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ABSTRACT: Boundary value problems on the eccentric annulus are quite complex and

cannot directly be solved analytically using cartesian or polar coordinates. Many mathematical

techniques have been used to solve such a problem by using conformal mapping and bipolar

coordinate. In the literature, Carrier and Pearson [Partial differential equation-theory and

technique. New York, Academic Press, 1976, pp 68�71], Muskhelishvili [Some basic problems of

the mathematical theory of elasticity. Noordhoff, Groningen; 1953, pp 175�179], Ling [Torsion of

an eccentric circular tube, Technical Report, No. 1, Chinese Bureau of Aeronautical Research,

1940], Timoshenko and Goordier [Theory of Elasticity. New York, McGraw-Hill; 1972, pp 196�202],

Shen [Null-field approach for Laplace problems with circular boundaries using degenerate kernels,

Master thesis, National Taiwan Ocean University, Keelung, Taiwan, 2005], Lebedev et al. [Worked

Problems in Applied Mathematics. New York, Dover; 1965] have solved this kind of problems using

similar techniques. By using transformation in a transformed plane in the complex variable theory,

we can obtain the analytical solution easily. We focus on the connection between conformal

mapping and curvilinear coordinates, and figure out the relation to take integration by way of

mapping in the complex plane. All the transformations and curvilinear coordinates can be unified

using the viewpoint of conformal mapping. Their relationship among available methods can be

constructed by translation, stretching, rotation and inversion. Finally, an example of eccentric

domain is solved by using various mappings and curvilinear coordinates and their relations are

linked. Not only geometry transformation is addressed but also the solution of the Laplace

equation is obtained. � 2009 Wiley Periodicals, Inc. Comput Appl Eng Educ; Published online in Wiley

InterScience (www.interscience.wiley.com); DOI 10.1002/cae.20208

Keywords: conformal mapping; bipolar coordinate; complex plane; transformation;

eccentric circle; Laplace equation

INTRODUCTION

Based on the complex variable theory, a number of

physical problems governed by Laplace equation in
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two independent variables, for example, steady-state

heat condition, electrostatic potential and fluid flow,

can be solved by using conformal mapping to obtain

an analytical solution. Also we can formulate the

same problems using different curvilinear coordinates

to obtain a solution, for example, bipolar coordinate

and elliptic coordinate. Carrier and Pearson [1] used a

technique for solving certain kinds of potential

problems, based on the bilinear transformation of

conformal mapping. The eccentric case was mapped

to an annular domain. For a polygonal shape, it

can also be mapped to regular region by using

the Schwarz-Christoffel transformation [2,3]. For the

regular domain, it is easy to solve the Laplace

equation subject to Dirichlet boundary condition in

the polar or rectangular coordinate. Muskhelishvili [4]

gave us a detailed description how an eccentric

annulus can be mapped into concentric annulus using

a simple form of linear fractional transformation.

Shen [5], and Chen and Weng [7] also used the same

method to solve eccentric annulus problems.

Although a bilinear transformation was used, the

mapping functions were not exactly the same between

the one of Carrier and Pearson [1] and that of

Muskhelishvili [4]. Some differences such as trans-

lation and stretching can be found [6,10]. Problems

involving two nonconcentric boundaries usually

require the use of the bipolar coordinate. Ling [8],

Timoshenko and Goordier [9], and Lebedev et al. [11]

all presented an analytic solution using the bipolar

coordinate for the torsion of an eccentric bar.

However, the mapping functions were also not exactly

the same. One [8] is a cotangent function, another [11]

is a hyperbolic tangent function and the other [9] is a

hyperbolic cotangent function. After the bipolar

coordinate is introduced, the special domain problem

can be solved by using separation of variable in a

regular domain. A typical example would be the

electric field surrounding two parallel cylindrical

conductors. Stephens and Casemore [12], proposed an

alternative method to determine the negative stiffness

coefficients for a large class of magnetic actuators.

They solved the Dirichlet Laplace problems for the

magnetomotive force in the actuator air gap, subject to

periodic boundary conditions that can be represented

by Fourier series. We can find that the bipolar

coordinate is actually a kind of conformal mapping.

Although Carrier and Pearson [1], Muskhelishvili [4],

Ling [8], Timoshenko and Goordier [9], Shen [5],

Stephens and Casemore [12] have solved the eccentric

Laplace problems, their approaches are very similar

but they are not fully equivalent.

This paper will link the relationship of various

approaches from the viewpoint of conformal mapping.

The other parts of the present paper are arranged as

follows. In Conformal Mapping Using Bilinear Func-

tion Section, the method of conformal mapping is

reviewed and the analytic solution of the Laplace

equation with an annular domain is reviewed. In

Geometric Characterization of the Bipolar Coordinate

Section, we not only describe the geometric charac-

terization of bipolar coordinate but also derive

the analytic solution of Laplace’s equation. In An

Illustrative Example Section, an example is demon-

strated to link the relationship among many previous

approaches based on the viewpoint of conformal

transformation through translation, stretching, rotation

and inversion. Finally, a conclusion is drawn in the

fifth section.

CONFORMAL MAPPING USING
BILINEAR FUNCTION

Definition of the bilinear transformation is given

below:

z ¼ awþ b

cwþ d
ð1Þ

where a,b,c,d are constants (in general, complex).

Equation (1) is also called a linear fractional trans-

formation or Möbius transformation [2]. Solving (1)

for w in terms of z, we have, likewise bilinear, the

inverse transformation:

w ¼ �dzþ b

cz� a
ð2Þ

The bilinear transformation has a remarkable

property that circles map to circles. The equation of

any circle in the z plane is known to be of the

following form:

Aðx2 þ y2Þ þ Bxþ Cyþ D ¼ 0 ð3Þ

where A,B,C, and D are real constants. Since

x ¼ ððzþ �zÞ = 2Þ; y ¼ ððz� �zÞ = 2iÞ; x2 þ y2 ¼ z�z,
Equation (3) can be reformulated to:

Az�zþMzþ �M�zþ D ¼ 0 ð4Þ

where M and �M are conjugate complex constants. By

representing z in terms of w using Equation (1) and

substituting into Equation (4), we have

A0w�wþM0wþ �M0�wþ D0 ¼ 0 ð5Þ

where A0 and D0 are real, and M0 and �M0 are

conjugate complex constants. This confirms that a

circle in the z plane (Eq. 3) implies another circle in

the w plane (Eq. 5). This provides one way to map an
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eccentric case to an annulus case. For an eccentric

annulus, a simple bilinear transformation will be

studied here, as shown below:

z ¼ w

1� aw
ð6Þ

where z¼ xþ iy, w¼ reif and a is a real positive

constant. We consider now two circles L1 and L2 in

the z plane, which can be mapped to the two circles L01
and L02 with radii r1 and r2 in the w plane (Fig. 1).

From Figure 1, we can find the circle L0 in the w

plane with the radius r. For the mapped annular case,

we have r1 and r2 for inner and outer radii,

respectively. Based on Equations (3) and (5), we can

determine the origins and radii of L1 and L2 in the z

plane as shown below:

ci ¼
ar2i

1� a2r2i
; i ¼ 1; 2 ð7Þ

ri ¼
ri

1� a2r2i
; i ¼ 1; 2 ð8Þ

The complex function maps eccentric circles

with radii of r1 and r2 in the z plane onto the

annular region bounded by the inner radius of

r1 and outer radius of r2 in the w plane as shown

in Figure 1 where l is the distance between

their centers. Therefore it is easy to determine

the quantity a, appearing in (6), and the radii r1,r2
of the circles L01 and L02. In real practice, three

quantities r1, r2, and l are given in the z plane. For

the w plane, r1, r2, and a satisfy the following three

equations:

r1 ¼
r1

1� a2r21
ð9Þ

r2 ¼
r2

1� a2r22
ð10Þ

l ¼ c2 � c1 ¼
ar22

1� a2r22
� ar21
1� a2r21

ð11Þ

According to three equations (9�11), three

unknown constants r1, r2, and a can be determined by

a ¼ lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr21 � r22Þ

2 � 2l2ðr21 þ r22Þ þ l4
q ð12Þ

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4r21a

2
p

� 1

2r1a2
; r2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4r22a

2
p

� 1

2r2a2

ð13Þ

Then we can obtain an annulus with the radii of r1 and
r2 from any eccentric annulus using mapping of

Equation (6) with an appropriate value of a.

Derivation of an Analytical Solution for the
Laplace Equation With an Annular Domain

By using the bilinear transformation, an eccentric

domain can be mapped to an annulus domain. The

Dirichlet problem for an annular domain can be

described as shown below:

r2u ¼ @2u

@r2
þ 1

r

@u

@r
þ 1

r2
@2u

@y
¼ 0; r1 < r < r2

uðr1; yÞ ¼ f1ðyÞ; uðr2; yÞ ¼ f2ðyÞ
ð14Þ

In addition, u(r,y) must satisfy the periodicity

condition. Accordingly, f1(y) and f2(y) must also be

periodic with a period of 2p. Thus, the general

solution is

Figure 1 Mapping of wðzÞ ¼ zþ1
4

zþ4
from the eccentric region to a concentric region.
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uðr; yÞ ¼ A0 þ B0 ln r þ
X1
n¼1

½ðAnr
n þ Bnr

�nÞ

cos nyþ ðCnr
n þ Dnr

�nÞsin ny�

where the Fourier coefficients A0, B0, An, Bn, Cn, and Dn

are found by solving the following six equations [13]:

A0 þ B0 ln r1 ¼
1

2p

Z2p

0

f1ðyÞdy ð16Þ

Anr
n
1 þ Bnr1

�n ¼ 1

p

Z2p

0

f1ðyÞcos nydy ð17Þ

Cnr
n
1 þ Dnr

�n
1 ¼ 1

p

Z2p

0

f1ðyÞsin nydy ð18Þ

A0 þ B0 ln r2 ¼
1

2p

Z2p

0

f2ðyÞdy ð19Þ

Anr
n
2 þ Bnr2

�n ¼ 1

p

Z2p

0

f2ðyÞcos nydy ð20Þ

Cnr
n
2 þ Dnr2

�n ¼ 1

p

Z2p

0

f2ðyÞsin nydy ð21Þ

Now we can obtain an analytical solution for the

eccentric case by using the conformal mapping.

GEOMETRIC CHARACTERIZATION OF THE
BIPOLAR COORDINATE

Bipolar coordinate (x,h) is defined by

xþ iy ¼ ic cot
1

2
z

� �
; z ¼ xþ ih ð22Þ

where c> 0. Equation (22) yields

x ¼ c
sin hh

coshh� cosx
; y ¼ c

sinx
coshh� cosx

ð23Þ

where �p� x< p, �1<h<1. By eliminating x in

Equation (23), we obtain a circle with the center of

(c cot hh, 0) and the radius of c csc hh as shown below:

ðx� c cot hhÞ2 þ y2 ¼ c2 csch2h ð24Þ

Elimination of h from Equation (23) results in

another circle with the center of (0, c cot x) and the

radius of c csc x as given below:

x2 þ ðy� c cot xÞ2 ¼ c2 csc2 x ð25Þ

From Equations (24) and (25), the bipolar

coordinates are shown in Figure 2. Denoting by

(G1,j1) and (G2,j2), the polar coordinates for the

poles of (�c,0), in Figure 3, respectively, we have

xþ iy� c ¼ G1e
ij1 ; xþ iyþ c ¼ G2e

ij2 ð26Þ

h ¼ log
G2

G1

� �
; x ¼ j1 � j2 ð27Þ

It follows that a curve x¼ constant is a family of

circles passing through the poles (�c,0). The curve of

h¼ constant shows a curve for which G2/

G1¼ constant. The proof is shown in the Appendix

1. Family of circles are drawn in Figure 2. The outer

radius R1, inner radius R2 and the displacement b are

determined by Equation (24) as shown below:

R1 ¼ c cschðh1Þ ð28Þ

R2 ¼ c cschðh2Þ ð29Þ

b ¼ c½cothðh1Þ � cothðh2Þ� ð30Þ

To describe an eccentric circle in the bipolar

coordinate, the three quantities, c, h1, and h2 should

be determined as shown below:

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4
1 þ R4

2 � 2R2
1R

2
2 � 2b2ðR2

1 þ R2
2Þ þ b4

p
2b

ð31Þ

Figure 2 Bipolar coordinate system (poles located

on (�1,0)).
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h1 ¼ sinh�1 c

R1

ð32Þ

h2 ¼ sinh�1 c

R2

ð33Þ

Then we can describe an eccentric annulus by

using the bipolar coordinate.

Viewpoint of Conformal Mapping for the
Bipolar Coordinate

According to the inverse cotangent function [2] as

shown below:

cot�1ðzÞ ¼ i

2
log

z� i

zþ i
ð34Þ

Equation (22) can be rewritten as:

wðzÞ ¼ z ¼ i log
zþ c

z� c
ð35Þ

Equation (35) indicates that the curvilinear

bipolar coordinate stems from the conformal mapping

of Equation (22). The coordinate x changes from �p
to p on crossing the segment of the x-axis joining the

pole, its range for the whole plane being �p to p. The
transformation from Equation (35), where the princi-

pal branch of the logarithmic function is used, can be

decomposed to two mappings,

Z ¼ zþ c

z� c
ð36Þ

w ¼ LogðZÞ ð37Þ

More precisely, by expressing Z ¼ R expðiYÞ we
obtain

LogðZÞ ¼ lnRþ iY; ðR > 0;�p < Y < pÞ
ð38Þ

We can understand that the point Z ¼ ReiY0

ð0 < Y0 < pÞ moves outward from the origin along

the ray Y ¼ Y0, and its transformation is the point

whose rectangular coordinate in the w plane is

ðlnR;Y0Þ. That transformation evidently moves to

the right along the entire length of the horizontal line

v ¼ Y0. Based on this transformation, we can find

that an eccentric annulus can be mapped onto a

rectangular domain.

Derivation of an Analytical Solution for
Eccentric Problems Using the
Bipolar Coordinate

By using the bipolar coordinate, the eccentric domain

can be mapped into the rectangular domain of (x,h).
Note that there are discontinuities in this mapping at

x¼ 0 and x¼ p. This is due to the symmetry in

the geometry above and below the x-axis. Since

the boundary condition is not necessarily symmetric

to (c,0) about this axis, the problem must be

solved piecewise over the interval 0< x< p and

�p< x< 0. By using this transformation, the solution

f(x,y)¼F(x,h) also satisfies the Laplace equation in

the curvilinear coordinate as shown below:

Fxx þ Fhh ¼ 0 ð39Þ

The boundary conditions are given below in a

general form as:

Fðh1; xÞ ¼ F1ðxÞ; �p < x < p ð40Þ

Fðh2; xÞ ¼ F2ðxÞ; �p < x < p ð41Þ

In addition to the specified boundary conditions,

the following natural boundary conditions arise due to

the periodic circular symmetry:

Fxðh; 0Þ ¼ 0 ð42Þ

Fxðh; pÞ ¼ 0 ð43Þ

The solution is obtained by using separation of

variables which yields a series solution. This solution

is valid on both piecewise intervals and is given by:

Fðh; xÞ ¼ a0 þ b0hþ
X1
n¼1

½ðanenh þ bne
�nhÞ

cosðnxÞ þ ðcnenh þ dne
�nhÞ sinðnxÞ�

where the Fourier coefficients a0, b0, an, bn, cn, and dn
are determined by solving the following six equations

simultaneously,

Figure 3 Geometry relation of bipolar coordinate.
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a0 þ b0h1 ¼
1

2p

Z2p

0

F1ðxÞdx ð45Þ

a0 þ b0h2 ¼
1

2p

Z2p

0

F2ðxÞdx ð46Þ

ane
nh1 þ bne

�nh1 ¼ 1

p

Z2p

0

F1ðxÞcosðnxÞdx ð47Þ

ane
nh2 þ bne

�nh2 ¼ 1

p

Z2p

0

F2ðxÞcosðnxÞdx ð48Þ

cne
nh1 þ dne

�nh1 ¼ 1

p

Z2p

0

F1ðxÞsinðnxÞdx ð49Þ

cne
nh2 þ dne

�nh2 ¼ 1

p

Z2p

0

F2ðxÞsinðnxÞdx ð50Þ

where F1(x) and F2(x) are the associated boundary

conditions given piecewise over the intervals

�p< x< 0 and 0< x< p as shown in Equations

(40) and (41).

AN ILLUSTRATIVE EXAMPLE

Suppose we want to determine a harmonic function

c in an eccentric annular region lying between two

nonconcentric circles, and satisfying c¼ 0 on the inner

circle with a radius 1 and c¼ 1 on the outer circle with

radius 5/2, where the center of outer circle located on

the circumference of inner circle [1]. Several research-

ers, Carrier and Pearson [1], Muskhelishvili [4], Ling

[8], Timoshenko and Goordier [9], Shen [5], Lebedev

et al. [11] and Chen and Weng [7] have employed their

approaches to solve this problem as shown in Tables 1

and 2. Although the result of Lebedev et al.’s [11]

approach using the hyperbolic tangent function is not

shown in Tables 1 and 2, it is different from the

Timoshenko and Goordier formulation by inversion

and rotation only. The geometry description of various

formulations using the viewpoint of conformal map-

ping is shown in Table 1, and their relations are

Table 1 Geometry Transformation of Various Formulations Using the Viewpoint of Conformal Mapping

where z¼ xþ iy and w¼ uþ iv.
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connected through the operations of translation,

stretching, rotation, and inversion. We present a case

by using four methods in Table 1, and the mapping

functions for each method are shown below:

Carrier and Pearson [1]:

wðzÞ ¼ zþ 1=4

zþ 4
ð51Þ

Muskhelishvili [4]:

wðzÞ ¼ z

1þ ð4=15Þz ð52Þ

Ling [8]:

wðzÞ ¼ iLog
zþ 15=8

z� 15=8

� �
ð53Þ

Timoshenko and Goordier [9]:

wðzÞ ¼ Log
zþ ið15=8Þ
z� ið15=8Þ

� �
ð54Þ

The eccentric annular problem needs three parameters

to describe the geometry, eccentricity e, radii of large

and small circles. We set the larger radius to be 5/2 and

1 for the smaller radius with the eccentricity 1. For

different observer systems, we have four geometry

descriptions for the same problem. After setting

the observer system, each case can be mapped to a

regular domain by using equations of (51)�(54),

respectively. According to Table 1, Figure 4 can be

obtained from Figure 6 by translating 1/4. By trans-

lating 15/8 again, we have Figure 8. By multiplying i

Table 2 Analytic Solutions of Dirichlet Laplace Problems Using Different Formulations (Blue Curve¼ 1, Green

Curve¼ 0)

where z¼ xþ iy and w¼ uþ iv.

Table 3 Geometry Description

Carrier and Pearson [1] Muskhelishvili [4] Ling [8] Timoshenko and Goordier [9]

jzgj ¼ 1; jzb � 1j ¼ 5=2 jzg � 1=4j ¼ 1;

jzb � 5=4j ¼ 5=2

�g ¼ 0:693147;
�b ¼ 1:38629; c ¼ 15=8;

jzg � 17=8j ¼ 1;
jzb � 25=8j ¼ 5=2

�g ¼ 0:693147; �b ¼ 1:38629;
c ¼ 15=8; jzg � 17=8ij ¼ 1;

jzb � 25=8ij ¼ 5=2

jwgj ¼ 1=4; jwbj ¼ 1=2 jwgj ¼ 15=16; jwbj ¼ 15=8 A0ð�; lnð�bÞÞ; B0ð�; lnð�gÞÞ;
E0ðlnð�gÞ; �Þ; F0ðlnð�bÞ; �Þ;

A0ðlnð�bÞ; �Þ; B0ðlnð�gÞ; �Þ;
E0ð�; lnð�gÞÞ; F0ð�; lnð�bÞÞ

where the subscripts g and b represent ‘‘green’’ curve and ‘‘blue’’ curve.
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(rotation of 908) of Figure 8, we obtain Figure 10. By

stretching 15/4 of Figure 5, we have Figure 7. By

stretching 4/15, rotation i, inversion 1/w and taking

Log(w) of Figure 7, we transform to a rectangular

domain of Figure 9. By multiplying �i (counter-

clockwise rotation of 908), Figure 11 can be obtained

from Figure 9. Finally, it can be unified together

through the operations of stretching, translation,

rotation, inversion and taking Log. Analytic solutions

are shown in Table 2 using various formulations and

the contour plots are also shown to compare with each

other. Table 3 shows the geometry description while

Table 4 indicates the closed-form solution.

CONCLUSIONS

In this paper, various approaches including Carrier and

Pearson [1], Muskhelishvili [4], Ling [8], Timoshenko

and Goordier [9], and Lebedev et al. [11] for solving

eccentric Laplace problems were reviewed. Based on

the conformal mapping, all of them are unified

together. The relations among them are constructed

through the operations of translation, rotation, and

inversion. One example was demonstrated to under-

stand the relationship among various formulations.

APPENDIX

From Equation (22), we have

z ¼ �c cothðizÞ ¼ �c
cos hðizÞ
sinhðizÞ ¼ �c

eiz þ e�iz

eiz � e�iz

ðA1Þ

where z¼ ((xþ ih)/2). Equation (A1) yields

ðeiz � e�izÞz ¼ �cðeiz þ e�izÞ

ðzþ cÞeiz ¼ ðz� cÞe�iz

e2iz ¼ z� c

zþ c

since z� c ¼ G1e
ij1 and zþ c ¼ G2e

ij2

2iz ¼ log
G1e

ij1

G2eij2
: ðA2Þ

According to the definition of z¼ ((xþ ih)/2), we

obtain

ix� h ¼ log
G1

G2

þ iðj1 � j2Þ

Therefore, the equations of real and imaginary parts

yieldT
a
b
le

4
A
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ti
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G
o
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[9
]

 
ðx
;y
Þ¼

1

2
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1
6
ðx

2
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þ
8
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Þ
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þ
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1
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x

�
�  
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;y
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þ
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þ
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2
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h ¼ log
G2

G1

; x ¼ j1 � j2

This concludes the proof that (G1/G2) does not change

for the constant h as shown in Figure 3.
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