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ABSTRACT 
In this paper, a system approach, null-field integral 

equation in conjunction with the degenerate kernel, is 
used to solve the radiation problem of two spheres. The 
null-field integral equation instead of the conventional 
boundary integral equation can avoid the singular and 
hypersingular integrals. To fully utilize the spherical 
geometry, the fundamental solutions and the boundary 
densities are expanded by using degenerate kernels and 
spherical harmonics in the spherical coordinate, 
respectively. The main difference between the present 
approach and the conventional boundary integral 
equation is that the collocation point can be exactly 
located on the real boundary owing to introducing the 
degenerate kernel. The proposed approach is seen as one 
kind of semi-analytical methods, since the error is 
attributed from the truncation of spherical harmonics in 
the implementation. For the single sphere, the present 
approach can obtain the analytical solution. Finally, a 
two-spheres radiation problem is given to verify the 
validity of proposed approach. 
Keywords: radiation, null-field integral equation, 
degenerate kernel, spherical harmonics, semi-analytical 
method 

1. INTRODUCTION 
It is well known that boundary integral equation 

methods (BIEMs) have been used to solve radiation and 
scattering problems for many years. The importance of 
the integral equation in the solution, both theoretical and 
practical, for certain types of boundary value problems is 
universally recognized. One of the problems frequently 
addressed in BIEM/BEM is the problem of irregular 
frequencies in boundary integral formulations for exterior 
acoustics and water wave problems. These frequencies 
do not represent any kind of physical resonance but are 
due to the numerical method, which has non-uniqueness 
solutions at characteristic frequencies associated with the 
eigenfrequency of the interior problem. Burton and 
Miller approach [1] as well as CHIEF technique [2] have 

been employed to deal with these problems. 
  Regarding the irregular frequency, a large amount 

of papers on acoustics have been published. For example, 
numerical examples for non-uniform radiation and 
scattering problems by using the dual BEM were 
provided and the irregular frequencies were found [3]. 
The non-uniqueness solution of radiation and scattering 
problems are numerically manifested in a rank deficiency 
of the influence coefficient matrix in BEM [1]. In order 
to obtain the unique solution, several integral equation 
formulations that provide additional constraints to the 
original system of equations have been proposed. Burton 
and Miller [1] proposed an integral equation that was 
valid for all wave numbers by forming a linear 
combination of the singular integral equation and its 
normal derivative. However, the calculation for the 
hypersingular integration is required. To avoid the 
computation of hypersingularity, Schenck [2] used an 
alternative method, the CHIEF method, which employs 
the boundary integral equations by collocating the 
interior point as an auxiliary condition to make up 
deficient constraint condition. Many researchers [4-6] 
applied the CHIEF method to deal with the problem of 
fictitious frequencies. If the chosen point locates on the 
nodal line of the associated interior eigenproblem, then 
this method may fail. To overcome this difficulty, Seybert 
and Rengarajan [4] and Wu and Seybert [5] employed a 
CHIEF-block method using the weighted residual 
formulation for acoustic problems. On the contrary, only 
a few papers on water wave can be found. For water 
wave problems, Ohmatsu [7] presented a combined 
integral equation method (CIEM), which was similar to 
the CHIEF-block method for acoustics proposed by Wu 
and Seybert [5]. In the CIEM, two additional constraints 
for one interior point result in an overdetermined system 
to insure the removal of irregular frequencies. An 
enhanced CHIEF method was also proposed by Lee and 
Wu [6]. The main concern of the CHIEF method is how 
many numbers of interior points are required and where 
the positions should be located. 

Recently, the appearance of irregular frequency in 
the method of fundamental solutions was theoretically 
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2.1 Problem statement proved and numerically implemented [8]. However, as 
far as the present authors are aware, only a few papers 
have been published to date reporting on the efficacy of 
these methods in radiation and scattering problems 
involving more than one vibrating body. For example, 
Dokumaci and Sarigül [9] discussed the fictitious 
frequency of radiation problem of two spheres. They 
used the surface Helmholtz integral equation (SHIE) and 
the CHIEF method to examine the position of fictitious 
frequency. In our formulation, we are also concerned 
with the fictitious frequency especially for the multiple 
spheres of scatters and radiators. We may wonder if there 
is one approach free of both Burton and Miller approach 
and CHIEF technique to deal with irregular frequencies. 

The problem considered here is the radiation 
problem vibrating by two spheres. This problem is 
governed by the Helmholtz equation as follows: 

,,0)()( 22 Dxxuk ∈=+∇  (1)
where u(x) is the velocity potential,  is the 
Lapalacian operator, k and D denote the wave number 
and the domain of interest, respectively. Two spheres are 
shown in Fig. 1. The radius of two identical spheres is a. 

2∇

 
2.2 Dual boundary integral equation 

formulation — the conventional version 
The dual boundary integral formulation for the 

domain point is shown below: In the recent years, Chen and his group used the 
null-field integral equation formulation in conjunction 
with degenerate kernel and Fourier series to deal with 
many engineering problem with circular boundaries, such 
as torsion bar [10], water wave [11], Stokes flow [12], 
plate vibrations [13] and piezoelectricity problems [14]. 
They claimed that the approach has high accuracy and is 
one kind of semi-analytical approach. However, their 
applications only focused on problems of 
two-dimensional domain. In this paper, we would like to 
extend this idea to three-dimensional problems. 
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where x and s are the field and source points, respectively,   
“S” is the spherical surface, t(s) is the normal derivative 
on the source point, and the kernel function U(s,x) is the 
fundamental solution which satisfies 

In this paper, a system approach, the null-field 
integral equation method in conjunction with the 
degenerate kernel, is used to study on the radiation 
problems of one and two spheres. By using the null-field 
integral equation instead of the boundary integral 
equation, we can avoid the singular and hypersingular 
integrals. To fully utilize the spherical geometry, the 
fundamental solutions and the boundary densities are 
expanded by using degenerate kernels and spherical 
harmonics, respectively. In this approach, the collocation 
point can be exactly located on the real boundary after 
introducing the degenerate kernel. The proposed 
approach is seen as one kind of semi-analytical methods, 
since the error only stems from the truncation of 
spherical harmonics. For the radiation of one sphere, the 
analytical solution can be derived via the proposed 
approach. Besides, a two-spheres radiation example is 
given to verify the validity of proposed approach. 
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where δ  is the Dirac-delta function. The other kernel 

functions can be obtained as 
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where nx and ns denote the outward normal vector at the 
field point and the source point, respectively. If the 
collocation point x is on the boundary, the dual boundary 
integral equations for the boundary point can be obtained 
as follows: 

 
2. PROBLEM STATEMENT AND THE 

RESENT APPROACH 
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where R.P.V. C.P.V. and H.P.V. are the Riemann 
principal value, the Cauchy principal value and the 
Hadamard (or called Mangler) principal value, 
respectively. By collocating x  outside the domain, we 
obtain the null-field integral equation as shown below: Fig. 1 Sketch of two spheres 
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2.4.1 Degenerate (separable) kernel for fundamental 
solutions 
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In the spherical coordinate, the field point, x , and 
source point, s , can be expressed as ),,( θφρ=x  and 

),,( θφρ=s  in the spherical coordinate, respectively. 
By employing the addition theorem for separating the 
source point and field point, the kernel functions, U(s,x), 
T(s,x), L(s,x) and M(s,x), are expanded in terms of 
degenerate kernel as shown below: where cD  denotes the complementary domain. 

 
2.3 Dual null-field integral equation 

formulation — the present version 
By introducing the degenerate kernels, the 

collocation points can be located on the real boundary 
free of facing singularity. Therefore, the representations 
of integral equations including the boundary point can be 
written as 
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and 
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once the interior “i” or exterior “e” kernel is expressed in 
terms of an appropriate degenerate form. It is found that 
the collocation point is categorized to three positions, 
domain (Eqs.(2)-(3)), boundary (Eqs.(8)-(9)) and 
complementary domain (Eqs.(10)-(11)) in the 
conventional formulation. After using the degenerate 
kernel for the null-field BIEM, both Eqs.(12)-(13) and 
Eqs.(14)-(15) can contain the boundary point.  
 
2.4 Expansions of the fundamental solution and 

boundary density 
The fundamental solution as previously mentioned is 
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where the superscripts “i” and “e” denote the interior and 
exterior regions,  and  are the nth order 
spherical Bessel function of the first kind and the nth 
order spherical Hankel function of the second kind, 
respectively,  is the associated Lengendre 

polynomial and 

nj
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mε  is the Neumann factor, 
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It is noted that U and M kernels in Eqs.(17) and (20) 
contain the equal sign of ρρ =  while T and L kernels 
do not include the equal sign due to discontinuity. 
 
2.4.2 Spherical harmonics expansion for boundary 

densities 
We apply the spherical harmonics expansion to 

approximate the boundary density and its normal 
derivative on the surface of sphere. Therefore, the 
following expressions can be obtained 

where xsr −≡  is the distance between the source 
point and the field point and i is the imaginary number 
with . To fully utilize the property of spherical 
geometry, the mathematical tools, degenerate (separable 
or of finite rank) kernel and spherical harmonics, are 
utilized for the analytical calculation of boundary 
integrals.  
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Fig. 2 Adaptive observer system 
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where  and  are the unknown spherical 
coefficients on Bi ( ). However, only M number of 
truncated terms for v is used in the real implementation. 

i
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vwB
2,1=i

 
2.5 Adaptive observer system 

Since the boundary integral equations are frame 
indifferent, i.e. rule of objectivity is obeyed. Adaptive 
observer system is chosen to fully employ the property of 
degenerate kernels. Fig. 2 shows the boundary 
integration for the spherical boundaries. It is worthy of 
noting that the origin of the observer system can be 
adaptively located on the center of the corresponding 
circle under integration to fully utilize the geometry of 
sphere. The dummy variable in the integration on the 
surface are the angles ( θ  and φ ). By using the 
adaptive observer system, all the boundary integrals can 
be determined analytically without using the concept of 
principal value. 
 
2.6 Linear Algebraic Equation 

In order to calculate the P  ( 2)1)(2( ++= MMP ) 
unknown spherical harmonics, P boundary points on 
each spherical surface are needed to be collocated. By 
collocating the null-field point exactly on the kth 
spherical surface for Eqs.(14) and (15) as shown in Fig. 2, 
we have 
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where N is the number of spheres. For the Sj boundary 
integral of the spherical surface, the kernels of U(s,x), 
T(s,x), L(s,x) and M(s,x) are respectively expressed in 
terms of degenerate kernels of Eqs. (17)-(20) with 
respect to the observer origin at the center of Sj. The 

boundary densities of u(s) and t(s) are substituted by 
using the spherical boundary harmonics of Eqs. (22)-(25), 
respectively. In the Sj integration, we set the origin of the 
observer system to collocate at the center Oj of Sj to fully 
utilize the degenerate kernel and spherical harmonics. By 
locating the null-field point on the real surface Sk from 
outside of the domain Dc in the numerical 
implementation, linear algebraic systems are obtained as 
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where [U], [T], [L] and [M] are the influence matrices 
with a dimension of  by , and {t} 
and {u} denote the vectors for t(s) and u(s) of the 
spherical harmonics coefficients with a dimension of 
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where the vectors {uk} and {tk} are in the form of 
and ; the 

first subscript “

Tk
PP

kkk AAAA }{ 111000 L Tk
PP

kkk BBBB }{ 111000 L

α ” ( α =1, 2, …, N ) in the 
denotes the index of the  sphere where the 

collocation point is located and the second subscript 
“

][ αβU thα

β ” ( β =1, 2, …, N ) denotes the index of the  
sphere where the boundary data {uk} or {tk} are specified. 
The coefficient matrix of the linear algebraic system is 
partitioned into blocks, and each diagonal block (Upp) 
corresponds to the influence matrices due to the same 
sphere of collocation and spherical harmonics expansion.  

thβ
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Case 1. A sphere pulsating with uniform radial 
velocity 

 

In first case, one sphere is pulsating with uniform 
radial velocity U0. The exact solution found in [15] is 
shown below: 

Fig. 3 The flowchart of the present method 
 
After uniformly collocating the point along the  
spherical surface, the elements of , , 

 and  are defined as 
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where z0 is the characteristic impedance of the medium 
cz 00 ρ=  in which 0ρ  is the density of the medium at 

rest and c is the sound velocity, and p is the sound 
pressure which is defined as 
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in which ω  is the angular frequency and k is the wave 
number that equals to the angular frequency over sound 
velocity. After expanding the surface density by using 
spherical harmonics, we have 

000 UB = , (41)
and the other coefficients are zero. Then, the unknown 
coefficient can be obtained as follows: 
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by using Eq. (14). After obtaining the unknown 
coefficient, we have 
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The present expression seems to vary from the exact 
solution in Eq. (39). However, the spherical Hankel 
function can be represented by using the series form 
found in [16] as shown below: 

.)2(
)1(!

)!(
0

11)2( ∑
=

−−−+ −
+−Γ

+
=

n

m

mizn
n iz

mnm
mnezih (44)

After substituting Eq. (44) into Eq. (43), the result of our 
approach can yield the same exact solution of Eq. (39). 
Figs. 4(a) and 4(b) show the real and imaginary parts of 
non-dimensional pressure on the surface by using the 
numerical procedure which M is truncated in the finite 
number of terms. Here, M is chosen to be six and twenty 
nodes are distributed on the spherical surface as shown in 
Fig.4. In Figs. 5(a) and 5(b), irregular frequency does not 
appear due to the cancellation of zero divided by zero in 
our formulation. However, Seybert et al. [15] needed to 
improve their result by using the CHIEF method. For this  where kφ  and kθ  ( ) are the spherical 

angles of the spherical coordinate for the source points. 
After obtaining the unknown spherical harmonics, 
interior potential can be obtained by employing Eq.(12). 
The flowchart of the present method is shown in Fig. 3. 

Nk L,2,1=
 

 

 
3. NUMERICAL EXAMPLES 

Here, three cases are given to demonstrate the 
validity of proposed approach. Cases 1 and 2 are 
one-sphere radiation problems subject to various 
boundary conditions. They can be seen as special cases. 
Case 3 is a two-spheres radiation problem with uniform 
radial velocity.  

Fig. 4 Distribution of collocation points for a sphere  
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Fig. 6 Distribution of collocation points for a sphere 
 
coefficient, we have 

Fig. 5(a) Real part of non-dimensional pressure on the 
surface 
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Fig. 5(b) Imaginary part of non-dimensional pressure 

on the surface 
 
point, we can claim that our approach is more accurate 
than that of Seybert et al [15]. 
 
Case 2. A sphere oscillating with non-uniform 

radial velocity 
In this case, one sphere is oscillating with radial 

velocity θcos0U . The exact solution is also found in 
[15] as 

( ) .cos
)1(2

)1(),( )(
022
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2
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ikkaizap −−

−+
+
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⎠

⎞
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⎛
= ρθρ

ρ
θρ  (45)

After expanding the boundary density by using the 
spherical harmonics, we have 

010 UB = , (46)
and the other coefficients are zero. Then, the unknown 
coefficient can be obtained as follows: 

0)2(
1

)2(
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−=  (48)

Similarly, the present representation seems not to be 
equivalent to the exact solution of Eq.(45) for the first 
look. After substituting series form of the spherical 
Hankel function, we can prove the equivalence between 
Eq.(48) and (45).  
 
Case 3. Two spheres vibrating from uniform 

radial velocity 
After successfully solving one-sphere problems, we 

extend our approach to deal with the two-spheres 
radiation problem. As shown in Fig. 1, the two spheres 
vibrate with uniform radial velocity U0. In the real 
calculation, we choose M to be ten. Sixty-six nodes are 
distributed on each sphere as shown in Fig.6. Figs. 7(a), 
8(a) and 9(a) show the pressure contours of two dilating 
spherical sources at the horizontal plane of 0=z  for 

1=ka , 2=ka  and 1.0=ka , respectively, by using 
the SHIE [9]. Figs. 7(b), 8(b) and 9(b) are the 
corresponding results by using the present approach. 
After comparing our results with those of SHIE, good 
agreement is observed. 

In the three cases, it is found that the analytical 
solution for the simple case (one sphere) can be derived 
by using our approach. For more than two spheres case, 
the boundary density is truncated to a finite number of 
terms. The collocation points are located on the real 
boundary to match boundary conditions and the unknown 
spherical harmonics coefficients can be easily determined. 
Since the error is attributed from the truncated finite 
number of terms of spherical harmonics coefficients, our 
approach can be seen as one kind of semi-analytical 
methods. 
 
4. CONCLUSIONS 

For the three-dimensional radiation problems, we 
have proposed a null-field integral equation formulation 
by using degenerate kernels and spherical harmonics in 
companion with adaptive observer systems. This method 
is a semi-analytical approach for Helmholtz problems 
with spherical boundaries since only truncation error in 
the spherical harmonics is involved. Although cases of 
one and two spheres are used, the present approach can by using Eq. (14). After obtaining the unknown  
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solve more general problems with multiple cylinders of 
arbitrary number, radii and positions without any 
difficulty. In addition, fictitious frequencies do not appear 
in the present formulation. A general-purpose program 
for solving radiation problem with arbitrary number, size 
and various locations of cylinders was developed. 
Pressure contours were compared well with the analytical 
and numerical solutions. 
 
5. ACKNOWLEDGEMENT 

This research was partially supported by the National 
Science Council in Taiwan through Grant NSC 
96-2221-E-019-041. 
 
6. REFERENCES 
[1] A.J. Burton and G.F. Miller, “The application of 

integral equation methods to numerical solution of 
some exterior boundary value problems,” Proc. Roy. 
Soc. Ser. A, vol. 323, pp. 201-210, 1971. 

[2] H.A. Schenck, “Improved integral formulation for 
acoustic radiation problem,” J. Acous. Soc. Am., vol. 
44, pp. 41-58, 1968. 

[3] J.T. Chen, K.H. Chen, I.L. Chen and L.W. Liu, “A 
new concept of modal participation factor for 
numerical instability in the dual BEM for exterior 
acoustics,” Mech. Res. Commun., vol. 26(2), pp. 
161-174, 2003. 

[4] A.F. Seybert and T.K. Rengarajan, “The use of 
CHIEF to obtain unique solutions for acoustic 
radiation using boundary integral equations,” 
J. Acous. Soc. Am., vol. 81, pp. 1299-1306, 1968. 

[5] T.W. Wu and A.F. Seybert, “A weighted residual 
formulation for the CHIEF method in acoustics,” J. 
Acoust. Soc. Am., vol. 90(3), pp. 1608-1614, 1991. 

[6] L. Lee and T.W. Wu, “An enhanced CHIEF method 
for steady-state elastodynamics,” Engng. Anal. Bound. 
Elem., vol. 12, pp. 75-83, 1993. 

[7] S. Ohmatsu, “A new simple method to eliminate the 
irregular frequencies in the theory of water wave 
radiation problems,” Papers of Ship Research 

Institute 70, 1983. 
[8] I.L. Chen, “Using the method of fundamental 

solutions in conjunction with the degenerate kernel in 
cylindrical acoustic problems,” J. Chin. Inst. Eng., 
vol. 29(3), pp. 445-457, 2006. 

[9] E. Dokumaci and A.S. Sarigül, “Analysis of the near 
field acoustic radiation characteristics of two radially 
vibrating spheres by the Helmholtz integral equation 
formulation and a critical study of the efficacy of the 
CHIEF over determination method in two-body 
problems,” J. Sound Vib., vol. 187(5), pp. 781-798, 
1995. 

[10] J.T. Chen, W.C. Shen and P.Y. Chen, “Analysis of 
circular torsion bar with circular hole using null-field 
approach,” CMES, vol. 12(2), pp. 109-119, 2006. 

[11] J.T. Chen and Y.T. Lee, “Interaction of water waves 
with an array of vertical cylinders using null-field 
integral equations,” The 14th National 
Computational Fluid Dynamics Conference, Taiwan, 
2007. 

[12] J.T. Chen, C.C. Hsiao and S.Y. Leu, “A new method 
for Stokes’ flow with circular boundaries using 
degenerate kernel and Fourier series,” Int. 
J. Numer. Meth. Engng., vol. 74, pp. 1955-1987, 
2008. 

[13] W.M Lee and J.T. Chen, “Null-field integral 
equation approach for free vibration analysis of 
circular plates with multiple circular holes,” Comput. 
Mech., vol. 42, pp. 733-747, 2008.  

[14] J.T. Chen and A.C. Wu, “Null-field approach for 
piezoelectricity problems with arbitrary circular 
inclusions,” Engng. Anal. Boun. Elem., vol. 30, pp. 
971-993, 2006. 

[15] A.F. Seybert, B. Soenarko, F.J. Rizzo and D.J. 
Shippy, “An advanced computational method for 
radiation and scattering of acoustic waves in three 
dimensions,” J. Acoust. Soc. Am., vol. 77(2), pp. 
362-368, 1985. 

[16] M. Abramowitz and I.A. Stegun, Handbook of 
mathematical functions with formulas, graphs, and 
mathematical tables, Dover, New York, 1965.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



中華民國力學學會第三十二屆全國力學會議                                   國立中正大學機械工程學系   97 年11 月28-29 日 

The 32nd National Conference on Theoretical and Applied Mechanics, November 28-29, 2008 

 

 

-8 -6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8

 
Fig. 7(a) Pressure contours by using the SHIE [9] 

 (z=0 and ka=1) 
 

Fig. 7(b) Pressure contours by using the present 
approach (z=0 and ka=1) 
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Fig. 8(a) Pressure contours by using the SHIE [9]  

(z=0 and ka=2) 
 

Fig. 8(b) Pressure contours by using the present 
approach (z=0 and ka=2) 
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Fig. 9(a) Pressure contours by using the SHIE [9] 

(z=0 and ka=0.1) 
Fig. 9(b) Pressure contours by using the present 

approach (z=0 and ka=0.1) 
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