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ABSTRACT 
In this paper, we employ the addition theorem and 

superposition technique to solve the scattering problem 
with multiple circular cylinders arising from a point 
sound source. Using the superposition technique, the 
problem can be decomposed into two individual parts. 
One is the free-space fundamental solution. The other is a 
typical boundary value problem (BVP) with boundary 
conditions derived from the addition theorem by 
translating the fundamental solution. Following the 
success of null-field boundary integral formulation to 
solve the typical BVP of the Helmholtz equation with 
Fourier boundary densities, the second-part solution can 
be easily obtained after collocating the observation point 
exactly on the real boundary and matching the boundary 
condition. The total solution is obtained by 
superimposing the two parts which are the fundamental 
solution and the semi-analytical solution of the 
Helmholtz problem. An example was demonstrated to 
validate of the present approach. The parameters of size 
and spacing between cylinders are considered. The 
results are well compared with the available theoretical 
solutions and experimental data. 
Keywords: addition theorem, superposition technique, 
null-field boundary integral formulation, Fourier series.  

1. INTRODUCTION 
Multiple scattering problems occur in many 

applications related to various areas of applied science, 
e.g. acoustics, electromagnetism, elasticity and water- 
wave problems. Mathematically speaking, the scattering 
field appears as the superposition of free field and 
radiation field. A better understanding of scattering 
phenomenon requires a precise knowledge of the 
influence of the different geometrical and physical 
parameters of the problem. Owing to the complexity of 
this problem, a numerical solution is always resorted, 

especially in the case where the number, radii and 
positions of objects are arbitrary. It can be consulted with 
the textbook of Martin [1].  

Many researchers investigated the point-source 
problems in the past years. Row [2-3] successfully 
measured the experimental data of the interaction 
between two circular cylinders within an infinite domain. 
Sherer [4] developed an analytical method for solving the 
scattering problem with multiple rigid circular cylinders 
arranged in an arbitrary configuration. He used the 
Hankel transform method to calculate the incident field 
and determined the scattering fields from each cylinder in 
the collection through the separation of variables. 
Recently, Chen and his group developed the null-field 
integral equation in conjunction with the degenerate 
kernel to solve many engineering problems [5-8]. They 
claimed that their approach is a kind of semi-analytical 
approach since the error comes from truncating the terms 
of Fourier series. Five gains, mesh-free generation, 
well-posed model, principal value free, elimination of 
boundary-layer effect and exponential convergence are 
obtained. They also extended their approach to derive the 
anti-plane dynamic Green’s function [9]. Not only perfect 
but also imperfect interface problems were addressed. 
Chen et al. [10] have proposed an indirect approach to 
construct the Green’s function of Laplace operator by 
using the addition theorem and the superposition 
technique. In addition, Chou [11] utilized the addition 
theorem and superposition technique in the integral 
formulation to solve anti-plane problems with a circular 
boundary subject to a concentrated force and screw 
dislocation. He also proved the mathematical equivalence 
between the direct Green’s-third-identity approach and 
superposition method for anti-plane elasticity problems 
subject to a concentrated force. 

In this paper, the addition theorem and superposition 
technique are employed to solve the scattering problem 
with multiple circular cylinders arising from point sound 
sources. The problem is decomposed into two parts. One 
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is the problem of the fundamental solution for the free 
field. The other is a typical BVP with boundary 
conditions derived from the addition theorem by 
translating the fundamental solution. Following the 
success of null-field boundary integral formulation in 
conjunction with degenerate kernel to solve the typical 
BVP, the second part solution can be easily obtained after 
collocating the observation point exactly on the real  
boundary and matching boundary condition. The total 
solution is obtained by superimposing the two parts. An 
example was demonstrated to validate the proposed 
approach. The parameters of size and spacing of 
cylinders are considered. The results are compared well 
with the available theoretical solutions and experimental 
data. 
 
2. NULL-FIELD BOUNDARY INTEGRAL 

EQUATION METHOD FOR A TYPICAL 
BVP 

2.1 Problem statements  
A typical BVP with H  randomly distributed 

circular cylinders bounded in an infinite domain enclosed 
with the boundaries, Bj ( Hj ,,2,1 L= ), 

.
1
U
H

j
jBB

=

=   (1)

is considered here. The field variable u(x) satisfy  
2 2( ) ( ) 0,∇ + = ∈k u x x D , (2)

where D is the domain, 2∇  is the Laplacian operator, k 
is the wave number which is the angular frequency over 
the speed of sound. The boundary condition can be 
specified to either Dirichlet or Neumann type as follows: 

 ( ) ,= ∈u x u x B , (3)

or ( ) ,∂
= ∈

∂ x

u x t x B
n

. (4)

This problem is a typical BVP, and can be easily solved 
by using the null-field boundary integral equation 
approach. 
 
2.1 Dual null-field integral formulation — the 

conventional version 
Based on the dual boundary integral formulation [5] 

for the domain point, we have 
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where s and x are the source and field points, respectively.   
B is the boundary, nx and ns denote the outward normal 
vector at field point and source point, respectively. and 
the kernel function U(s,x) is the fundamental solution 
which satisfies 

 
Fig. 1 An infinite plane with arbitrary number of 

circular cylinders subject to the Dirichlet or 
Neumann boundary conditions. 

 
)(),()( 22 sxxsUk −=+∇ δ , (7)

where ( )x sδ −  denotes the Dirac-delta function. The 
other kernel functions can be obtained as 
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By moving the field point x to the boundary, the dual 
boundary integral equations for the boundary point can 
be obtained as follows: 
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where R.P.V. is the Riemann principal value, C.P.V. is 
the Cauchy principal value and H.P.V. is the Hadamard 
(or called Mangler) principal value. By moving the field 
point to the complementary domain, the dual null-field 
integral equations are shown as:  
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where the “Dc” denotes the complementary domain.  
 
2.2 Dual null-field integral formulation — the   

present version 
By introducing the degenerate kernels, the 

collocation point can be located on the real boundary 
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without facing singularity. Therefore, the representations 
of integral equations including the boundary point can be 
written as 
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and 
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once the kernel is expressed in terms of an appropriate 
degenerate form. It is found that the collocation point is 
categorized to three regions, domain (Eqs.(5)-(6)), 
boundary (Eqs.(11)-(12)) and complementary domain 
(Eqs.(13)-(14)) in the conventional formulation. After 
using the degenerate kernel for the null-field BIEM, 
Eqs.(15)-(16) and Eqs.(17)-(18) can include the boundary 
point.  
 
2.3 Expansions of the fundamental solution and 

boundary density  
The closed-form fundamental solution as previously 

mentioned is 

4
)(),(

)1(
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where xsr −≡  is the distance between the source 

point and the field point, )1(
0H  is the first kind Hankel 

function of zeroth order, and i  is the imaginary number 
of 12 −=i . To fully utilize the property of circular 
geometry, the mathematical tools, degenerate (separable 
or of finite rank) kernel and Fourier series, are adopted 
for the analytical calculation of boundary integrals.  

 
Fig. 2 Sketch of the null-field integral equation in   

conjunction with the adaptive observer system. 

2.3.1 Degenerate (separable) kernel for fundamental 
solutions 

In the polar coordinate, the field point x and source 
point s can be expressed an ( , ) and ( , )Rρ φ θ , respectively. 
By employing the addition theorem for separating the 
source point and field point, the kernel functions, 

),( xsU , ),( xsT , ),( xsL  and ),( xsM , are expanded 
in terms of degenerate kernel as shown below:  

(1)

0

(1)

0

( , ) ( ) ( )
4
cos[ ( )], ,

( , )
( , ) ( ) ( )

4
cos[ ( )], ,

i
m m m

m

e
m m m

m

iU s x J k H kR

m R
U s x

iU s x J kR H k

m R

ε ρ

θ φ ρ

ε ρ

θ φ ρ

∞

=

∞

=

⎧ −⎪⎪ = ∑⎪⎪⎪⎪⎪ − ≥⎪=⎨⎪ −⎪ = ∑⎪⎪⎪⎪⎪ − <⎪⎩

(20)

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

<−

′−
=

>−

′−
=

=
∑

∑

∞

=

∞

=

,)],(cos[

)()(
4

),(

,)],(cos[

)()(
4

),(

),(

0

)1(

0

)1(

ρφθ

ρε

ρφθ

ρε

Rm

kHkRJkixsT

Rm

kRHkJkixsT

xsT

m
mmm

e

m
mmm

i

(21)

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

<−

′−
=

>−

′−
=

=
∑

∑

∞

=

∞

=

,)],(cos[

)()(
4

),(

,)],(cos[

)()(
4

),(

),(

0

)1(

0

)1(

ρφθ

ρε

ρφθ

ρε

Rm

kHkRJkixsL

Rm

kRHkJkixsL

xsL

m
mmm

e

m
mmm

i

(22)

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

<−

′′−
=

≥−

′′−
=

=

∑

∑

∞

=

∞

=

,)],(cos[

)()(
4

),(

,)],(cos[

)()(
4

),(

),(

0

)1(
2

0

)1(
2

ρφθ

ρε

ρφθ

ρε

Rm

kHkRJikxsM

Rm

kRHkJikxsM

xsM

m
mmm

e

m
mmm

i

 

(23)

where the superscripts “i” and “e” denote the interior and 
exterior cases for the expressions of kernel, respectively, 
and mε  is the Neumann factor 

⎩
⎨
⎧

∞=
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=
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m
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It is noted that U and M kernels in Eqs.(20) and (23) 
contain the equal sign of R=ρ  while T and L kernels 
do not include the equal sign due to discontinuity. 
 
2.3.2 Fourier series expansion for boundary densities 

We apply the Fourier series expansion to approximate 
the boundary density and its normal derivative as 
expressed by 
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where an, bn, pn and qn (n=0,1,2,…) are the Fourier 
coefficients and θ is the polar angle. In the real 
computation, the integrals can be analytically calculated 



中華民國力學學會第三十二屆全國力學會議                                   國立中正大學機械工程學系   97 年11 月28-29 日 

The 32nd National Conference on Theoretical and Applied Mechanics, November 28-29, 2008 

by employing the orthogonal property of Fourier series 
and only M terms is used in the summation instead of 
infinite terms. The present method is one kind of 
semi-analytical methods since errors only occur from the 
truncation of Fourier series. 
 
2.4 Adaptive observer system 

In order to fully employ the property of degenerate  
kernels for circular boundaries, an adaptive observer 
system is addressed as shown in Fig. 2. For the boundary 
integrals, the origin of the observer system can be 
adaptively located on the center of the corresponding 
boundary contour. The dummy variable in the circular 
boundary integration is the angle θ  instead of radial 
coordinate R. By using the adaptive system, all the 
integrals can be easily calculated for multiply-connected 
problems. 
 
2.5 Linear algebraic equation 

In order to calculate the Fourier coefficients, N 
(N=2M+1) boundary nodes for each circular boundary 
are located uniformly on each circular boundary. From 
Eqs.(17) and (18), we have 
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It is noted that the integration path is clockwise. For the 
integral of the circular boundary Bi, the kernels (U(s,x), 
T(s,x), L(s,x) and M(s,x)) are expressed by using the 
degenerate kernel and setting the origin at the center of Bi.  

The boundary densities ( )(su and 
sn
su

∂
∂ )( ) are 

substituted by using the Fourier series. After discretizing 
Eq.(27), a linear algebraic system yields 

}]{[}]{[ uTtU = , (29)
where [U] and [T] are the influence matrices with a 
dimension of H×(2M+1) by H×(2M+1), { }u  and { }t  
denote the column vectors of Fourier coefficients with a 

dimension of H×(2M+1) by 1 for u and u
n

∂
∂

, 

respectively. All the unknown coefficients can be solved 
by using the linear algebraic equation. Then the unknown 
boundary data can be determined and the potential is 
obtained by substituting the boundary data into Eq.(15). 
Based on the null-field integral equation approach, 
successful applications to Laplace, Helmholtz, 
biharmonic and biHelmholtz problems were presented  
in [5-8, 12-25]. 
 

3. METHODS OF SOLUTION 
3.1 Problem statements  

 
Fig.3 Infinite plane with arbitrary number of circular 

cylinders subject to a point sound source at ξ . 
 

 
Fig. 4(a) Free field of the fundamental solution. 

 

  
Fig. 4(b) Radiation field (a typical BVP). 

 
The problem which we would like to solve is the 

scattering problem with multiple cylinders arising from a 
point source as shown in Fig.3. The problem is governed 
by the Helmholtz operator as follows: 

DxxxGk ∈−=+∇ ),(),()( 22 ξδξ , (30)
and the boundary is bounded by 

.
1
U
H

j
jBB

=

=  (31)

Here, the cylinder is specified to be the soft boundary as 
BxxG ∈= ,0),( ξ , (32)

The proposed approach for solving the problem will be 
elaborated on in the next section. 
 
3.2 Green’s function using the addition theorem 

and superposition technique 
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The scattering problem subject to a point sound 
source is shown in Fig.3. It can be decomposed into two 
parts: fundamental solution (free field) and radiation field, 
as shown in Figs.4(a) and 4(b). Based on the addition 

 
Fig.5 Flowchart of the present approach. 

 
theorem, the fundamental solution can be separated into 
the series form using Eq.(20). For matching the boundary 
condition, the superposition of the artificial boundary 
condition ( ),( ξxG f ) in Fig.4(a) and the radiation 

boundary condition ( ),( ξxGr ) in Fig.4(b) must satisfy 
the original boundary condition in Fig.3. The second part 
(radiation field) is a typical BVP and can be easily solved 
by employing the null-field integral equation approach as 
mentioned in Section 2. For clarity, the flowchart of our 
method is shown in Fig.5. 

 
3.3 Green’s third-identity approach 

Based on the Green’s third identity, two systems, u 
and v, yield 
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By selecting u as the fundamental solution ),( sxU  and 
v as the Green’s function ),( ξsG , the Green’s third 
identity gives: 
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3.4 Equivalence between the solution using the 

Green’s third identity and superposition 
technique 
The boundary integral equation for the free field 

problem can be written as:  
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where ( , )fG x ξ  is the free field. The boundary integral 
equation for the typical boundary value problem can be 
written as 
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where ( , )rG x ξ  is the second part solution for the 
typical BVP. By superimposing Gf and Gr in Eqs.(36) and 
(37), respectively, we have 
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must satisfy the original boundary conditions. By 
comparing Eq.(38) with Eq.(35), we can find 

( , ) ( , ) ( , ).ξ ξ ξ= +f rG x G x G x  Therefore, we have 
proven the mathematical equivalence between the 
solution of Green’s third identity and that of 
superposition technique. 

 
4. AN ILLUSTRACTIVE EXAMPLE 

We consider an infinite plane with two identical 
circular cylinders subject to a point sound source as 
shown in Fig. 6. The radii of the two identical cylinders 
are a. The locations of source and probe are at )0,100(−  
and ),2( yλ , respectively , where λ  is the wave length. 
The distance between the two centers of identical 
cylinders is 2b. The boundary conditions are the Dirichlet  
types ( 0),( =ξxG ) due to the soft cylinder. The 
potential distribution along the artificial boundary for the 
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Fig. 6 An infinite plane with two equal circular 

cylinders subject to a point sound source. 
 
free field is shown in Figs. 7 and 8 versus circular 
boundary and polar angle, respectively. Both the 
closed-form formula of Eq.(19) and series-form formula 
of Eq.(20) are given. After obtaining the total field at the 
probe, the relative amplitude is defined by dividing the 
total field with respect to the free field at (2λ ,0). By 

considering πλ = , π
2
1

=b  and λ05.0=a , the 

relative amplitude of the total field versus y of probe 
location is shown in Fig.9. The result agrees well with 
theoretical results and experimental data by Row [2]. 
 

 
Fig. 7 Distribution potential on the artificial 

boundaries in the free field (upper part: 
series-form, lower part: closed-form, M=20 ). 
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Fig. 8 Distribution potential on the artificial 

boundaries in the free field versus polar angle.  
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Fig. 9 Relative amplitude of total field versus the 

probe location y (M=20). 
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Fig. 10(a) Convergence test of Parseval’s sum for 

xnxG ∂∂ ),( ξ  (real part). 
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Fig. 10(b) Convergence test of Parseval’s sum for 

xnxG ∂∂ ),( ξ  (imaginary part). 
 
The convergence rate is examined by using the  
Parseval’s sum in Figs.10(a) and 10(b), for real and 
imaginary parts, respectively. It is found that only few 
terms for Fourier series are required. In the real 
calculation, twenty terms are adopted. By changing the 
size of cylinder ( a ) and the same parameters of  πλ = , 

π
2
1

=b , the relative amplitudes are shown in Figs.11 

and 12 for different sizes of cylinders λ2.0=a  and 
λ318.0=a , respectively.  Agreement with the Row’s 

data is observed. By setting the fixed probe at )0,2( λ , 
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the relative amplitudes versus the spacing between the 
two cylinders for λ2.0=a , λ24.0 , λ318.0 , 

λ477.0  are shown in Figs.13-16, respectively,  to see 
the effect of distance between the two cylinders for 
various sizes of cylinders. All the results in Figs.13-16 
agree well with the theoretical and experimental data by 
Row [2]. 

Although only two cylinders are used in this 
proposed approach, our approach can be extended to deal 
with multiple cylinders problems. In this example, 
efficacy of the proposed method of the sound scattering 
problem is verified.  
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Fig. 11 Relative amplitude of total field versus the 

probe location (M=20). 
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Fig. 12 Relative amplitude of total field versus the 

probe location (M=20). 
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Fig. 13 Relative amplitude of total field versus λb2  

( λ2.0=a  and M=20). 
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Fig. 14 Relative amplitude of total field versus λb2  

( λ24.0=a  and M=20). 
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Fig. 15 Relative amplitude of total field versus λb2  

( λ318.0=a  and M=20). 
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Fig. 16 Relative amplitude of total field versus λb2  

( λ477.0=a  and M=20). 
 

In addition, it can be extended to deal with scattering 
problem in different engineering areas, e.g. water-wave 
problem or electromagnetism, by following the same 
concept. 
 
5. CONCLUSIONS 

In this paper, we proposed the addition theorem 
and superposition technique to solve the scattering 
problem of two identical cylinders subject to a point 
source. Regarding the BVP with circular boundaries, we 
have proposed a BIEM formulation by using degenerate 
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kernels, null-field integral equation and Fourier series in 
companion with adaptive observer system. This method 
is a semi-analytical approach for the problems with 
circular boundaries since only truncation error in the 
Fourier series is involved. The method shows great 
generality and versatility for the problems with multiple 
cylinders of arbitrary number, radii and positions. A 
general-purpose program for solving the problems with 
arbitrary number, size and various locations of circular 
cavities was developed. Therefore, not only the sound 
scattering problems from a point source but also 
electromagnetic scattering problems can be solved by 
using the present approach. Good agreement is observed 
after comparing with theoretical and experiment data. 
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