

Dual Integral Equations and Dual Series Representation

• Dual Integral Equations:

$$u(x,t) = \int_{0}^{t} \int_{u}^{t} U(s,x;\tau,t) \, \$(s,\tau) dB(s) d\tau - \int_{0}^{t} \int_{u}^{t} T(s,x;\tau,t) \, \$(s,\tau) dB(s) d\tau + \int_{0}^{t} \int_{v}^{t} U(s,x;\tau,t) \, f(s,\tau) dV(s) d\tau t(x,t) = \int_{0}^{t} \int_{u}^{t} L(s,x;\tau,t) \, \$(s,\tau) dB(s) d\tau - \int_{0}^{t} \int_{u}^{t} M(s,x;\tau,t) \, \$(s,\tau) dB(s) d\tau + \int_{0}^{t} \int_{v}^{t} L(s,x;\tau,t) \, f(s,\tau) dV(s) d\tau$$

Series :
$$U(s,x;\tau,t) = \lim_{N \to \infty} C(N,1) \left\{ \sum_{m=1}^{N} e^{-k \omega_m (t-\tau)} u_m(x) \, u_m(s) / N_m \right\} T(s,x;\tau,t) = \lim_{N \to \infty} C(N,2) \left\{ \sum_{m=1}^{N} e^{-k \omega_m (t-\tau)} t_m(x) \, u_m(s) / N_m \right\} L(s,x;\tau,t) = \lim_{N \to \infty} C(N,2) \left\{ \sum_{m=1}^{N} e^{-k \omega_m (t-\tau)} t_m(x) \, u_m(s) / N_m \right\} M(s,x;\tau,t) = \lim_{N \to \infty} C(N,2) \left\{ \sum_{m=1}^{N} e^{-k \omega_m (t-\tau)} t_m(x) \, t_m(s) / N_m \right\}$$

C(N,r): Cesaro operator with order r

Methods of Solution for Heat Conduction Problems with Time-Dependent Boundary Conditions

- Series Solution
- Large Conductance Technique

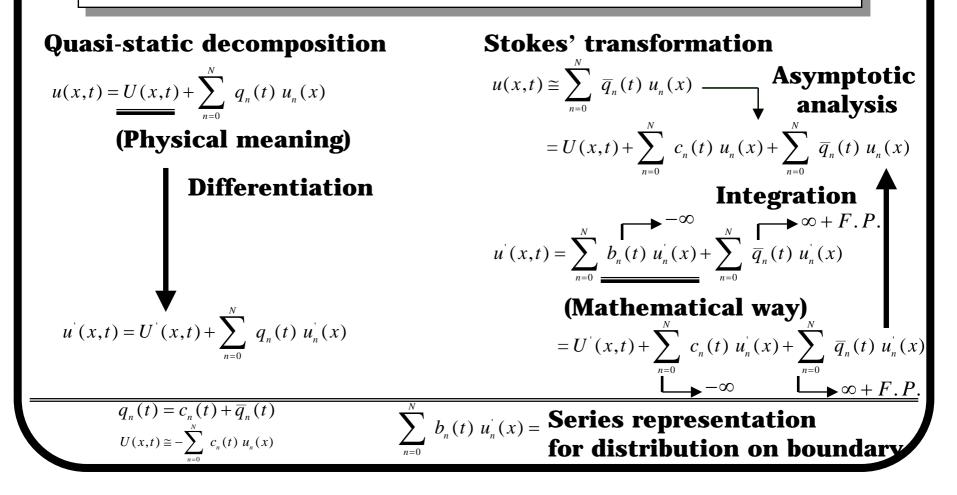
Including high frequency modes

Quasi-static Decomposition

Mindlin and Goodman, C. L. Dym and H. Reismamn

- Cesaro sum
- Stokes' Transformation

Relations of Series Representation, Large Conductance Technique, Cesaro Sum, Quasi-static Decomposition and Stokes' Transformation Motivations of Quasi-static Decomposition and Stokes' Transformation



Three Analytical Ways and One Simulation Technique to Introduce the Quasi-static Part

- By Solving Boundary Value Problem Directly
 Quasi-static decomposition method (Mindlin and Goodman)
- By Integrating the Secondary Field Derived from Stokes' Transformation Boundary terms are available
- By Adding-and-Subtracting Technique Using Asymptotic Analysis

Series representation (Eringen and Suhubi)

- Large Conductance Technique (MSC/NASTRAN)
 - Including high frequency modes

Cesaro Regularization Technique

• Series Solution(Partial Sum)

 α

a

$$S_{0} - a_{0}$$

$$S_{1} = a_{0} + a_{1}$$

$$S_{2} = a_{0} + a_{1} + a_{2}$$
M4M
$$S_{N-1} = a_{0} + a_{1} + a_{2} + L + a_{N-1}$$
(partial sum) $S_{N} = a_{0} + a_{1} + a_{2} + L + a_{N-1} + a_{N}$ (divergent, $N \to \infty$)
$$\frac{S_{0} + S_{1} + L + S_{N-1} + S_{N}}{N+1} = a_{0} + \frac{N}{N+1}a_{1} + \frac{N-1}{N+1}a_{2} + L + \frac{2}{N+1}a_{N-1} + \frac{1}{N+1}a_{N}$$
 (convergent, $N \to \infty$)
(Cesaro sum) $S_{N} = \frac{1}{N+1}\sum_{k=0}^{N} (N-k+1) a_{k}$ (moving average)

Stokes' Transformation --- Summation by Parts

- Term by Term Differentiation Is Not Always Legal
- Boundary Term Is Present for Some Gases

$$f'(x) = \frac{d}{dx} \mathbf{k} f(x) \mathbf{p} = \frac{d}{dx} \mathbf{k} \sum_{k=0}^{N} c_k u_k(x) \mathbf{p} = \sum_{k=0}^{N} c_k u_k'(x) + \sum_{k=0}^{N} b_k u_k'(x)$$

if $\sum_{k=0}^{N} b_k u_k'(x) \neq 0$
Boundary term

Term by Term Differentiation Is Legal

f
$$\sum_{k=0}^{N} b_k u_k(x) = 0$$

Why Cesaro sum can Extract the Finite Part of Divergent Series

$$\nabla u(x,t) = \sum_{l=0}^{N} \overline{q}_{l}^{\nabla}(t) \nabla u_{l}(x) = \sum_{l=0}^{N} \frac{1}{N_{l}} \omega_{l} \{ I_{bu} u(s,t) \frac{\partial u_{l}(s)}{\partial n_{s}} dB(s) \} \nabla u_{l}(x) + \sum_{l=0}^{N} \overline{q}_{l}(t) \nabla u_{l}(x)$$
(convergent) (divergent) (divergent)
$$C(N,2) \text{ operator} \downarrow C(N,2) \text{ operator} \downarrow C$$

Regularization Techniques --- Different Points of View

• Divergent Integral (Hypersingular kernel) :

$$H.P.V. \square M(s,x) u(s)dB(s)$$

• Divergent Series (Dual series representation) :

$$C(N,2) \{ \sum_{m=0}^{N} \prod_{B} t_{n}(s) u(s,t) dB(s) t_{n}(x) \}$$

Cesaro Sum (Arithmetic mean) :

$$S_N(x,t) = C(N,1) \{ \sum_{m=0}^{N} a_m(x,t) \} = \frac{s_0(x,t) + s_1(x,t) + L + s_{N-1}(x,t) + s_N(x,t)}{N+1} \}$$

• Reproducing Kernel (Fejer kernel) :

$$F_{N+1}(x) = \frac{1}{2\pi(N+1)} \frac{\sin^2\left((N+1)x/2\right)}{\sin^2\left(x/2\right)}$$

• Moving Average (MA model) :

$$S_{N}(x,t) = \frac{1}{N+1} \sum_{m=0}^{N} (N-m+1) a_{m}(x,t)$$

...

• Stokes' Transformation (Summation by parts) :

$$f'(x) = \frac{d}{dx} \mathbf{k} f(x) \mathbf{p} = \frac{d}{dx} \mathbf{k} \sum_{k=0}^{N} c_k u_k(x) \mathbf{p} = \sum_{k=0}^{N} c_k u_k'(x) + \sum_{k=0}^{N} b_k u_k'(x)$$

Literature Review of Stokes' Transformation

- Single Fourier Series :
 - **Oscillating waves (Stokes', 1880)**
 - Stability of viscous fluid (Goldstein, 1936)
 - **Free vibration**

twisted beam (Budianskey and Diprima, 1960)

shell (Chung, 1981)

beam on viscoelastic foundation (Chuang and Wang, 1991)

Time Dependent Boundary Condition

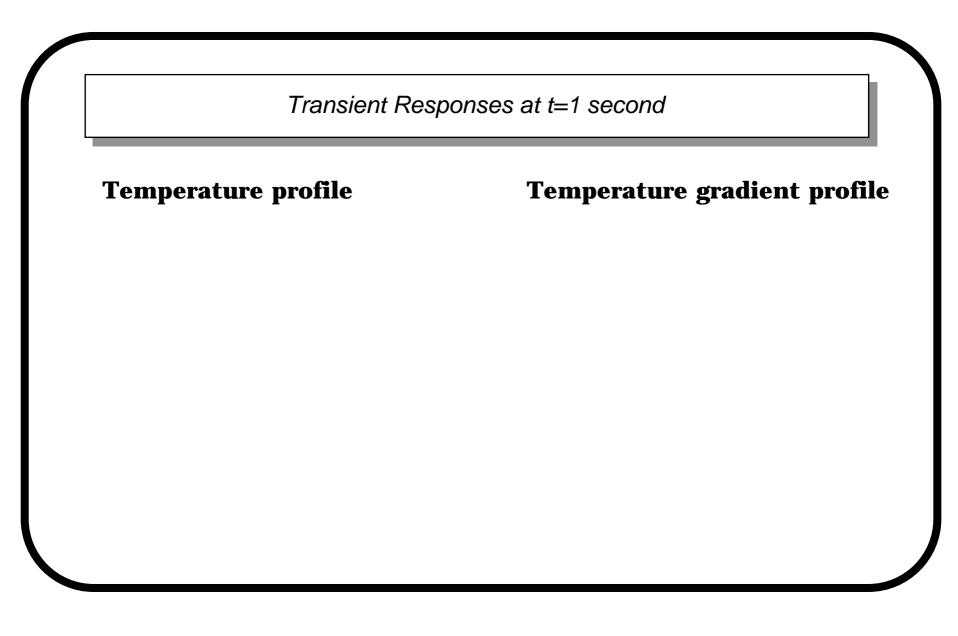
support excitation (Chen, Hong and Yeh, 1993)

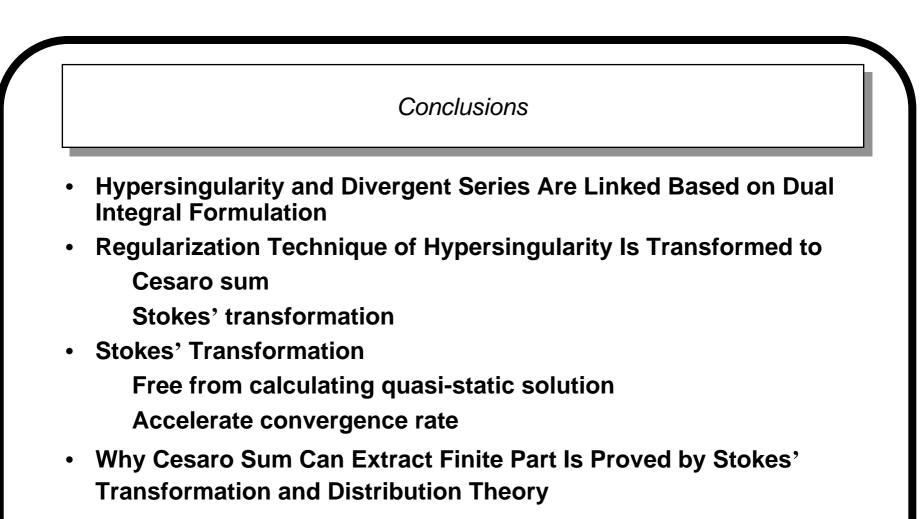
- + heat conduction (present)
- Double Fourier Series

Static analysis of doubly curved shells (Chaudhuri and Kabir, 1993)

Relations of Hypersingular Kernel and Divergent Series

The Series Representation Solutions of the Three Analytical Formulations





 The Transient Responses of Heat Conduction Problems with Time Dependent Boundary Conditions Have Been Solved.