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Abstract

In this thesis, the multipole Trefftz method and the null-field integral equation are
employed to dea with 2-D and 3-D eigenproblems, respectively. In the chapter 2,
the null-field integral equation in conjunction with degenerate kernels and spherical
harmonics are utilized to solve the eigenproblem of a concentric sphere. By
expanding the fundamental solution into degenerate kernels and expressing the
boundary density in terms of spherical harmonics, al boundary integrals can be
anaytically determined. By using the updating terms and updating document of
singular value decomposition (SVD) technique, true and spurious eigenvalues can
be extracted out, respectively. Besides, true and spurious boundary el genvectors are
obtained in the right and left unitary vectors in the SVD structure of the influence
matrices. This finding agrees with that of 2-D cases. In the chapter 3, we succeed to
extend the conventional Trefftz method to the multipole Trefftz method in
eigenproblems. The multipole Trefftz method is used to deal with eigenproblems
with a multiply-connected domain. By introducing the addition theorem, the
collocation technique is not required to construct the linear algebraic system. The
eigenvalues can be found by employing the direct searching technique. Solving

eigenproblems by using this method is free of pollution of spurious eigenval ues.

Keywords. degenerate kernel, null-field integral equation, multipole Trefftz method,

eigenproblem, spurious eigenvalue
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Chapter 1 Introduction
1.1 Motivation and literature overview

Acoustic analysis becomes a more and more important issue in new product design
process. Many scholars have studied the sound radiation behavior and tried to find the
connection between the sound radiation and vibration. Since exact or analytical
solutions aren’t always available, they aimed to find a numerical approach to
decouple the sound radiation. Many well-developed numerical methods such as the
finite difference method (FDM), the finite element method (FEM) and the boundary
element method (BEM) have been adopted. The FDM approximates the derivatives in
the differential equations which govern problems using some types of truncated
Taylor expansion and thus express them in terms of the values at a number of discrete
mesh points. The main difficulty of this technique is the consideration of curved
geometries and the application of boundary condition.

For the case of general boundaries, the regular finite difference grid is unable to
accurately reproduce the geometry of the problem. In the past decade, the FEM has
been widely applied to carry out many engineering problems. The FEM utilizes a
weighted residual method of the minimum potential energy theorem. The
disadvantages of the FEM are inconvenient in modeling infinite regions and dealing
with quantities of data, especially for three-dimensional problems. The governing
equation in BEM is an integral equation different from those in the others. The
integral equation was introduced by Fredholm in 1903. The origin of the boundary
element method can be traced to the work carried out by some researchers in the
1960’s on the applications of boundary integral equations to potential flow and stress
analysis problems. In the 1960 period, the BEM was utilized to solve 2-D elasticity by
Rizzo (1967) and 2-D elastodynamics problem by Cruse and Rizzo (1968). In 1978,
the first book on boundary elements in its title was published (Brebbia, 1978), and the
first international conference on the topic was organized. From 1978 to 1986, the
mathematical foundation of the BEM is focused on the singular integral equation with

the Cauchy kernel. In order to solve the problems with degenerate boundaries, Hong
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and Chen (1988) introduced the dual BEM with the hypersingular formulation.
Another break through of the BEM is the introduction of degenerate kernels which
makes fast multipole BEM possible. A brief history of the BEM is shown in Fig. 1-1.
The BEM has become popular in recent years due to its advantage of the reduction of
dimensionality. Although the capability of the BEM has been verified for solving

engineering problems, there are five critical issues as given below.

(1) Treatment of weak, strong and hypersingular singularities

It’s well-known that improper integral should be handled particularly when the BEM
is used. In the dual BIEM/BEM formulation, the singular and hypersingular integrals
need special care by using the sense of Cauchy and Hadamard principal values (CPV
and HPV), respectively. How to determine accurately the free terms had received
more attentions in the past decade and a large amount of the papers can be found. Two
conventional techniques, bump contour approach (Guiggiani, 1995) and the limiting
process (Gray and Manne, 1993) as shown in Figs. 1-2 and 1-3, were employed to
regularize the singular and hypersingular integrals. Another alternative to avoid the
singularity, such as fictitious BEM and null-field approach (off boundary approach;
Achenbach, Kechter and Xu, 1988) can be considered. However, they result in an
ill-posed matrix. How to extract principle values of singular and hypersingular

integrals using the well-posed model is an interesting object.

(2) Hl-posed model

By moving the null-field points to the real boundary or adjusting the fictitious
boundary to the real boundary, the system can be changed to be well-posed. However,
CPV and HPV need to be calculated. Instead of determining the CPV or HPV, the
kernel function is separable since the double-layer potential is discontinuous across
the boundary. Therefore, the degenerate kernel, namely separable kernel, is employed
to represent the potential of the perforated domain which satisfies the governing

equation.



(3) Boundary-layer effect

Boundary-layer effect in the BEM occurs when the collocation point approaches the
vicinity near boundary. Kisu and Kawahara (1988) proposed a concept of relative
quantity to eliminate the boundary-layer effect. Chen and Hong in Taiwan (1994) as
well as Chen et al. in China (2001) independently extended the idea of relative
quantity to two regularization techniques which the boundary densities are subtracted
by constant and linear terms. For the stress calculation, Sladek et al. (1991) used a
regularized version of the stress boundary integral equation to compute the correct
values of stresses close to the boundary. Others proposed a regularization of the
integrand by using variable transformations. For example, Telles (1987) used a cubic
transformation such that its Jacobian is the minimum at the point on the boundary
close to the collocation point and can smooth the integrand. Similarly, Huang and
Cruse (1993) proposed rational transformations which regularized the nearly singular
integrals. We concern how to develop a BIEM formulation free of boundaries-layer

effect.

(4) Convergence rate

The BEM is very popular for boundary value problems with general geometries since
it requires discretization on the boundary only. Regarding constant, linear and
quadratic elements, the discretization scheme does not take the special geometry into
consideration. However, it leads to the slow convergence rate. Convergence rate of
exponential order by using the null-field integral equation was achieved as
demonstrated by Hsiao (2005). Moreover, the present method can be directly applied
to problems with general boundaries without any difficulty once the fundamental
solution can be separated in other coordinate system, such as Cartesian coordinates or

the elliptic coordinates.

(5) Mesh generation
Although BEM is free of domain discretization, boundary mesh generation is still
required since collocation point is on the boundary. We introduce the generalized

Fourier coefficients for problems with circular boundaries. Boundary type methods,
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the BEM, MFS and Trefftz method, have received more attention in the recent years.
In analogy of clinical medicine, the FEM behaves like operation, the BEM is similar
to diagnosis by feeling the pulse and boundary collocation method behaves like

acupuncture and moxibustion (Chen and Lee, 2007).

For the Helmholtz equations, it is well-known that the complex-valued BEM can
determine the eigensolutions by using direct searching scheme (De Mey, 1976).
Nevertheless, complex-valued computation is time consuming and not simple. A
simplified method using only the real-part or imaginary-part kernel was also
presented by De Mey (1977). Although De Mey found the zeros for real-part
determinant, the spurious solutions were discovered if only a real-part formulation
was employed. Spurious and fictitious frequencies occur and stem from
non-uniqueness solution problems. They appear in different aspects on computational
mechanics. For example, hourglass modes in the FEM using the reduced integration
occur due to the rank deficiency (Winkler and Davies, 1984). Also, loss of
divergence-free constraint for the incompressible elasticity results in spurious modes.
In the other aspect of numerical solution for the differential equation using the FDM,
the spurious eigenvalue also appears due to discretization (Greenberg, 1998; Fujiwara,
2007; Zhao, 2007). If the incomplete set is adopted in the solution representation such
as the real-part BEM (Kuo et al., 2000) or MRM (Chen and Wong, 1997; Chen and
Wong, 1998; Yeih et al., 1998; Yeih et al., 1999(a)(b); Chen et al., 2003(a)), spurious
eigensolutions occur in solving eigenproblems with simply-connected domain. Even
though the complex-valued kernel is adopted in the BEM, the spurious eigensolution
also occurs for multiply-connected problems (Chen et al., 2003(b)) as well as the
appearance of fictitious frequency for exterior acoustics (Chen et al., 2006(a)).
Spurious solutions and fictitious frequencies in the integral formulation belong to
spectral pollution since it cannot be suppressed by refining the mesh. The origin of
spurious modes arises from an improper approximation of null space of the integral
operator (Schroeder, 1994). Based on successful experiences, how spurious
eigenvalues in 3-D concentric sphere occur is one of our concerns in this thesis. We

do not only consider 3-D eigenproblems using BIEM but also focus on finding a
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meshless method free of spurious eigenvalue.

In recent years, meshless methods started to capture the interest of the researchers in
the community of computational mechanics because these methods are mesh free and
only boundary nodes are necessary (Young et al., 2005; Chen et al., 2006(b); Atluri et
al., 1999; Atluri and Shen, 2002). Among meshless methods, the Trefftz method is a
boundary-type solution procedure using only the T-complete functions which satisfy
the governing equation (Li et al., 2008). Since Trefftz presented the Trefftz method for
solving boundary value problems in 1926 (Trefftz, 1926), various Trefftz methods
such as direct formulations and indirect formulations (Kita and Kamiya, 1995) have
been developed. The key issue in the use of the indirect Trefftz method is the
definition of T-complete function set, which ensures the convergence of the
subsequent field variable expansions towards the analytical solutions. Many
applications to the Laplace equation (Karageorghis and Fairweather, 1999), the
Helmholtz equation (Fairweather and Karageorghis, 1998), the Navier equation (Jin et
al., 1990 and 1993) and the biharmonic equation (Jirousek and Wroblewski, 1996)
were done. Readers can consult with Li et al.’s book (Li et al., 2008). However, all the
applications seemed to be limited on simply-connected domains. The concept of
multipole method to solve exterior problems was firstly devised by Zaviska (1913)
and used for the interaction of waves with arrays of circular cylinders by Linton and
Evans (1990). Recently, Martin (2006) reviewed several methods to solve problems of
the multiple scattering in acoustics, electromagnetism, seismology and
hydrodynamics. However, the interior eigenproblems were not mentioned therein.
Extension to interior multiply-connected problems by using the multipole Trefftz

method is also our concern.

1.2 Organization of the thesis

In this thesis, the multipole Trefftz method and the null-field integral equation are
employed to deal with 2-D and 3-D eigenproblems, respectively. The null-field
integral equation in conjunction with degenerate kernels and spherical harmonics are

utilized to solve the eigenproblem of a concentric sphere. The multipole Trefftz
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method is used to deal with eigenproblems with a multiply-connected domain. The
organization of each chapter is summarized below.

In the chapter 2, we derive the unified formulation of the null-field integral equation
approach for 3-D eigenproblems. By expanding the fundamental solution into
degenerate kernels and expressing the boundary density in terms of the spherical
harmonics, all boundary integrals can be analytically determined. By using the
updating terms and updating document of singular value decomposition (SVD)
technique, true and spurious eigenvalues can be extracted out, respectively.

In the chapter 3, we employ the addition theorem to expand the Bessel (J) and Hankel
(H) functions (Graf, 1893) in the solution representation for matching the boundary
conditions in an analytical way. The so-called multipole Trefftz method is analytical
and effective in solving problems with the multiply-connected domain. By
introducing the addition theorem, the collocation technique is not required to
construct the linear algebraic system. The eigenvalues can be found by employing the
direct searching technique. Solving eigenproblems by using this method is free of
pollution of spurious eigenvalues. Finally, we draw out some conclusions item by

item and reveal some further topics in the chapter 4.
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Chapter 2 Eigenproblems with spherical boundaries by
using the BIEM

Summary

In this chapter, the null-field integral equation method is employed to study the
occurring mechanism of spurious eigenvalues for a concentric sphere. By expanding the
fundamental solution into degenerate kernels and expressing the boundary density in
terms of spherical harmonics, al boundary integrals can be analytically determined. It is
noted that our null-field integral formulation can locate the collocation point on the real
boundary thanks to the degenerate kernel. In addition, the spurious eigenvalues are
parasitized in the formulations while true eigensol utions are dependent on the boundary
condition such as the Dirichlet or Neumann problem. By using the updating terms and
updating document of the SVD technique, true and spurious eigenvalues can be
extracted out, respectively. Besides, true and spurious boundary eigenvectors are
obtained in the right and left unitary vectors in the SVD structure of the influence

matrices. Thisfinding agrees with that of the 2-D cases (Chen et al., 2009).

2.1 Introduction

The application of eigenanalysisis gradually increasing for vibration and acoustics. The
demand for eigenanalysis calls for an efficient and reliable method of computation for
eigenvalues and eigenmodes. Over the past three decades, several boundary element
formulations have been employed to solve the eigenproblems (Ali, Ragjakumar and
Yunus, 1995), e.g., determinant searching method, internal cell method, dual reciprocity
method, particular integral method and multiple reciprocity method. In this chapter, we
will focus on the determinant searching method with emphasis on spurious eigenvalues
when using the BIEM for 3-D problems with an inner hole. Spurious and fictitious
solutions stem from non-unigueness solution problems which appear in different aspects
in computational mechanics. First of all, hourglass modes in the finite element method
(FEM) using the reduced integration occur due to rank deficiency (Winkler and Davies,
1984). Also, loss of divergence-free constraint for the incompressible elasticity results

in spurious modes. On the other hand, while solving the differential equation by using
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the finite difference method (FDM), the spurious eigenvalue also appears due to
discretization (Greenberg, 1998; Fujiwara, 2007; Zhao, 2007). In the rea-part BEM
(Kuo et a., 2000) or the MRM formulation (Chen and Wong, 1997 and 1998; Yeih et la,,
1998; Yeih, Chen and Chang, 1999; Yeih et a.(@)(b), 1999; Chen and Kuo, 2003),
spurious eigensolutions occur in  solving eigenproblems. Even though the
complex-valued kernel is adopted, the spurious eigensolution also occurs for the
multiply-connected problem (Chen et a., 2001; Chen, Liu and Hong, 2003) as well as
the appearance of fictitious frequency for the exterior acoustics (Chen et al., 2006(a)).
Spurious eigenvalues in the method of fundamental solutions (MFS) for 3-D problems
were also studied by Tsai et al. (2006). In this chapter, a simple case of 3-D concentric
sphere will be demonstrated to see how spurious eigensolutions occur and how they are
suppressed by using SVD.

In the recent years, the SVD technique has been applied to solve problems of
fictitious-frequency (Chen et al., 2006(a)) and continuum mechanics (Chen et a., 2002).
Two ideas, namely updating term and updating document (Chen et a., 2006(a)), were
successfully applied to extract the true and spurious solutions, respectively. In this
chapter, the three-dimensional eigenproblem of a concentric sphere is studied in both
numerical and analytical ways. Owing to the introduction of degenerate kernel, the
collocation point can be located exactly on the real boundary. Besides, true and spurious
equations can be found by using the null-field integral equation in conjunction with
degenerate kernels and spherical harmonics. Surface distributions of the inner and outer
boundaries can be expanded in terms of spherica harmonics. Since a spurious
eigenvalue is embedded in the numerical method and has no physical meaning, the
remedies, SVD updating term and SVD updating document, are used to extract or filter
out true and spurious eigenvalues, respectively. Finaly, an example with various
boundary conditions is utilized to validate the present approach by using singular and

hypersingular formulations.

2.2 Null-field integral equation formulation
2.2.1 Problem statements
The governing equation for the eigenproblem of a concentric sphere is the Helmholtz

equation as follows:
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(VZ+k*Hu(x)=0, xeD, (2-1)
where V?, k and D arethe Laplacian operator, the wave number and the domain of
interest, respectively. The concentric sphere is depicted in Fig. 2-1. The inner and outer
radii are a and b, respectively.

2.2.2 Dual null-field integral for mulation — the conventional version
The dua boundary integral formulation (Zhao, 2007) for the domain point is shown
below:

Az u(x) = J'B T (s,x)u(s)dB(s) — J'B U (s, x)a;%dB(s), xe D, (22
du(x) 8U(SS)
on, on

4

_ jB M (s, x)u(s)dB(s)—IB L (s, X) dB(s), xe D, (2-3)

S

where x and s are the field and source points, respectively, B is the boundary, n, and ng
denote the outward normal vectors at the field point and the source point, respectively,

and the kernel function U(s,X) is the fundamental solution which satisfies

(V2 + kDU (s,X) =478 (x—9). (2-4)
where §(-) isthe Dirac-deltafunction. The other kernel functions can be obtained as
T(s,X) = %:;X) , (2-5)
L(s,X) = aua(ni’ ) : (2-6)
2
M(s,X) = % . (2-7)

If the collocation point X is on the boundary, the dual boundary integral equations for the

boundary point can be obtained as follows:

us) 4g(s), xe B,  (28)
on

27u(X) = C.P.\/.J'B T (s, x)u(s)dB(s) - R.P.\/.J.B U (s, X)

S

2na;—r(]x)= H .P.\/.jB M (s, x)u(s)dB(s)—C.P.\/.IB L(s, x)ag—r(]S)dB(s), xeB, (2-9)

where RP.V., C.P.V. and H.P.V. are the Riemann principal value, the Cauchy principal
vaue and the Hadamard (or called Mangler) principal value, respectively. By
collocating x outside the domain, we obtain the null-field integral equation as shown
below:

0= jB T(s, x)u(s)dB(s)—J'B U (s, X)

ou(s) ¢
on, dB(s), xe D°, (2-10)
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O:J'B M (s, x)u(s)dB(s)—J'B L(s, x)a;—r(ls)dB(s), xe D¢, (2-11)

S

where D° denotes the complementary domain.

2.2.3 Dual null-field integral formulation — the present version

By introducing the degenerate kernels, the collocation points can be located on the real
boundary without facing the principal value. Therefore, the representations of integral
equations including the boundary point can be written as

Az u(x) = .[B T'(s, X)U(S)dB(S)—IB U' (s, x) a;r(]S)

dB(s), xe DU B, (2-12)

S

4r a;r(‘xx) = [ M (s.9u(s)dB(s) - [ L'(s, x)%ds(s), xeDUB, (213)

and

0= [ TE(sx)u(s)dB(s)- [ U*(s, x)a;—r(]S)dB(s), xe D°UB, (2-14)

S

0= j _ ME(s,x)u(s)dB(s) - j LSGs, x)alaj—r(‘S)dB(s), xe D°UB, (2-15)

once the kernel is expressed in terms of an appropriate degenerate form. It is found that
the collocation point is categorized to three positions, domain (Egs.(2-2)-(2-3)),
boundary (Egs.(2-8)-(2-9)) and complementary domain (Egs.(2-10)-(2-11)) in the
conventional formulation. After using the degenerate kernel for the null-field BIEM,
both EQs.(2-12)-(2-13) and Egs.(2-14)-(2-15) can contain the boundary point. The
resulted linear algebraic systems derived from Egs. (2-12)-(2-13) and Egs. (2-14)-(2-15)
are the same (Chen et a., 2006(a)), i.e. we can move to the boundary either from the

domain point or null-field point.

2.2.4 Expansions of the fundamental solution and boundary density
The fundamental solution as previously mentioned is
—ikr

U(s,X) = _eT’ (2-16)

where r=[s— X is the distance between the source point and the field point and i is
the imaginary number with i* =—1. To fully utilize the property of spherical geometry,
the mathematical tools, degenerate (separable or finite rank) kernel and spherical

harmonics, are utilized for the analytical calculation of boundary integrals.
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2.2.4.1 Degenerate (separable) kernel for fundamental solutions

In the spherical coordinate, the field point (x) and source point (s) can be expressed
=(p,»,0)and s=(p,o,0)in the spherical coordinate, respectively. By employing

the addition theorem for separating the source point and field point, the kernel functions,

U(s,x), T(s,xX), L(s,x) and M(s,X), are expanded in terms of degenerate kernel as

shown below:
U'(s,%) = .kz (2n+1) zg (“+2§:cos(m(¢ 9))
. Pm(cose)Pn”"(cosf7 )in(kp)H? (kp). P2 p, 217
UE(s, x)_lkz (2n+1) ZS ;:cos(m(qﬁ—q}))
P’"(cose) P"(cosd ) j, (kp)hW? (kp), p>p.
T'(s,) =ik Z (2n+1) Ze (n+$;:cos(m(¢—¢7))
T(5,%) = R (cos0) Ry (cosd ) j, (kp) ™ (kp), 5> p. (2-18)
TE(s,x) =ik Z 2n+1) miog :+:;i003(m(¢—¢7))
Pm(cose)Pm(co 0)i,(kp)H? (kp), p>p.
L' (s,%) = kzz (2n+1) mz_os n+m) cos(m(¢—4))
L(s%) = A" (cos0) Ry (cos0) j; (kp) K7 (kp), 7> p, (2-19)
L5 (s, %) =ik z (2n+1) Zn:‘)gmgnJr:;:cos(m(qﬁ—qu))
P"(cos) P (cosd ) j, (kp) ' (kp).p > p.
M'(s,x) =ik Z (2n+1) mzn:_ogmé )cos(m(¢ $))
. R" (cos0) R (cosh ) i, (ke )W (kp), o= p, .

ME(s,x)zik3i(2n+1 Zn:gmg 3 cos(m(¢—¢))

P (cos) P (cosf ) j; (kp)h? (kp), o> p.

where the superscripts “I” and “E” denote the interior and exterior regions, j, and

h® are the nth order spherical Bessel function of the first kind and the nth order
spherical Hankel function of the second kind, respectively, P is the associated
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Lengendre polynomial and ¢,, isthe Neumann factor,

b m=0 2-21
“m12, m=12 -, (@2])

It is noted that U and M kernels in Egs. (2-17) and (2-20) contain the equa sign of
p=p WhileT and L kernels do not include the equal sign due to discontinuity in Egs.
(2-18) and (2-19). Besides, the potential across the boundary is also addressed here. For
2-D Laplace and Helmholtz equations, the continuous and jump behavior across the
boundary were studied respectively in (Chen and Chen, 2007) and (Chen et al., 2007).
After using the Wronskian property of j, () and v, (-),wehave

W (i (kP), Yu(kp)) = i (kp) (ko) = i (k) Vi (k) = kxlf'

(2-22)
The jump behavior iswell captured by
Jo T[T (3:0-T(s.x)] R (cos8cos(my ) R? sin(md do dg
= P"(cos®)cos(mp)  (2-23)

Similarly, the potentials due to L' and L kernels are discontinuous across the

boundary.

2.2.4.2 Spherical harmonics for boundary densities

We used the spherical harmonics to approximate the boundary density and its normal

derivative as expressed by
u(s) = izvl AMPVW(cosé)cos(Wg_b), seB, (2-24)
t(s) = a;—rgs) = izvl Bwﬁw(cos(s)cos(w&), se B, (2-25)

where A, and B, are the unknown coefficients.

2.3 Proof of the existence of spurious eigensolutions for a concentric
sphere

In order to fully utilize the geometry of spherical boundary, the potential u and its

norma derivative t can be approximated by employing the spherical harmonic

functions. Therefore, the following expressions can be obtained

u,(s) =§:ZV: A}vvﬂw(cosé)cos(wi), seB, (2-26)

v=0 w=0
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U,(s) = ZZV:AfNRW(cos )cos(Wg/)) seB,, (2-27)

t,(s) = izvl B. P" (cos@) cos(w&), seB, (2-28)
t,(S) = izv“ B2 P" (cos@) cos(w@), seB,, (2-29)

where A, and B, ae the spherical coefficients on B (i=12). When the field
point is located on the inner boundary B,, substitution of Egs. (2-26)-(2-29) into the
null-field integral equations yields

0=[]% 3 5 3 ik, A, 2n+) LM ()@ (R )P (cos(0))-

0 0nN=0m=0v=0w=0 ( )'

cos(m(¢ —¢))cos(wp ) P (cos(9) ) R (cos(8) )sin(6) R7dd dg.
18 8% S ike, B 20 NmM! )Ij (kp)h® (KR )P"(cos(6))

0 0n=0m=0v=0w=0 ( )
cos(m(¢—¢))cos(wp ) P (cos(6) ) R (cos(0) )sin(0)R?d6 dg.
(533 3K mAM(2n+1>E ;,J (ko) (KR, )P (cos(6))-
cos(m(q)—a)) s(wg ) B (cos(6) ) R (cos() )sin(9)R;d6 dg
> ike

B2,2n+0) "M 4 )h® (kR,)P™ (cos(6)) -

(2-30)

w=0 (n+m)!™"
cos(m(¢—¢))cos(wp ) P (cos(@) ) R (cos(8) )sin(0)R2do d.

When the field point is located on the outer boundary B, , we have

0-T1% 3 3 3 iK%, A 2n+2) "™ i (1R KD (kp) P (cos(6) -

0 0n=0m=0v=0w=0 ( )I
cos(m(¢—¢))cos(w¢)Pm(cos(e))PW(cos(O_))sin(O_)Rde_da

1535 % ike, B (24D (RN (kp )R (cos(0):

m=0v=0 w=0 )

m(¢—¢))cos(wg ) P" (cos(f) ) R (cos(F) )sin(0)R’dd dg

3 ik, A, 20 1) 0GR (kp )R (cos(0)
cos(m(¢ —¢))cos(wg ) P (cos(0) ) R (cos(@) )sin(0)R;do dg.
>

E” m; i (KR, )h (k)P (c0s(0)) -

(2-31)

ike, BZ,(2n+1)

For the Dirichlet problem, Egs. (2-30) and (2-31) can be reduced to
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0= > akBL, j, (ka)h® (ka) P (cos(0)) cos(my)

n=0m=0

(2-32)
+3 E b?KB2, j (k) (Kb) P™(cos(6)) cos(mp),
0=3 ¥ akBL,j, (k) (Kb)P"(cos(0)) cos(my)
n=0m=0 (2-33)

£33 BPKBE, j, (Ko)h® (Kb) P (cos(0)) cos(imy).

n=0 m=0
According to Egs. (2-32) and (2-33), the spherical coefficients B; and B? satisfy
therelations:

B2 :_azl:n(ka)hgz)(ka) B
™ (kO
w2l (k)

m T T2 2 Brfm' 2-35
07, (KDY (kD) &3

To seek the nontrivial data for the spherical coefficients B and BZ

nm?

(2-34)

we obtain the

eigeneguation:
in(ka)h{® (kb) | j, (Kb)h{® (ka) - j, (ka)h{? (kb) | = 0 (2-36)
For the Neumann problem, Egs. (2-30) and (2-31) are reduced to
0= %an Al (ka)hn(z)(ka)+r§m§ b?As, in (k)h? (kb), (2-37)
0= %an Al (ka)m‘Z)(kb)+; mZ b*Ar, i (KD) (Kb). (2-38)

According to Egs. (2-37) and (2-38), the spherical coefficients A. and A? satisfy

the relations:

a J (k) (ka) .
?jn (k@)K (Kb)
jn(ka)h® (kb) o

bZJé(kb)hﬁz’(kb)

To seek the nontrivia data for the spherical coefficients A, and A?, , we obtain the

A?m = A1m’ (2'39)

A= A (2-40)

eigeneguation:

jn(ka)h? (kb)| jr (Ko)hi® (ka) - jr (kayhi® (kb) | = 0. (2-41)
According to Egs. (2-36) and (2-41), the spurious eigenequation of the singular
formulationis j,(ka) =0, which is aso the true eigenequation of the sphere of radius a
with the fixed boundary condition. The latter parts in the bracket of Egs. (2-36) and

(2-41) are the true eigenequations,
j, (kb)h!? (ka) — j. (ka)h'? (kb) = 0 for the Dirichlet problem (2-42)
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j/ (kb)h'@ (ka) - j’ (ka)n’® (kb) =0 for the Neumann problem (2-43)
The spurious and true eigenequations of the concentric sphere subject to various
boundary conditions are listed in Table 2-1. It is interesting to find that spurious
eigenvalue of UT singular method results in trivial outer boundary modes for the
fixed-fixed case. Besides, spurious eigenvalue of LM hypersingular method results in

thetrivial outer boundary modes of free-free case.

2.4 Proof the existence for the spurious eigensolutions of the concentric
sphere

In order to prove that the spurious eigensolutions is the true eigenvalue of the associated

problem bounded by inner boundary, we first derive the true eigenvalue of the

eigenproblem bounded by the inner boundary. Now, we consider the sphere with a

radius a in the continuous system. By using the null-field integral equation and

collocating the point on the boundary, we obtain the true el genequation

Ja(ka) =0, (2-44)

and the corresponding true eigenmode is B

nm?

where ' >'|B, |#0. By collocating
the point in the complementary domain (x° € D) as shown in Fig. 2-2, the null-field

equation yields
0=[,U E (s, x°)t(s)dB(s), x° € D° . (2-45)

We can obtain the null-field response for x° as shown below
B! j,(ka)h{? (ka*)P™(cos(f))cos(mg¢) = 0, (2-46)
where n and m belong to nature number and k satisfies Eq. (2-44). Secondly, we
consider the spherical case with the fixed-fixed boundary condition as shown in Fig. 2-3.
By selecting a nontrivial inner boundary mode for the boundary mode and trivial outer
boundary mode, we have j,(ka)=0 and
B B
)]
This indicates that spurious eigenevalues of j (ka)=0 and the nontrivial boundary
mode of Eq. (2-47) satisfy Egs. (2-32) and (2-33) due to U'(s,a’)=UFf(x,a").
Therefore, spurious eigenvalues in conjunction with the trivial outer boundary mode

happen to be the true eigenvalue of the domain bounded by the inner boundary.

Similarly, the concentric sphere subjected to the Neumann boundary condition by using

-19-



the hypersingular formulation resultsin the trivial outer boundary mode.

2.5 SVD technique for extracting out true and spurious eigenvalues by
using updating ter ms and updating documents

2.5.1 Method of extracting the true eigensolutions (updating terms)
SVD technique is an important tool in the linear algebra. The matrix [A] with a
dimension M by N can be decomposed into a product of the unitary matrix [CI)] (M by
M), the matrix [Z] (M by N) with positive or zero elements, and the unitary matrix
[¥] (NbyN)

(AL =@ ] [¥ ] (2-48)

where the superscript “H” is the Hermitian operator, [®] and [¥] are both unitary

matrix that their column vectors which satisfy
‘BH "9 =9, (2-49)
vy =5y, (2-30)
in which [CI)]H [®]=[!],., @d [\P]H [¥]=[!],.,- For the eigenproblem, we can
obtain a nontrivial solution for the homogeneous system from a column vector {'l/i} of
[‘P] when the corresponding singular value (o, ) is zero. For the direct BEM, we have
Sngular formulation (UT method)
[T° Hup=[V* )iy
Hypersingular formulation (LM method)
(M=) =[L5]{t) = {0}, (252

where {u} and {t} arethe boundary densities. For the Dirichlet problem, Eq. (2-51)

{0}, (2-51)

and (2-52) can be combined to have

|10 259

LE
By using the SVD technique, the two submatrices in Egs. (2-51) and (2-52) can be

decomposed into
[U]=[e =0T or [U]=3o {8 W) 254
J
[F]=[em =V ][¥ ] or [LF]=3 o0 (g} Wi} (2:55)
j
where the superscripts, (U) and (L), denote the corresponding matrices. For the linear
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algebraic system, {t} isacolumn vector of {y,} in the matrix [¥] corresponding
to the zero singular value (o, =0). By setting {t} as a vector of {y,} in the right
unitary matrix for the true eigenvalue k, , Egs. (2-51) and (2-52) reduces to

[UE(k) J{wi} ={0}, (2-56)
[LE(k) [{wi} = {0} (2-57)
According to Egs. (2-54) and (2-55), we have
o {4/} =10}, (2-58)
o ¢V} ={0}. (2-59)

We can easily extract out the true eigenvalues, o) =" ={0}, since there exists the
same eigensolusion ({t} = {, } ) for the Dirichlet problem by using Egs. (2-53) or (2-56)

and (2-58). In asimilar way, Egs. (2-51) and (2-52) can be combined to have

T5(k)
) =101 250

for the Neumann problem. We can easily extract out the true eigenvalues for the

Neumann problem with respect to the jth zero singular valuesof &{" =o' ={0}.

2.5.2 Method of filtering out the spurious eigensolutions (updating
documents)
By employing the LM formulation in the direct BEM, we have
[M®]{u} =[L® ]{t} = {p}. (2-61)
Since the spurious eigenvalue k. is embedded in both the Dirichlet and Neumann

problems, we have

{p}" o} ={0}, (2-62)

where {¢} satisfies
[L¥(k)]"{#} ={0} for the Dirichlet problem, (2-63)
[M E(ks)]H {¢.} ={0} for the Neumann problem, (2-64)

according to the Fredholm alternative theorem. By substituting Eq. (2-61) into Egs.
(2-62), (2-63) and (2-64), we have
{u}"[ME(k)]" {#} ={0} for the Dirichlet problem, (2-65)

()" [LE(kS)]H {¢,} ={0} for the Neumann problem. (2-66)
Since {u} and {t} can be arhitrary boundary excitation for the Dirchlet problem and

-21-



Neumann problem, respectively, thisyields
[ME(k)]" {4} ={0} for the Diricheit problem (2-67)

[LE(kS)}H {¢,} ={0} for the Neumann problem (2-68)

By combining Eqg. (2-63) with Eq. (2-67) for the Dirichlet problem, we have
{g)={0for {g}"[[L°] [M=]]={0}. (2-69)

It indicates that two matrices have the same spurious boundary mode {¢i}
corresponding to the ith zero singular values. By using the SVD technique, two matrices

in EqQ. (2-69) ca be decomposed into

(L] =[]z N0 or [LF]=EoPwi} o} (2-70)
(] =L =] [0 ] or (ME]=Eo o) @

By substituting Egs. (2-70) and (2-71) into Egs. (2-65) and (2-66), we have

o’ {wi”} ={0}, (272)

o v} ={0}. (273
We can easily extract out the spurious eigenvalues since there exists the same spurious
boundary mode {¢,} corresponding the ith zero singular vaue, o” =c" =0.
Similarly, the spurious eigenvalue parasitized in the UT formulation can be obtained by
using SVD updating documents. To summarize the SVD structure for the four influence
matrices, Table 2-2 (a) and (b) show that the spurious and true boundary modes are
imbedded in the left and right unitary vectors, respectively. Besides, the nontrivia

interior boundary mode and trivial outer boundary mode are aso given in Table 2-2 (b).

2.6 lllustrative examples and discussions

Case 1: A concentric sphere subject to the Dirichlet boundary condition (u; =u, =0)
A concentric case with radii a and b (a=0.5 and b=1.0) is shown in Fig. 2-1.

The analytical solution can be obtained by using the null-filed integral formulation,

degenerate kernel and spherical harmonics. The common drop locations in Figs. 2-4(a)

U
and 2-4(b) indicate the true eigenvalues. We employ the SVD updating term {J to

extract the true eigenvalues for the Dirichlet problem as shown in Fig. 2-4(c). It’s found
that all the spurious eigenvalues are filtered out.
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Case 2: A concentric sphere subject to the Neumann boundary condition (t; =t, =0)

Similarly, the common drop locations in Figs. 2-4(d) and 2-4(e) indicate the true

T
eigenvalues. Extraction of true eigenvalues by using the SVD updating term {M} is

shown in Fig. 2-4(f). The common drop locations in Figs. 2-5(a) and 2-5(b) indicate the
spurious eigenvalues for the singular formulation. Similarly, the same drop locations in
Figs. 2-5(d) and 2-5(e) indicate the spurious eigenvalues for the hypersingular
formulation. The spurious eigenequations for the singular and hypersigular formulation
are

jn (ka)=0, (2-74)

in(ka)=0, (2-75)
respectively. It’s found that spurious eigenvalues depend on the inner boundary instead
of the outer boundary. Finaly, we employed the SVD updating document to filter out
the spurious eigenvalues. The spurious eigenvalues for singular formulation and
hypersingular formulation are extracted as shown in Figs. 2-5(c) and 2-5(f),
respectively.

2.7 Conclusions

Spurious eigenvalues for a concentric sphere were studied analytically and numerically.
One example was demonstrated to see how the spurious eigenvalues occur in the
concentric sphere. Spurious eigenvalues depend on the inner boundary and are
independent of the outer boundary. The trivial outer boundary densities were examined
in case of the spurious eigenvalue which is found to be the true eigenvalue for the
domain bounded by the inner boundary. The contribution of the work is to show the
existence of spurious eigenvalue for a concentric sphere in an analytica manner by

using the degenerate kernels and the spherical harmonics.
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Table 2-1 Eigensolutions and boundary modes for the concentric sphere subject to different boundary conditions

BC Fixed-fixed Free-fixed Fixed-free Freefree
u=u,=0 t=u,=0 u=t =0 t,=t,=0
Solution
True jin(ka) y,, (kb) i1, (ka)y,, (kb) jin(ka) i (kb) ji, (ka) i, (kb)
eigenequation ~jn(kb)y, (ka) =0 ~jn(kb)y,(ka) =0 —jh(kb)y, (ka) =0 —jh(kb)yh(ka) =0
Spurious - _ i (ka) = i (ka)= j,(ka) =
. eigenequation In(ke) =0 jn(ka) =0 jn(ka) = 0 jn(ka) =0
UT formulation Inner boundary
mode 2.2 [Bum|#0 2.2 Awm|#0 2.2 B[ %0 2.2 [ Am|#0
Outer boundary 2 :azjn(ka) 1 2 :azjrlm(ka) 1 2 :azjn(ka) Bl 2 :azjr'w(ka) 1
mode A NGO " b2, (Kb) o A b?j,(kb) A b? ji, (kb) o
True jin(ka) y,, (kb) i, (ka) y,, (kb) jin(ka) i (kb) ji, (ka) i, (kb)
eigenequation ~jn(kb)y, (ka) =0 ~jn(kb)ys(ka) =0 —jh(kb)y, (ka) =0 —jh(kb)yh(ka) =0
Spurious e o (ka) — i (ka) = i’ (ka) =
. eigenequation n(ka) =0 jn(ka)=0 jiy(ka) =0 i. (ka) =0
LM formulation Inner boundary
mode 2.2 [Bum|#0 2.2 Awm|#0 2.2 B[ %0 2.2 [ Am|#0
Outer boundary | o2 _a’jn(ka) 2 _a%jp(ka) P NP PO G
mode k) bk "R (k) "o (k)
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Table 2-2(a) SVD structure of the four influence matrices for the Dirichlet and Neumann problemsin the case of true eigenvalue.

Dirichlet problem (k =k?)

Neumann problem (k = k™)

True eilgenvalue

K
(k. k)

[@° {O }[(p] (o [ ][]

ey | 017 o]
Thesame(gl’“?

u|T

[@L]{O }[(p] [ [z ][]

LM

\

@y ] o]

where K® and K" devotesthe true eigenvalues for the Dirichlet and Neumann problems, respectively.
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Table 2-2(b) SVD structure of the four influence matrices by using the UT singular formulation and LM hypersigular formulation in the case of
spurious eigenvalue.

UT singular formulation (k = k") LM hypersingular formulation (K = k")
Dirichlet Neumann Dirichlet Neumann
0 o> | 0 H 0 H 0 o'
¢lm._.{ . }{~ :I ¢1UT...{ _ }[qﬂ] [¢1LM...]{ _ }[\PL] ¢1LM..{ ' }{ ' }
Spurious eigenvalue E
K, : E i |
(KK ] ]
The same @JT The same qleM

[u]T ] [ L™ ]

where kI" and k" devotesthe spurious eigenvalues by using UT singular and LM hypersigular formulation, respectively.
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Figure 2-1 Sketch of a concentric sphere

Figure 2-2 Collocation point on the sphere

boundary from the null-field point

(p=a")

Figure 2-3 Collocation point of the concentric

sphere(p =a")
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Chapter 3 Eigenproblems with a multiply-connected
domain by using the multipole Trefftz
method

Summary

In this chapter, 2D eigenproblems with the multiply-connected domain are studied by
using the multipole Trefftz method. We extend the conventional Trefftz method to the
multipole Trefftz method by introducing the multipole expansion. The addition theorem
is employed to expand the Trefftz bases to the same polar coordinates centered at one
circle, where boundary conditions are specified. Owing to the introduction of the
addition theorem, collocation technique isn’t required to construct the linear algebraic
system. The eigenvalues can be found by employing the SVD. To deal with the
eigenproblems by using the present method is free of pollution of spurious eigenvalues.
Both the eigenvalues and eigenmodes are compared well with the analytical solutions

and those of BEM for illustrative examples.

3.1 Introduction

Eigenproblems become more and more important issues in new product design process.
Many scholars have studied the sound radiation behavior and tried to find the
connection between the sound radiation and vibration. They aimed to find an approach
to decouple the sound radiation. Many well-developed numerical methods such as the
finite element method (FEM), finite difference method (FDM) and boundary element
method (BEM) can be adopted. Especially, the BEM has become popular in recent years
due to its advantage of the reduction of dimensionality. However, spurious and fictitious
frequencies occur and stem from non-uniqueness solution problems. They appear in
different aspects on computational mechanics. For example, hourglass modes in the
FEM using the reduced integration occur due to the rank deficiency (Winkler and
Davies, 1984). Also, loss of divergence-free constraint for the incompressible elasticity
also results in spurious modes. In the other aspect of numerical solution for the
differential equation using the FDM, the spurious eigenvalue also appears due to
discretization (Greenberg, 1998; Fujiwara, 1998; Zhao, 2007). If the incomplete set is
adopted in the solution representation such as the real-part BEM (Kuo et al., 2000) or
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the multiple reciprocity method (MRM; Chen and Wong, 1997; Chen and Wong, 1998;
Yeih et a., 1998; Yeih et al., 1999(a)(b); Chen et a., 2003(a)), spurious eigensolutions
occur in solving eigenproblems with simply-connected domain. Even though the
complex-valued kernel is adopted in BEM, the spurious eigensolution also occurs for
multiply-connected problems (Chen et al., 2003(b)) as well as the appearance of
fictitious frequency for exterior acoustics (Chen et a., 2006(a)). Spurious solutions and
fictitious frequencies in the integral formulation belong to spectral pollution since it
cannot be suppressed by refining the mesh. The origin of spurious modes arises from an
improper approximation of null space of the integral operator (Schroeder, 1994). This
chapter focuses on finding a meshless method free of spurious eigenvalue.

In the recent years, the meshless methods started to capture the interest of the
researchers in the community of computational mechanics because these methods are
mesh free and only boundary nodes are necessary (Young et al., 2005; Chen et 4d.,
2006(b); Atluri et. al., 1999; Atluri and Shen, 2002). Among meshless methods, the
Trefftz method is a boundary-type solution procedure using only the T-complete
functions satisfying the governing equation (Li et al., 2008). Since Trefftz presented the
Trefftz method for solving boundary value problems in 1926 (Trefftz, 1926), various
Trefftz methods such as direct formulations and indirect formulations (Kita and Kamiya,
1995) have been developed. The key issue in the use of the indirect Trefftz method is
the definition of T-complete function set, which ensures the convergence of the
subsequent field variable expansions towards the analytical solutions. Many
applications to the Laplace equation (Karageorghis and Fairweather, 1999), the
Helmholtz equation (Fairweather and Karageorghis, 1998), the Navier equation (Jin et
al., 1990 and 1993) and the biharmonic equation (Jirousek and Wroblewski, 1996) were
done. Readers can consult with the Li et al.’s book (Li et a., 2008). However, al the
applications seemed to be limited on simply-connected domains. The concept of
multipole method to solve exterior problems was firstly devised by Zéaviska (1913) and
used for the interaction of waves with arrays of circular cylinders by Linton and Evans
(1990). Recently, Martin (2006) reviewed several methods to solve problems of the
multiple scattering in acoustics, electromagnetism, seismology and hydrodynamics.
However, the interior eigenproblems were not mentioned therein. Extension to interior
multiply-connected problems by using the multipole Trefftz method is also our concern
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of this chapter.

This chapter employs the addition theorem to expand the Bessel (J) and Hankel (H)
functions (Graf, 1893) in the solution representation for matching the boundary
conditions in an analytica way. The so-called multipole Trefftz technique is analytical
and effective in solving problems with the multiply-connected domain. Numerical
experiments were preformed to verify the present method. For the multiply-connected
problem, the mode shapes were plotted by using the multipole Trefftz method and were
compared with the other available results, e.g. exact solutions and BEM data (Chen et

al., 2001; Chen et la., 2004).

3.2 Multipole Trefftz method for multiply-connected problems with
circular boundaries
3.2.1 Problem statement

The governing equation for the eigenproblem is the Helmholtz equation as follows:

(V2 +Kk*)u(x)=0,xeD, (3-1)

where V?, k and D arethe Laplacian operator, the wave number and the domain of
interest, respectively. The multiply-connected domain with circular boundaries is
depicted in Fig. 3-1. The radius of the jth circle and the position vector of its center are

R, and O;, respectively.

3.2.2 Conventional Trefftz method for the simply-connected domain
In the Trefftz method, the field solution u(x) for a simply-connected domain is

superimposed by the T-complete functions, ¢,,(x) , asfollows:
M
U(X) = Z am(pm(x)' (3_2)
m=—M

where ¢, (x) isthe Trefftz base with respect to the origin O, (2M +1) isthe number
of complete functions and ¢, is the mth unknown coefficient which can be
determined by matching the boundary conditions. This chapter focuses on problems
with a circular boundary, so the polar coordinates are utilized and the field point x is

expressed as x =(p,¢). For the circular boundary with a radius R, the complete
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functions for 2D Helmholtz problems are shown below:

on(p.9)=3.(kp)e™, p<R, interiorcase, m=0,+1,+2,...,M,
m = - . 3-3
or(p.¢)=HY (kp)e™, p >R, exterior case, m=0,£1,42,...,M, (33)
where the superscripts of “I” and “E” denote the interior and exterior domains,

respectively.

3.2.3 Graf’s addition theorem
According to the Graf’s addition theorem (Graf, 1893) for Jm(kpp)eim’)p and

HY (kp, )€™, we have

Jm(kpp)eim% — i ‘Jm—n(kbp ) I(m n)quJ (kpq) |n¢q

-3 30k ), 1, )6

N=—o0

(3-4)

| iJm-n<kbpq>e“m-“>9ws><kpq>ei"%.bpq<pq
HO (kp, )e™ =1 . 69
3 HE, (K0, )67 3, (kp, ), B, >

N=—o0

where (b, 0,,) is the position vector (the polar coordinates) of the gth center with

respect to the pth center as shownin Fig. 3-2.

3.2.4 Multipole Trefftz method
Since the multiply-connected domain is considered, both the interior and exterior

complete functions are required. The field solution can be represented by

U(X Pos Gor PLr - r Py D) = z A (Kp5) m%+2 Z a]H(l)(kpj)eimjy (3-6)

s g
where «/ is the unknown coefficient of the mth complete function for O, and the
position vector of the field point x with respect to O; is noted (p;.¢)
j=012,...,N.asshownin Fig. 3-3. In order to enforce the boundary condition on By
(po=R,), we must express each term as a function of (R,,¢,) for the solution
representation. By translating H\Y (kp,)€™ in terms of functions of (p,,¢,) using

the addition theorem of Eq. (3-5), we have
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U(X; R do) = 3 %3, (KR, )e™
m " (3-7)

+y Z ZJmn(kb )e ™M H® (kR )€™, x € B,

j=1 m=-o0 N=—0
where j, m and n in the three summation symbols denote indexes of the number of the
circular holes, number of the Trefftz bases and number of terms in the addition theorem,
respectively. For the Dirichlet problem, the boundary condition on By is U, =0. By

comparing the coefficient of €™ , we have

ald, (KR)+H® (kR,) ZZan (KD )€™ =0,m=0,41£2,...  (38)

j=1 n=—o0
If we consider to enforce the boundary condition on B, (p, =R), J,,(kp,)€™ and
HY (kp; )€™, j=12..,Nandj=l, in Eq. (3-6) are required to transate into

(p.¢) system using the addition theorem. The field solution of Eq. (3-6) yields

U(X;R,qﬂl): Za i‘_‘] (kR) |H¢|J ( g (m-ndo | za H(l) dm

o e e (3-9)
+Z Za Z frm(R.41.0;.0,).x€B,
where
H(l) k mqu kb-| ei(m—n)G ’ ”
fmn(R’¢I’bjl’0j) ( R) ( J) R (3-10)

(kR) |nqﬁ H (1) (kb” ) l(m n)o;, ' bJ| R

By satisfying the boundary condition U =0 and comparing with coefficients, we have

n(KR) Zan v (KDy )€ o HEY (KR )

| (3-11)
+ZZO‘ (R ¢,by, ,|) e™ =0,m=0,+1,+2,....

—l N=—00
]¢I

Equations (3-8) and (3-11) form a system of equations of simultaneous linear algebraic

equations for the coefficients o’ and o m=0,£t1,+2..£tM and

m 1

n=0,+1+2,..,+M, asshown below:
[(D][ N+1)x(2M +1) <[ (N+1)x(2M +1) ] {C}[(N+1)x(2M +1) x1 - {O} ! (3'12)

where



q)ON
) )
H r (3-13)
(D NN
CO
Cl
: (3-14)
CN

in which [®] is dimension of (N+1)x(2M+1) by (N+1)x(2M +1), {c}

denotes the column vector

of unknown coefficients with a dimension of

(N+1)x(2M +1) by 1. The submatrix, [Cqu], denotes the potential of the gth

circular boundary respectto O, . [Cqu] can be written as

_‘J—M (kRP ) eﬁiM(ﬁP J7M +M (kbOp)ei(iMJFM)GOp

JM (kRP)eiM(#PJMJrM (kbop)ei(M+M)90p

q

_Hfll\)n (kRp)eiiM¢pJ7M+M (kbp)ei(—M +M )0,

HY (kR )€™, (kbqp)ei(M*M”qp

Moreover, the gradient of u(x) is

Iy (KRy)e™® 0 0
8 JMﬂ(kRB)e'(M Db | 8 5_q-0
I 0 0 0 J, (kR))e"®
HY, (KR, )e ™ 0 0 0
0 HGL(R)E 0 0| p=a+0,
0 : 0
0 0 0 HP(kR,)e"™ (3-15)

J, (kRp)eiiM%J,M,M (kbop)ei(*’\" -M )by,

T (KR, )% 3, (M, )e™ ™
p=0andq=0
HY (kKR )e™* 3, (Kb, )€

HE (KR, , (Kny )& ™"

ap

otherwise.

-35-



VU=VU(X; Py, Gos Prsis- - P D)

d o 3-16
_v[zam‘]m pr %+ZZO‘ (kp’) mp]} ( )
j=1 m=—w
For the Neumann problem, we have the normal derivative

V] 3 0t ke o3 Sl e o

(3-17)

=1 m=—0

m=0,t1,+2,....

For satisfying the boundary conditions on By (t, = 0) and B, (t, = 0) and comparing with

coefficients, we have

N o
k Hr(l) k |(n m)o;o :0’
TR HHRE(R)Y, 3 e 3, (Ko )€ 319

m=0,+1,+2,...£M andx € B,

and

kR Z an n-m kbOI I(n ™ +arInHr,r$l)(kR)

N=—ow

+Zia-ai (p|'¢|’ il Jl)e_im :o’ (3-19)

; n=w =R
m=0,+1+2,...+M xeB,1=12---N
Equations (3-18) and (3-19) form a system of simultaneous linear algebraic equations
for the coefficients o’ and a), m=0,+1+2,.... By applying the SVD technique
for the matrix [®], the determinant versus k is used to detect eigenvalues and
nontrivial vector of {c} The eigenmode is obtained by searching the right unitary

vector for {c} corresponding to the zero singular value. The number of the zero

singular values implies the multiplicity of roots.

3.3 llustrative examples
We consider two cases of Helmholtz eigenproblem with a multiply-connected domain

subjected to the Dirichlet boundary conditions.

Case 1: acircular membrane with eccentric hole (special case: annulus)
The eccentric domain is shown in Table 3-1. The radii of the outer and inner circular
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boundariesare R,=2 and R =0.5, respectively. The eccentricity e=h, =b,, is0.5.
Both the boundary conditions are U; =0, j =0,1. Extraction of eigenvalues free of
pollution of spurious eigenvalues by using the SVD technique is shown in Fig. 3-4. The
eigenvalues and modes can be obtained as shown in Tables 3-1 and 3-2. The results of
this approach agree well with those of BEM (Chen et al., 2001).

A specia case of eccentric ring is an annular domain which is also considered in Table
3-1 and the radii of the outer and inner circles are the same as the eccentric case. The
two circles are concentric hence the distance between the two poles is zero
(by, =by, =0). The linear algebraic system reduces to that derived by the conventional
Trefftz method. Moreover, the anaytical solution could be derived by using this
approach. Egs. (3-8) and (3-11) can be rewritten as

ald, (KR +asH® (kR))=0,m=0,+1+2,...+ oo, (3-20)

ald, (KR)+asHP (kR)=0,m=0,+1 £2,. .+, (3-21)
According to Egs. (3-20) and (3-21), the analytical equation is found as below:
Jin (KR Y (KR ) = 31 (KR ) Y, (KR, ) =0,m=0,+1,£2,... £ oo, (3-22)

where is the Bessdl function of the second kind. The analytica eigenvalues are also
shown in Table 3-1. By using the SVD technique, the determinant of the influence
matrix versus the wave number is shown in Fig. 3-5. The true eigenvalues and modes
are shown in Tables 3-1 and 3-3, respectively. Although the mode shape corresponding
to the eigenvalues k, and k, seem different from the results of the BEM, mode
shapes of the present method can be linearly superimposed by using the two

independent mode shapes of BEM, and vice versa.

Case 2: acircular membranewith four circular holes

The outer boundary with a radius R;=1 and four holes of equal size with radii
R =01 j=1,234 ae considered and the former five eigenvalues are shown in
Table 3-4. The positions of the four centers of the circular holes are
(0.5,0),(0,05),(-0.5,0) and (0,-0.5). Chen et a. (2004) aso used the BEM for

finding the eigenvalues of Dirichlet problems. The eigenvalules extracted out by the
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SVD are shown in Fig. 3-6. Eigenvalues and eilgenmodes using BEM and the present
method are shown in Tables 3-4 and 3-5, respectively. Although the shapes of modes 2
and 3 seem different from the results of the BEM, mode shapes of the present method
can be linearly superimposed by using the two independent mode shapes of BEM, and

vice versa. Good agreement is made.

3.4 Conclusions

In this chapter, the Graf’s addition theorem was used to reform the awkward situation of
the classical Trefftz method for multiply-connected problems. This approach was coined
the multipole Trefftz method. The multipole Trefftz method has successively provided
an analytical model for solving eigenvalues and eigenmodes of a circular membrane
containing multiple circular holes. The numerical experiments of the
multiply-connected problems were performed to demonstrate the validity of the present
approach. Good agreements between the results of the multipole Trefftz method and the
BEM were made. In addition, the ability of detecting the multiplicity of roots can be
achieved in the multipole Trefftz method by using the SVD technique free of pollution
of spurious eigenvalues. Numerical results show high accuracy and fast rate of

convergence thanks to the anal ytical approach.
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Table 3-1 Thefirst five eigenvalues for a multiply-connected problem with an eccentric
annulus and a concentric annulus using different approaches.

eccentric annulus concentric annulus

A A

Multipole Trefftz BEM Multipole BEM Analytical
(Chenetal. Trefftz (Chen et )
method solution
2001) method al., 2001)

K, 1.74 1.75 2.05 2.06 2.04884
K, 2.13 214 2.22 2.23 2.22375
K, 2.46 2.47 2.22 2.23 2.22375
K, 2.77 2.78 2.66 2.67 2.65993
Ks 2.96 2.98 2.66 2.67 2.65993
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Table 3-2 The first five modes for a multiply-connected problem with an eccentric hole.

Mode No.

eigenvalue

Multipole Trefftz
method

eigenvalue

BEM
(Chen et a., 2001)
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Table 3-3 Thefirst five modes for a multiply-connected problem with a concentric hole.

Mode No. 1 2 3 4 5

eigenvalue 2.05 2.22 2.22 2.66 2.66

Multipole Trefftz
method

eigenvalue

BEM
(Chen et a., 2001)
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Table 3-4 The first five eigenvalues for a multiply-connected problem with four equal holes using different approaches.
A

Multipole Trefftz method BEM

(Chen et a., 2004)
K, 4.499 4.47
K, 5.369 5.37
K, 5.369 5.37
K, 5.549 554
Ky 5.949 5.95
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Table 3-5 The first five modes for a multiply-connected problem with four equal holes.

Mode No. 1 2 3 4 5

eigenvalue 4.499 5.369 5.369 5.549 5.949

Multipole Trefftz
method

eigenvalue 4.47 5.37 5.37 5.54 5.95

BEM
(Chen et al., 2004)
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Figure 3-1 A multiply-connected domain with circular boundaries

Figure 3-2 Notations of the Graf's addition theorem



Figure 3-3 Notations in the multipole Trefftz method
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Figure 3-4 Determinant versus the wave number by using the multipole Trefftz
method for the eccentric case
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Figure 3-5 Determinant versus the wave number by using the multipole Trefftz
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Figure 3-6 Determinant versus the wave number by using the multipole Trefftz
method for the multiply-connected case with four equal holes
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Chapter 4 Conclusions and further research
4.1 Conclusions

In this thesis, we solved eigenproblems by using two methods. One of the approaches
is via the null-field integral equation emphasizing on the two issues of avoiding the
singular and hypersingular integrals and the boundary-layer effect. The key ideais to
approximate the boundary unknowns via truncated spherical harmonics on the
spherical boundaries and to expand kernels of the integral operators into degenerate
form. Those are the fundamental solution by truncating the addition theorem to have
the degenerate kernels. The other one employed the addition theorem to expand the
potential free of the adaptive observer system and the tensor transformation technique.
Based on the proposed formulations for solving the eigenproblems involving circular
and spherical boundaries, some concluding remarks are drawn below. The first four
items are the conclusions of the BIEM, while the other items are the points for the

multipole Trefftz method.

1. A systematic approach to solve eigenproblems for Helmholtz equation with
spherical boundaries was adopted in this thesis by using the null-field integral

eguation in conjunction with degenerate kernels and spherical harmonics.

2. Spurious eigenvalues of a concentric sphere case were studied analytically and
numerically in BIEM. One example was demonstrated to see how the spurious
eigenvalues occur in the concentric sphere. It’s found that spurious eigenvaues

depend on the inner boundary and are independent of the outer boundary.

3. By using the updating term and updating document of SVD technique, true and
spurious eigenvalues can be extracted out, respectively. Besides, true and spurious
boundary eigenvectors are imbedded in the right and left unitary vectors of the

SVD structure in the influence matrices, respectively.
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. The trivial outer boundary densities were examined in case of the spurious
eigenvalue which is found to be the true eigenvalue for the domain bounded by
the inner boundary. We also examined the existence of spurious eigenvaue for a
concentric sphere in an analytica way by using the degenerate kernels and the

spherical harmonics.

. Based on the successful experiences on multipole scattering in Martins’ book, the
conventional Trefftz method was extended to the multipole Trefftz method by
introducing the addition theorem. The addition theorem is employed to expand the
Trefftz bases to the same polar coordinates centered at one circle, where boundary

conditions are specified.

. The multipole Trefftz method has successively provided an analytical model for
solving elgenvalues and eigenmodes of a circular membrane containing multiple
circular holes. The numerical experiments of the multiply-connected problems

were performed to demonstrate the validity of this approach.

In addition, the ability of detecting the eigenvalues of the 2-D multiply-connected
eigenproblems was demonstrated in the multipole Trefftz method free of pollution
of spurious eigenvalues. Numerical results show high accuracy thanks to the

analytical approach.

4.2 Further research

In this thesis, the multipole Trefftz method and the null-field integral equation were

both employed to deal with 2-D and 3-D eigenproblems, respectively. However, there

are several issues which can be further studied.

In the thesis, the fundamental solutions are expanded in the polar and spherical
coordinates and only problems with circular and spherical boundaries can be

solved. For the general boundary, e.g. elipse, it can be further investigated if the
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kernel functions can be expanded to separate form by using the eliptical

coordinates.

. Following the success of applications in concentric sphere, it’s straightforward to
extend this approach to solve the eigenproblems of an eccentric sphere in
conjunction with the adaptive observe system and vector decomposition

technique.

. Although 2-D multiply-connected problems were solved anaytically and
numerically by using the multipole Trefftz method in this thesis, the extension to

solve 3-D eigenproblems may be possible.

Regarding the BIEM, singular center expansion for kernel function has been done.
However, the adaptive observe system and vector decomposition technique are
requested. A bi-center expansion technique may be suitable for the eccentric case
in a more straightforward way free of the adaptive observe system and vector

decomposition technique.
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