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Motivated by Fichera’s idea for regularizing the rank-deficiency model, we derive the free–free flexibility
matrices by inverting the bordered stiffness matrix. The singular stiffness matrix of a free–free structure
is expanded to a bordered matrix by adding n slack variables, where n is the nullity of the singular stiff-
ness matrix. Besides, the corresponding n constraints are accompanied to result in a nonsingular matrix.
The constraints filter out the homogeneous solution for the regularized solution. By inverting the nonsin-
gular matrix, we can obtain the free–free flexibility matrix from the submatrices. The value of the extra
degree of freedom shows the role of no solution (nonzero case) or infinite solution (zero case) with
respect to the loading vector. After constructing the bordered system, the equilibrium of the specified
force and the compatibility of the specified displacement can be tested according the zero slack variable.
Similarly, the free–free flexibility matrix is obtained from the free–free stiffness matrix. Finally, four
examples, a rod with symmetric stiffness, a plane truss, a beam and a bar with unsymmetric stiffness,
were demonstrated to see the validity of the present formulation.
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1. Introduction

There are two kinds of rank-deficiency problems in the bound-
ary element method (BEM) or finite element method (FEM). Phys-
ically speaking, a rigid body mode exists in a free–free structure for
structural mechanics. This means that the free–free stiffness
matrix is singular in companion with zero eigenvalues (singular
values). No matter which numerical method, BEM or FEM, is
employed, the obtained influence matrix (stiffness matrix) is rank
deficient. Such outcome occurs naturally in the Neumann problem
or the traction problem for potential and elasticity problems,
respectively [1–7].

Regarding the Dirichlet problem in potential theory or con-
strained structure in elasticity, the solution is mathematically
unique. However, this yields rank-deficiency problem if a single-
layer potential approach (indirect BEM) is employed to solve it
for a critical scale (degenerate scale). To avoid this unreasonable
model, Fichera proposed a well-posed model to make it full rank
[8]. Two steps are utilized at the same time. One is to introduce
a free constant field. The other is to provide a corresponding con-
straint. After discretization, the singular system is transformed to
a nonsingular bordered system. It is interesting to find that the dis-
cretization system to promote the full rank is the same as the self-
regularized linear algebraic system for deriving the flexibility of a
free–free body. Following this finding, we will drive the free–free
flexibility in the way of inverting the full-rank bordered matrix.
On the contrary, finding the free–free stiffness from the free–free
flexibility is also discussed. Physical rigid-body modes for the dis-
placement as well as nonphysical spurious force modes correspond-
ing to zero singular values are found. The spurious mode also
appears in the finite element method. For example, hourglass mode
occurs in the reduced integration to soften the shear locking. This
zero-energy mode is not physically realizable but due to mathemat-
ics. The nonphysical outcome due to mathematics (rank deficiency)
needs regularization in the mathematical model. Table 1 indicates
the relation between mathematics and structural mechanics. Zero
eigenvalues imply the rigid body mode (physics) and spurious mode
(mathematics). Bordered matrix introduces an extra degree of
freedom and transforms a singular matrix to be a nonsingular one.
Free–free structure yields a rank-deficiency matrix.

Regarding the inverse of a singular matrix, Felippa et al. [1] have
introduced the dual of free–free stiffness K and flexibility F.
They also emphasized the potential applications of free–free flexi-
bility for substructure-based solution algorithm in the direct flex-
ibility matrix. Construction of free–free flexibility matrices can be
derived by using the generalized inverse of stiffness. Derivation
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Table 1
Relation between mathematics and structural mechanics.

Mathematics Structural mechanics

Null space Spurious mode
Rigid body mode

Rank deficiency Free–free structure
Bordered matrix Adding an extra degree of freedom
Generalized inverse Free–free flexibility matrix
Moore–Penrose Free–free stiffness matrix
Influence matrix Stiffness or flexibility matrix

Fig. 1. The self-regularized linear algebraic system from the continuous BIE system.
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of flexibility and stiffness matrices of rod and beam was also
investigated by using the dual BEM [6]. Generalized inverse has
been studied by Fredholm, Moore and Penrose in the twenty cen-
tury. Generalized inverses was mathematically studied by using
the bordered matrix [9]. However, its engineering applications in
structural mechanics were not noticed in that book. In this paper,
the proposed self-regularized approach is similar to the Moore–
Penrose/Singular Value Decomposition (SVD) approach for com-
puting pseudo-inverses of rank-deficient matrices. But the main
difference is that we add a slack variable and a corresponding con-
straint in the present method. This idea was similarly used in the
optimization theory by adding n slack variables. Besides, the flex-
ibility matrix is more efficient in the substructure method, espe-
cially in the case of replacement of failure element. The idea was
addressed in the Felippa’s paper [10].

In non-linear geometry analysis, the arc length method was
introduced in the analysis which is similar to the present slack var-
iable. Introducing a slack variable is very popular to transform an
inequality to an equation in the optimization theory. The same
algorithm in this article is the addition of one degree of freedom
in accompany with an extra equation. An incremental force parallel
to the critical eigenvectors of the tangential stiffness matrix is sep-
arately treated. Using eigenvector projections, we can improve
convergence in non-linear finite element equilibrium iterations
[11,12]. Although with other objectives in [13], very similar analy-
sis and derivation methods were used in the context of ‘eigenvec-
tor projections’, in the stabilization of non-linear equilibrium
iteration methods already in the 1980s. In those, the parts of an
incremental force parallel to the critical eigenvectors of the tan-
gential stiffness matrix are separately treated, which is a very sim-
ilar idea as in this paper. The treatment distinguishes and
separately handles two components of the ‘load vector’, and
thereby also the ‘displacement response’: one parallel to the
critical/singular directions, and one orthogonal part. This is a fun-
damental fact of structural response, which is not related to the
need to invert the structural stiffness matrix or parts of it. It also
gives a way to explain the introduced unknown coefficients. It cor-
responds to the value c in this paper. Eigenvector projection pro-
vides an efficient way to improve the stability in the iterations
for the choice of the optimal corrections. Checking eigenvectors
corresponding to near-zero eigenvalues is very important for
selecting the damping. In our approach, the singular vector of cor-
responding to zero singular value provides us the row and column
vectors in the bordered matrices, where the unknown coefficient c
is introduced.

Based on the structures with symmetry, group-theoretical
insight and graph theory can decompose the system to a small
one and bypass intrinsic singularities. Related works can be found
in the four references [14–17]. However, our approach introduces a
slack variable as well as a corresponding constraint to deal with
rank-deficient matrices.

In this paper, we derive the free–free flexibility matrix directly
from the physical concept as well as the mathematical technique of
bordered matrix in the linear algebra. Four examples, a rod with
symmetric stiffness, a plane truss, a beam and a bar with unsym-
metric stiffness, were demonstrated to see the validity of the pres-
ent formulation.

2. Formulation

In potential theory, the single-layer representation model is
often used to solve the boundary value problem as shown below:

uðxÞ ¼
Z

B
Uðx; sÞ/ðsÞdBðsÞ; x 2 D; ð1Þ

where u(x) is the potential field, /(s) is the unknown boundary den-
sity, U(x, s) is the fundamental solution and B is the boundary of the
domain D.

However, Eq. (1) may fail for the Dirichlet problem with a
specific scale (degenerate scale). To overcome this ill-posed
(rank-deficiency) model, Fichera proposed a regularized formula-
tion by simultaneously adding a constant and an extra constraint
as shown below:

uðxÞ ¼
Z

B
Uðx; sÞ/rðsÞdBðsÞ þ c; x 2 D; ð2Þ

Z
B

/rðsÞdBðsÞ ¼ 0; s 2 B: ð3Þ

After discretizing the boundary by using the constant element,
Eq. (1) reduces to

U /
�
¼ b� : ð4Þ

By employing the boundary element implementation, Eqs. (2)
and (3) together yield

U f1g
flg 0

� � /
�

r

c

( )
¼

b�
0

( )
; ð5Þ

where U is the influence matrix and {l} is the vector of length for
boundary elements. It is noted that /

�
in Eq. (4) is the unregularized

unknown vector, while /r in Eq. (5) is the regularized unknown
vector.

By using analogy between the singular stiffness matrix for
structural mechanics and the influence matrix for the indirect
BEM as shown in Fig. 1, a regularized (bordered) matrix provides
an alternative way to construct the free–free flexibility matrix.

The linear algebraic system is
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A x� ¼ b�; ð6Þ

where A is obtained by using either the BEM or FEM. The matrix A
may be a singular matrix which needs special care for the inversion.
By employing the singular value decomposition (SVD) to the matrix
A, we have

A ¼ URWT ¼ U

r1

r2

. .
.

rN

2
66664

3
77775WT ; ð7Þ

where the left singular matrix U ¼ /
�1;/�2; . . . ;/

�N

n o
, the right

singular matrix W ¼ fw
�1;w�2; . . . ;w

�
Ng and the singular values

0 6 r1 6 r2 6 � � � 6 rN : If the matrix A is symmetric, the right and
left singular matrices are the same due to the symmetric property.
Therefore, we have A = URUT = WRWT. No matter which U or W is
considered, we can represent the unknown vector x� by using the
right singular vector w

� i as

x� ¼
XN

i¼1

aiw� i: ð8Þ

Similarly, we can expand the forcing vector b� by the superposi-
tion of the left singular vector /

�
i as follows:

b� ¼
XN

i¼1

bi/� i: ð9Þ

If the singular value, r1, is zero, a1 cannot be determined. By
suppressing a1 to be zero in Eq. (8), we have
w
�1 � x�r ¼ 0; ð10Þ

where the regularized solution x�r can be understood as the pure
particular solution without containing any component of the com-
plementary solution (rigid body mode) x�c such that Ax�c ¼ 0�.

Since the range of A x� is deficient by /
�1, we can regularize

Eq. (6) into

Ax�r þ c1/
�

1 ¼ b�; ð11Þ

where c1 is a free constant to be determined.
By combining Eqs. (10) and (11), we have a regularized linear

algebraic system

A /
�1

w
�

T
1 0

2
4

3
5 x�r

c1

( )
¼

b�
0

( )
: ð12Þ

Then, the bordered matrix AB is defined by

AB ¼
A /

�1

w
�

T
1 0

2
4

3
5: ð13Þ

Since AB is nonsingular, its inverse yields

A�1
B ¼

Ay w
�1

/
�

T
1 0

2
4

3
5 ð14Þ

where A�1
B is the generalized inverse of A. Premultiplying Eq. (14) by

AB in Eq. (13) gives

ABA�1
B ¼

AAy þ /
�1/�

T
1 Aw

�1

w
�

T
1Ay w

�
T
1w�1

2
4

3
5 ¼ IN�N 0

0 1

� �
: ð15Þ

Since Ay is the pseudo-inverse of A, we obtain

AAy þ /
�1/�

T
1 ¼ IN�N: ð16Þ
Postmultiplying Eq. (16) by A, we have

AAyA ¼ A; ð17Þ

since /T
1A ¼ f0gT .

The element of Ay in Eq. (17) satisfies the definition of Moore–
Penrose pseudo-inverse [18]. Therefore, the generalized inverse
of the singular matrix can be obtained from the inversion of the
nonsingular bordered matrix.

By taking inner product for Eq. (11) with respect to /
�1 to both

sides, we have

Ax�r � /�1 þ c1/�1 � /�1 ¼ b� �/�1: ð18Þ

Since /
�1 � /�1 ¼ 1, Eq. (18) reduces to

Ax�r � /�1 þ c1 ¼ b� �/�1: ð19Þ

Following the property of Ax�r � /�1

� �
¼ x�r � AT/

�1

� �
, we have

ðx�r � AT/
�1Þ þ c1 ¼ b� �/�1: ð20Þ

Based on SVD structure Aw
�1 ¼ r1/�1 and AT/

�1 ¼ r1w�1 ¼ f0g
(now r1 = 0), Eq. (20) yields c1 ¼ b� �/�1.

3. Numerical examples

Four examples to determine the free–free flexibility and stiff-
ness matrices by using the self-regularized technique are given
in Fig. 2. In addition, the rigid body mode and spurious force mode
would also be discussed.

Example 1: A linear rod element
For a one-dimensional and 2-nodes rod element as shown in

Fig. 3, the free–free stiffness matrix K is shown below

K ¼ k
1 �1
�1 1

� �
; ð21Þ

where k = EA/L is the axial stiffness. The flexibility matrix cannot be
directly obtained, because the stiffness matrix K is singular. By
employing the SVD, we have

R ¼ k
0

2

� �
; ð22Þ

U ¼ W ¼ 1ffiffiffi
2
p

1 �1
1 1

� �
; ð23Þ

where U and W are the left and right singular matrix, respectively,
and R is a diagonal matrix composed of singular value of the stiff-
ness matrix K. Since the stiffness matrix is a symmetric matrix, the
right and left singular matrices are the same due to the symmetric
stiffness matrix. According to Eq. (12), a linear algebraic system
K u� ¼ p

�
can be bordered as shown below:

K /
�1

w
�

T
1 0

2
4

3
5 u�r

c1

( )
¼

p
�

0

( )
; ð24Þ

where /
�1 and w

�1 are the left and right singular vectors correspond-
ing to the zero singular value of the stiffness matrix K, respectively,
u�r is a regularized vector for the original vector u�, and c1 is an extra
constant. The stiffness matrix K can be bordered as follows:

KB ¼
K /

�1

w
�

T
1 0

2
4

3
5 ¼

k �k 1ffiffi
2
p

�k k 1ffiffi
2
p

1ffiffi
2
p 1ffiffi

2
p 0

2
664

3
775: ð25Þ



Fig. 2. The self-regularized system for flexibility and stiffness of the free–free structure.

Fig. 3. The rod element for the example 1.

Fig. 4. The regularized displacement u
�r and the regularized force p

�
r for a rod by

using the self-regularized approach.
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It is interesting to find that the bordered matrix KB is nonsingu-
lar. Moreover, its inverse, K�1

B yields

1
4k � 1

4k
1ffiffi
2
p

� 1
4k

1
4k

1ffiffi
2
p

1ffiffi
2
p 1ffiffi

2
p 0

2
664

3
775: ð26Þ

By extracting the free–free flexibility matrix F from the matrix
K�1

B , we obtain

F ¼ 1
4k

1 �1
�1 1

� �
: ð27Þ

Since the singular value r1 is zero, the stiffness matrix K results
in a null-space mode (rigid body mode) w

�1 as shown below

w
�1 ¼

1ffiffiffi
2
p

1
1

� �
: ð28Þ

Without loss of generality, we set k equal to 1 for numerically
calculating the inverse of the free–free stiffness matrix and axial
loading are p1 = 1 and p2 = �1. According to Eq. (24), the displace-
ment can be obtained

u�r ¼
1
2

1
�1

� �
; ð29Þ

and the constant c1 is zero. The regularized displacement u�r for a
rod is shown in Fig. 4. The solution u�r does not contain any

homogeneous part (rigid body motion). Following the result of
above section, the free–free flexibility matrix F can be obtained
from the free–free stiffness matrix K, even though the stiffness
matrix K is singular. On the contrary, according to Eqs. (12) and
(27), the linear algebraic system F p

�
¼ u� can be bordered to

F /
�1

w
�

T
1 0

2
4

3
5 p

�
r

d1

( )
¼

u�
0

( )
: ð30Þ
where /
�1 and w

�1 are the left and right singular vectors correspond-
ing to the zero singular value of the flexibility matrix F, respectively,
and p

�
r is the regularized vector for the original vector p

�
, and d1 is a

slack variable. Similarly, we can obtain the free–free stiffness matrix
K to be the same as Eq. (21).

By specifying u1 ¼ 1
2 and u2 ¼ �1

2 , the spurious force mode w
�1 and

the regularized force p
�

r can be determined as

w
�1 ¼

1ffiffiffi
2
p

1
1

� �
; ð31Þ

p
�

r ¼
1
�1

� �
; ð32Þ

and the constant d1 is zero. The nodal reaction force is shown in
Fig. 4.

It is interesting to find the zero constant c1. We will examine
what the situation is if the constant c is not zero in the following
example 2.

Example 2: A triangular truss constructed by three linear rods
A two-dimensional, 3-node and 6-dof, this triangular truss is

shown in Fig. 5 and the free–free stiffness matrix K of the truss
is shown below

K ¼ k

5
4 �

ffiffi
3
p

4 � 1
4

ffiffi
3
p

4 �1 0

�
ffiffi
3
p

4
3
4

ffiffi
3
p

4 � 3
4 0 0

� 1
4

ffiffi
3
p

4
1
2 0 � 1

4 �
ffiffi
3
p

4ffiffi
3
p

4 � 3
4 0 3

2 �
ffiffi
3
p

4 � 3
4

�1 0 � 1
4 �

ffiffi
3
p

4
5
4

ffiffi
3
p

4

0 0 �
ffiffi
3
p

4 � 3
4

ffiffi
3
p

4
3
4

2
666666666664

3
777777777775
; ð33Þ



Fig. 5. The triangular truss for the example 2.
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where k = EA/L is the axial stiffness of the two-force member. The
flexibility matrix F cannot be directly determined by inversing the
singular stiffness matrix K. Theoretically speaking, the symbolic
form of free–free flexibility matrix can be obtained. But the result
is awkward and the derivation is tedious. We obtain the numerical
result for the case of k = 1 for simplicity. By employing the SVD with
respect to K and setting k = 1, we obtain

R ¼

0
0

0
3
2

3
2

3

2
666666664

3
777777775
; ð34Þ

U ¼ W ¼

1
2
ffiffi
3
p 1ffiffi

3
p 0 � 1

2
ffiffi
3
p 1

2 � 1
2

1
2 0 1ffiffi

3
p � 1

2 � 1
2
ffiffi
3
p 1

2
ffiffi
3
p

� 1ffiffi
3
p 1ffiffi

3
p 0 � 1

2
ffiffi
3
p � 1

2 0

0 0 1ffiffi
3
p 1

2 � 1
2
ffiffi
3
p � 1ffiffi

3
p

1
2
ffiffi
3
p 1ffiffi

3
p 0 1ffiffi

3
p 0 1

2

� 1
2 0 1ffiffi

3
p 0 1ffiffi

3
p 1

2
ffiffi
3
p

2
666666666664

3
777777777775
: ð35Þ

The right and left singular matrices are the same due to the
symmetric property. According to Eq. (12), the linear algebraic sys-
tem K u� ¼ p

�
can be bordered to

KB

u�r

c1

c2

c3

8>>><
>>>:

9>>>=
>>>;
¼

K /
�1 /

�2 /
�

3

w
�

T
1 0 0 0

w
�

T
2 0 0 0

w
�

T
3 0 0 0

2
66666664

3
77777775

u�r

c1

c2

c3

8>>><
>>>:

9>>>=
>>>;
¼

p
�

0
0
0

8>>>><
>>>>:

9>>>>=
>>>>;
; ð36Þ

where /
�1;/�2;/�3 and w

�1;w�2;w�3 are the left singular vectors and the

right singular vectors corresponding to three zero singular values
of the free–free stiffness matrix K, respectively.

It is fantastic to find that the bordered matrix KB is nonsingular
even if the bordered matrix KB consist of many zero entries. There-
fore, the free–free flexibility matrix F can be obtained by inversing
the regularized nonsingular matrix as shown below:
F ¼

11
36 � 1

12
ffiffi
3
p � 1

9 � 1
6
ffiffi
3
p � 7

36
1

4
ffiffi
3
p

� 1
12
ffiffi
3
p 1

4
1

3
ffiffi
3
p � 1

6 � 1
4
ffiffi
3
p � 1

12

� 1
9

1
3
ffiffi
3
p 2

9 0 � 1
9 � 1

3
ffiffi
3
p

� 1
6
ffiffi
3
p � 1

6 0 1
3

1
6
ffiffi
3
p � 1

6

� 7
36 � 1

4
ffiffi
3
p � 1

9
1

6
ffiffi
3
p 11

36
1

12
ffiffi
3
p

1
4
ffiffi
3
p � 1

12 � 1
3
ffiffi
3
p � 1

6
1

12
ffiffi
3
p 1

4

2
66666666664

3
77777777775
: ð37Þ

Since three singular values r1, r2 and r3 are zeros, the rigid
body mode can be found in the right singular vectors w

�1, w
�2 and

w
�3, respectively. In this paper, we employed the Mathematica

software to calculate the singular vectors. The numerical results
of singular vectors obtained from the Mathematica software may
be different from those of using Fortran or Matlab. In order to
easily understand the rigid body mode, we combined the singular
vectors of zero singular values by using the linear superposition to
obtain the easy-view rigid-body mode. The rigid body modes are
shown in Fig. 6 and are given below:

w
�

T
1 ¼ 1

2
ffiffi
3
p 1

2
�1ffiffi

3
p 0 1

2
ffiffi
3
p �1

2

n o
; ð38Þ

w
�

T
2 ¼ 1ffiffi

3
p 0 1ffiffi

3
p 0 1ffiffi

3
p 0

n o
; ð39Þ

w
�

T
3 ¼ 0 1ffiffi

3
p 0 1ffiffi

3
p 0 1ffiffi

3
p

n o
; ð40Þ

For the numerical implementation, we choose the vector of the
external force

p
�

T ¼ 1 0 0 0 �1 0f g: ð41Þ
According to Eq. (36), the regularized solution u�r can be

obtained as

u�
T
r ¼ 1

2
1

6
ffiffi
3
p 0 �1

3
ffiffi
3
p �1

2
1

6
ffiffi
3
p

n o
ð42Þ

and constants c1, c2 and c3 are all zeros. The regularized
displacement u�r for the triangular truss is shown in Fig. 7.

Following the result of above section, the free–free flexibility
matrix F can be obtained from the free–free stiffness matrix K,
even though the stiffness matrix K is singular. According to Eqs.
(12) and (37), the linear singular algebraic system F p

�
¼ u
�

can be

similarly rewritten as a nonsingular bordered system,

F /
�1 /

�2 /
�

3

w
�

T
1 0 0 0

w
�

T
2 0 0 0

w
�

T
3 0 0 0

2
66666664

3
77777775

p
�

r

d1

d2

d3

8>>>><
>>>>:

9>>>>=
>>>>;
¼

u�
0
0
0

8>>>><
>>>>:

9>>>>=
>>>>;
; ð43Þ

where /
�1;/�2;/�3 and w

�1;w�2;w�3 are the left singular vectors and the

right singular vectors corresponding to zero singular values of the
flexibility matrix F, respectively.

According to Eq. (43) for the bordered system, we obtain the
stiffness matrix K with Eq. (33) and the right singular vectors
corresponding to zero singular values (spurious force mode) as
shown below:

w
�

T
1 ¼ 1

2
ffiffi
3
p 1

2
�1ffiffi

3
p 0 1

2
ffiffi
3
p �1

2

n o
ð44Þ

w
�

T
2 ¼ 1ffiffi

3
p 0 1ffiffi

3
p 0 1ffiffi

3
p 0

n o
; ð45Þ

w
�

T
3 ¼ 0 1ffiffi

3
p 0 1ffiffi

3
p 0 1ffiffi

3
p

n o
: ð46Þ



(a) Rotation of therigid body 1ψ
%

mode.

(b) The rigid body mode 2ψ
%

along the x direction.

(c) The rigid body mode 3ψ
%

along the y direction.

Undeformed state

Undeformed state

Undeformed state

Fig. 6. The rigid body modes for a truss by using the SVD technique.
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For the numerical implementation, the specified displacement u�
is the same as Eq. (42) and the regularized force p

�
r can be obtained

as shown below:
p
�

T
r ¼ 1 0 0 0 �1 0f g: ð47Þ

and constants d1, d2 and d3 are all zeros. The spurious force mode
and numerical result are shown in Figs. 8 and 9, respectively.

However, the specified force vector not satisfying the force
equilibrium is shown below:
p
�

T ¼ 1 0 0 0 1 0f g: ð48Þ

We obtain

u�
T
r ¼ 1

9
�1

3
ffiffi
3
p �2

9 0 1
9

1
3
ffiffi
3
p

n o
; ð49Þ

and the constants c1 ¼ �1
2
ffiffi
3
p , c2 ¼ �5

6 and c3 = 0. The numerical result is
shown in Fig. 10. In this case, the constants c1 and c2 are not zeros. It
is interesting to find that the specified force vector in Eq. (48) does
not satisfy the moment equilibrium and the horizontal force equi-
librium. Mathematically speaking, ci is equal to the inner product



Fig. 7. The regularized displacement u
�r for a truss subject to equilibrium loading by using the self-regularized approach.
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of /
� i and b�. This matches nonzero c1 (moment unequilibrium) and

c2 (horizontal force unequilibrium).
Example 3: A linear plane beam element
For a 2-node and 4-dof Bernoulli–Euler prismatic plane beam

element as shown in Fig. 11, the free–free stiffness matrix K is

K ¼ EI

L3

12 6L �12 6L

6L 4L2 �6L 2L2

�12 �6L 12 �6L

6L 2L2 �6L 4L2

2
6664

3
7775; ð50Þ

where EI
L3 is the flexural rigidity.

For simplicity, we set EI = 1 and L = 1. After employing the SVD,
we obtain

R ¼

0
0

2
30

2
6664

3
7775; ð51Þ

U ¼ W ¼

1ffiffi
2
p � 1ffiffiffiffi

10
p 0 2ffiffiffiffi

10
p

0 2ffiffiffiffi
10
p � 1ffiffi

2
p 1ffiffiffiffi

10
p

1ffiffi
2
p 1ffiffiffiffi

10
p 0 � 2ffiffiffiffi

10
p

0 2ffiffiffiffi
10
p 1ffiffi

2
p 1ffiffiffiffi

10
p

2
666664

3
777775: ð52Þ

Since the stiffness matrix is a symmetric matrix, the right and
left singular vectors are identical.

According to Eq. (12), the linear algebraic system K u� ¼ p
�

can be
bordered to

K /
�1 /

�2

w
�

T
1 0 0

w
�

T
2 0 0

2
6664

3
7775

u�r

c1

c2

8><
>:

9>=
>; ¼

p
�

0
0

8><
>:

9>=
>;; ð53Þ

The flexibility matrix F can be obtained by inversing the regu-
larized matrix as shown below

F ¼ 1
75

1 1
2 �1 1

2
1
2 19 � 1

2
37
2

�1 � 1
2 1 � 1

2
1
2

37
2 � 1

2 19

2
6664

3
7775: ð54Þ
Since the singular values r1 and r2 are both zeros, the rigid
body mode can be found in the right singular vectors w

�1 and w
�2,

respectively. The rigid body modes are shown below

w
�

T
1 ¼

1ffiffiffi
2
p 1 0 1 0f g; ð55Þ

w
�

T
2 ¼

1ffiffiffiffiffiffi
10
p �1 2 1 2f g ð56Þ

For the numerical implementation, the specified generalized
force vector is pure bending of moment as given below

p
�

T ¼ 0 1 0 �1f g: ð57Þ

Therefore, we obtain

u�
T
r ¼ 0 1

2 0 � 1
2

	 

ð58Þ

and the constants c1 and c2 are both zeros. The pure bending mode
u�r for the beam element is shown in Fig. 12.

Following the result of the above section, the free–free flexibil-
ity matrix F can be obtained from the free–free stiffness matrix K,
even though the stiffness matrix K is singular. According to Eqs.
(12) and (54), the linear algebraic system F p

�
¼ u� can be similarly

rewritten as

F /
�1 /

�2

w
�

T
1 0 0

w
�

T
2 0 0

2
6664

3
7775

p
�

r

d1

d2

8>><
>>:

9>>=
>>; ¼

u�
0
0

8><
>:

9>=
>;: ð59Þ

According to Eq. (59), we obtain the stiffness matrix K to be
equal to that of Eq. (50) and the right singular vectors correspond-
ing to zero singular values (spurious force mode) are shown below:

w
�

T
1 ¼

1ffiffiffi
2
p 1 0 1 0f g; ð60Þ

w
�

T
2 ¼

1ffiffiffiffiffiffi
10
p �1 2 1 2f g: ð61Þ

For the numerical study, the specified displacement condition u�
is the same as Eq. (58) and the regularized force p

�
r can be obtained

as shown below



(a) The spurious momentmode 1ψ
%

.

(b) The spurious force 2ψ
%

along the x direction.

(c) The spurious force mode 3ψ
%

along the y direction.

Fig. 8. The spurious force modes for a truss by using the SVD technique.
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p
�

T
r ¼ 0 1 0 �1f g: ð62Þ

Constants of d1 and d2 are both zeros. The numerical result is
shown in Fig. 12.

Example 4: A unsymmetric bar stiffness
The last example is a geometrically nonlinear bar with

2-node element moving in the xy plane subjected to a lateral
pressure q as shown in Fig. 13 and the free–free stiffness matrix
K is

K¼ EA
L

1 0 �1 0
0 0 0 0
�1 0 1 0
0 0 0 0

2
6664

3
7775þP

L

1 0 �1 0
0 1 0 �1
�1 0 1 0
0 �1 0 1

2
6664

3
7775þq

2

0 �1 0 1
1 0 �1 0
0 �1 0 1
1 0 �1 0

2
6664

3
7775; ð63Þ
where P is a axial prestress force. The free–free stiffness matrix K is
singular and asymmetric. By setting EA = 1, P = 1, q = 2, L = 1 for sim-
plicity and by employing the SVD, we obtain

U ¼

1ffiffiffiffi
26
p �9

2
ffiffiffiffi
65
p 1

2
2ffiffiffiffi
10
p

4ffiffiffiffi
26
p 3

2
ffiffiffiffi
65
p �1

2
1ffiffiffiffi
10
p

3ffiffiffiffi
26
p �1

2
ffiffiffiffi
65
p 1

2
�2ffiffiffiffi

10
p

0
ffiffiffiffi
13
p

2
ffiffi
5
p 1

2
1ffiffiffiffi
10
p

2
666664

3
777775; ð64Þ

R ¼

0
0

2
ffiffiffi
2
p

2
ffiffiffi
5
p

2
6664

3
7775; ð65Þ



Fig. 9. The regularized force p
�

r for a truss by using the self-regularized approach.

Fig. 10. The numerical result u
�r of a truss under unbalanced force system.

Fig. 11. The beam element for the example 3.

Fig. 12. The regularized displacement u
�r and the regularized force p

�
r for a beam

subject to pure bending by using the self-regularized approach.
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W ¼ 1ffiffiffi
2
p

1 0 0 �1
0 1 �1 0
1 0 0 1
0 1 1 0

2
6664

3
7775: ð66Þ

According to Eq. (12), the linear algebraic system K u� ¼ p
�

can be
bordered as
K /
�1 /

�2

w
�

T
1 0 0

w
�

T
2 0 0

2
6664

3
7775

u�r

c1

c2

8><
>:

9>=
>; ¼

p
�

0
0

8><
>:

9>=
>;; ð67Þ



Fig. 13. The rod element with unsymmetric stiffness for the example 4.
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where /
�1;/�2 and w

�1;w�2 are the left singular vectors and the right
singular vectors according to zero singular values of the stiffness
matrix K, respectively. The free–free flexibility matrix F can be
determined by inversing the bordered matrix as shown below

F ¼ 1
4

2
5

1
5

�2
5

1
5

�1
2

1
2

�1
2

�1
2

�2
5

�1
5

2
5

�1
5

1
2

�1
2

1
2

1
2

2
6664

3
7775: ð68Þ

Since singular values r1 and r2 are both zeros, the rigid body
mode can be found in the right singular vectors w

�1 and w
�2,

respectively. The rigid body modes are shown below:

w
�

T
1 ¼

1ffiffiffi
2
p 1 0 1 0f g; ð69Þ
w
�

T
2 ¼

1ffiffiffi
2
p 0 1 0 1f g: ð70Þ

Following the result of the above section, the free–free flexibil-
ity matrix F can be obtained from the free–free stiffness matrix K,
even though the stiffness matrix K is singular. Similarly, according
(a) The spurious f

(b) The spurious fo

Fig. 14. The spurious force modes for a rod with uns
to Eqs. (12) and (68), the linear algebraic system F p
�
¼ u� can be

rewritten as

F /
�1 /

�2

w
�

T
1 0 0

w
�

T
2 0 0

2
6664

3
7775

p
�

r

d1

d2

8>><
>>:

9>>=
>>; ¼

u�
0
0

8><
>:

9>=
>;; ð71Þ

where /
�1;/�2 and w

�1;w�2 are the left singular vectors and the right
singular vectors according to zero singular values of the flexibility
matrix F), respectively.

According to Eq. (71), we obtain the stiffness matrix K to be
equal to that of Eq. (63) and the right singular vectors correspond-
ing to zero singular values (spurious force mode) are shown below

w
�

T
1 ¼

1
2
ffiffiffiffiffiffi
35
p 3 9 7 �1f g; ð72Þ
w
�

T
2 ¼

1ffiffiffiffiffiffi
14
p �2 1 0 3f g: ð73Þ

and corresponding sketches are shown in Fig. 14.
By using the self-regularized approach, both satisfy the

Moore–Penrose pseudo inverse as shown below:

KFK ¼ K; ð74Þ

and

FKF ¼ F: ð75Þ

No matter the derivation of the free–free flexibility matrix F
from the free–free stiffness matrix K or the derivation of the
free–free stiffness matrix K from the free–free flexibility matrix
F, our approach can be used.
orce mode 1ψ
%

.

rce mode 2ψ
%

.

ymmetric stiffness by using the SVD technique.
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4. Conclusions

In this paper, we remove the indeterminacy in the rigid body
mode or spurious mode for the free–free stiffness and flexibility
matrices by enforcing the solution to satisfy the constraint of
orthogonality, respectively. Then, we add the corresponding null
space since the range of the mapping is deficient. Finally, a singular
stiffness or flexibility matrix can be bordered to a nonsingular
matrix. By inversing the nonsingular matrix, we can obtain the
generalized inverse matrix from the submatrix of the ordinary
inversion with respect to the nonsingular matrix. Not only can
we derive the flexibility matrix from the singular stiffness matrix
but also we can derive the stiffness matrix from the singular
flexibility matrix. Both stiffness and flexibility matrices satisfy
the well-known Moore–Penrose equations. Four examples were
demonstrated to see the validity of the present formulation. The
physically unrealizable loading and incompatibility of the
displacement constraint can be both examined by detecting from
the nonzero parameter c in the regularized formulation.
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