in the polar and spherical

coordinates and only problems with circular and spherical boundaries can be

solved. For the general boundary, e.g. ellipse, it can be further investigated if the
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kernel functions can be expanded to separate form by using the elliptical

coordinates.

2. Following the success of applications in concentric sphere, it’s straightforward to 

extend this approach to solve the eigenproblems of an eccentric sphere in

conjunction with the adaptive observe system and vector decomposition

technique.

3. Although 2-D multiply-connected problems were solved analytically and

numerically by using the multipole Trefftz method in this thesis, the extension to

solve 3-D eigenproblems may be possible.

4. Regarding the BIEM, singular center expansion for kernel function has been done.

However, the adaptive observe system and vector decomposition technique are

requested. A bi-center expansion technique may be suitable for the eccentric case

in a more straightforward way free of the adaptive observe system and vector

decomposition technique.
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