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Abstract 

In this paper, the complex-valued BEM for solving the eigenfrequencies of the annular plates is 
proposed. By employing the complex-valued BEM, the spurious eigenevalues in conjunction with the 
true eigenvalues are obtained for free vibration of the multiply-connected plate. We analytically and 
numerically examine the occurrence of the spurious eigenvalues in the continuous and discrete systems 
of an annular plate. For the continuous system, the degenerate kernels for the fundamental solution and 
the Fourier series expansion for the boundary density are employed to derive the true and spurious 
eigenequations analytically. The circulant is adopted to analytically derive the true and spurious 
eigenequation in the discrete system. It is found that the spurious eigenvalues parasitizing in the 
multiply-connected plate depend on the associated true eigenvalues of the simply-connected plate with a 
radius  which is the inner circle of the annular domain. Three methods (SVD updating technique, the 
Burton & Miller method and the CHIEF method) are adopted to suppress the occurrence of the spurious 
eigenvalues, and a clamped-clamped annular plate is demonstrated analytically for the discrete system in 
this paper. Several examples were demonstrated to check the validity of the formulation.  
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邊界元素法對於同心圓板自由振動 
真假特徵方程數學分析及數值研究 

林盛益 1, 陳義麟 2, 陳正宗 3 

摘要 

本文以邊界元素法求解同心圓板之特徵頻率問題。在多連通問題使用複數型邊界元素法

在求解過程中所伴隨而來的假根問題為此文章之討論重點。為解析假根產生之機制，本文在

連續系統中採用退化核及富利葉級數來進行數學推導，離散系統中使用循環矩陣來說明假根

之產生，同時以固立端邊界條件之同心圓板為例來解析證明。經解析發現在多連通問題所產

生之假根為對應內徑 之單連通圓板問題之真根。文中並提出三種方法(奇異值分法之補充式

技巧，Burton & Miller 方法及 CHIEF 方法)來克服假根之產生，最後本文藉由不同的數值算

例，來驗證上述的理論推導之正確性。 
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For membrane or acoustic problems, 

either the real-part or imaginary-part BEM 
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results in spurious eigensolutions. Tai and 

Shaw [13] first employed BEM to solve 

membrane vibration using the complex-valued 

kernel. De Mey [5], Hutchinson and Wong [8] 

employed only the real-part kernel to solve the 

membrane and plate vibrations to avoid the 

complex-valued computation in sacrifice of 

occurrence of spurious eigensolutions. Wong 

and Hutchinson [7,9] have presented a direct 

BEM involving displacement, slope, moment 

and shear force. They were able to obtain 

numerical results for simply-connected and 

clamped plates by employing only the real-part 

BEM with obvious computational gains. 

However, this saving leads to the spurious 

eigenvalues in addition to the true ones in free 

vibration analysis. Niwa et al. [12] also stated 

that ``One must take care to use the complete 

Green's function for outgoing waves, as 

attempts to use just the real (singular) or 

imaginary part (regular) separately will not 

provide the complete spectrum". This criticism 

is not correct since the real-part BEM does not 

lose any true eigenvalues. The reason is that the 

real and imaginary-part kernels satisfy the 

Hilbert transform. Complete eigenspectrum is 

imbedded in either one, real or imaginary-part 

kernel. The Hilbert transform is the constraint 

in the frequency domain corresponding to the 

casual effect in the time-domain fundamental 

solutions. The physical meaning of the real-part 

kernel is the standing wave [6]. Tai and Shaw 

[13] claimed that spurious eigenvalues are not 

present if the complex-valued kernel is 

employed for the eigenproblem. However, it is 

true only for the problem with a simply- 

connected domain. For multiply-connected 

problems, spurious eigenequation occur even 

though the complex-valued BEM is utilized [3, 

4]. This is the reason why Chen and his 

coworkers have developed many systematic 

techniques [1, 2] for sorting out the true and the 

spurious eigensolutions. 

In this paper, the spurious eigensolution 

for the multiply-connected plate eigenproblem 

will be studied in the complex-valued BEM. 

Since any two equations in the plate 

formulation (4 equations) can be chosen, 6 ( C ) 

options can be considered. The occurring 

mechanism for the spurious eigensolution in 

the multiply-connected plate problem will be 

studied analytically in the continuous and 

discrete systems. Three methods (SVD 

updating technique, the Burton & Miller 

method and the CHIEF method) are adopted to 

suppress the occurrence of the spurious 

eigenvalues, and a clamped-clamped annular 

plate is demonstrated analytically for the 

discrete system.  
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2. Boundary integral equations for 
plate eigenproblems 

The governing equation for the free 

flexural vibration of a uniform thin plate is 

written as follows: 

Ω∈=∇ xxuxu ),()( 44 λ  (1)

where  is the lateral displacement, 

, 

u

h /0 D24 ρωλ = λ  is the frequency parameter, 

ω  is the circular frequency, 0ρ  is the surface 

density,  is the flexural rigidity expressed as D
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)1(12/ 23 ν−= EhD

E

 in terms of Young's 

modulus , Poisson ratio ν , the plate 

thickness , and  is the domain of the thin 

plate. The integral equations for the domain 

point can be derived from the Rayleigh-Green 

identity as follows [10]: 
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where  for Ω∈ , =α  for Bx∈ , 

 for ,  is the complementary 

domain of , 

eΩ

 is the boundary, , u θ ,  

and   mean the displacement, slope, normal 

moment, effective shear force, 

m

s and x  are 

the source and field points, respectively, U , 

,  and  kernel functions will be 

elaborated on later. The kernel function  

is the fundamental solution  which is 
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where  and  denote the zero-order Bessel 

and modified Bessel functions of the first kind, 

and  denote the zero-order Bessel and 

modified Bessel functions of the second kind, 

 and , respectively. The three 

kernels, ,  and , are 

defined as follows : 

1

M ),( xs ),( xsV
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where )(⋅θK , )(⋅mK  and  mean the 

operators which are defined as follows: 
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where  and  are the normal vector and 

tangential vector, respectively. The operators 

n t

)(⋅θK , )(⋅mK  and )(⋅vK  can be applied to , U

Θ , M  and V kernels. The kernel functions 

can be expressed as: 

sn
xsUxs

∂
∂

=Θ
),(),(  (13)

2

2
2 ),()1(),(),(

s
s n

xsUxsUxsM
∂

∂
−+∇= νν  (14)

)),(()1(),(),(
22

ssss

s

tn
xsU

tn
xsUxsV

∂∂
∂

∂
∂

−+
∂

∂∇
= ν  (15)

The displacement, slope, normal moment and 

effective shear force are derived by 
))(()( xuKx θθ =  (16)
))(()( xuKxm m=  (17)

))(()( xuKxv v=  (18)

 

3. Mathematical analysis for the 
multiply-connected plate 

3.1 Continuous system 

We consider an annular plate clamped on the 

outer circle  (1B 01 =u and 01 =θ ) and the 

inner circle  (2B 02 =u and 02 =θ ), where , 1u

1θ ,  and 2u 2θ  are the displacement and slope 

on the  and , respectively. The radii of the 

outer and inner circles are a  and , 

1B 2B

b
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respectively. The moment and shear force, , 

,  and v , can be expanded into Fourier 

series by 
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where the superscript ``  '' denotes the 

clamped-clamped case, 
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 is the angle on the 

circular boundary, , ,  and  

 are the undetermined Fourier 

coefficients on  
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nia ,

(
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)
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1

iB =i
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. When the field 

point locates on , substitution of the 

Eqs.(19)-(22) into the Eqs.(2) and (3) yields 
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When the field point locates on , 

substitution of the Eqs.(19)-(22) into the Eqs.(2) 

and (3) yields 
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The kernel functions, U  ),,( xs (sΘ  

 and , can be expanded by using 

the expansion formulae 
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where  and  denote the mth-order Bessel 

and modified Bessel functions of the first kind, 

and  denote the mth-order Bessel and 

modified Bessel functions of the second kind. 

mJ

K

mI

mY m

),φ(ρ=s  and ),( φρ=x  are the polar coordinates 

of s  and x , respectively. By using the degenerate 

kernels into Eqs.(23)-(26) and the orthogonality 

condition of the Fourier series, the Fourier 

coefficients  and  satisfy na np
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Also, the coefficients of and  have the 

same relationship in the matrix form. For the 

existence of nontrivial solution for , , 

 and , the determinant of the matrix 
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using the properties of the determinants, we can 

decompose the Eq.(32) to 
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It is noted that the matrix [  denotes the 

matrix of true eigenequation for the C-C case 

and the matrix [  denotes the matrix of 

spurious eigenequation in the 

]cc
nT

]θu
nS

θ,u  

formulation. Zero determinant in the Eq.(33) 

implies that the eigenequation is, 

0])][[det(]det[ == cc
n

u
n TSbTM θ  (36)

After comparing with the analytical solution for 

the annular plate [11,14,15], the former matrix 

 in the Eq.(36) results in the spurious 

eigenequation while the latter matrix [  

results in the true eigenequation. All the true 

and spurious equations for the multiply- 

connected plate in the complex-valued BEM 

are shown in Tables 1 and 2. 

]cc
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3.2 Discrete system 

For the discrete system, the Eqs.(23)-(26) 

can be rewritten as 
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 and , the determinant of the 

matrix versus eigenvalue must be zero. 
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Since the rotation symmetry is preserved for a 

circular boundary, the influence matrices for 

the discrete system are found to be circulants 

such that the eigenvalue can be analytical 

derived 
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Since the matrix  is symmetric circulants, 
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Similarly, we can obtain the other eigenvalues 

of the influence matrices by using the 

properties of the circulants. By decomposing 

the influences matrix in Eq.(42), we have 
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By employing the eigenvalues of each 

influence matrices for Eq.(47), we have 
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Zero determinant in Eq.(48) implies that the 

eigenequation is 
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The true eigenequation for a continuous system 

can be obtained by approaching  in the 

discrete system to infinity. The former part in 

the middle bracket of Eq.(49) is the spurious 

eigenequation while the latter part in the big 

bracket is found to be the true eigenequation. In 

this case, it is interesting to find that the true 

and spurious eigenequation are the same with 

those derived in the continuous system. 

N

 

3.3 Study of the spurious eigenequation 

After comparing the Eq.(36) in the 

continuous system with the Eq.(49) in the 

discrete system for for the annular plate, the 

same spurious eigenequation det[  is 

embedded in the same 

0] =θu
nS

),( θu  formulation no 

matter what the boundary condition is.  

By using the cofactor of the matrix  to 

simplify the zero determinant of the Eq.(35) for 

the spurious eigenequation, we have 
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It is found that the determinant of the matrix 

 in the Eq.(51) is never zero. The 

spurious eigenequation is the zero determinant 

of the matrix [  in the Eq.(52). It is 

interesting that the zero determinant of the 

 in the 

][ θu
nSa

][ θu
nSb

]θu
nSb

θ,u  formulation results in the 

true eigenequation of simply-connected 

clamped plate with a radius . The spurious 

eigenvalues parasitizing in the 

b

θ,u

1

 BEM 

depend on the radius  which is the inner 

circle of the annular domain. In fact, the 

multiply-connected problem can be 

superimposed by two problems, one is an 

interior problem with  boundary and the 

other is an exterior problem with  boundary. 

The source which causes the appearance of the 

spurious eigenvalues stems from the exterior 

problem with the inner boundary even though 

b

2B

B
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the complex-valued kernels are employed as 

well as the membrane and acoustics behaves 

[3,4]. 

 

4. Extraction of the true eigenvalues 
using SVD updating technique in 

the discrete system 
A conventional approach to detect the 

nonunique solution is the criterion of satisfying 

all Eqs.(2)-(5) at the same time. For the 

clamped-clamped annular plate, the Eqs.(4)-(5) 

reduce to 
}]{12[}]{11[}]{12[}]{11[0 2121 mmvUvU mmmm Θ+Θ++= (53)
}]{22[}]{21[}]{22[}]{21[0 2121 mmvUvU mmmm Θ+Θ++= (54)

}]{12[}]{11[}]{12[}]{11[0 2121 mmvUvU vvvv Θ+Θ++=  (55)
}]{22[}]{21[}]{22[}]{21[0 2121 mmvUvU vvvv Θ+Θ++= (56)

After rearranging the terms, Eqs.(53)-(56) can 

be assembled to 

[ ]




















=





















2

1

2

1

2

0
0
0
0

m
m
v
v

SM cc  (57)

where 





















ΘΘ
ΘΘ
ΘΘ
ΘΘ

=

θθθθ

θθθθ

22212221
12111211
22212221
12111211

][ 2

UU
UU
UU
UU

SM cc  (58)

To obtain an overdetermined system, we can 

combine Eqs.(42) and (58) by using the 

updating term, 

0][ =








m
v

C  (59)

where 

NN
cc

cc

SM
SM

C
482

1][
×












=  (60)

Since the eigenequation is nontrival, the rank of 

the matrix [ ]C  must be smaller then , the 

 singular values for the matrix [  must 

have at least one zero value. The explicit form 

for the matrix 

N4

]CN4

[ ] can be decomposed into C

T

UU

UU

UU

UU

UU

UU

UU

UU

vvvv

vvvv

mmmm

mmmm

C
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∑∑∑∑
∑∑∑∑

































Φ
Φ

Φ
Φ

Φ
Φ

Φ
Φ

=

ΘΘ

ΘΘ

ΘΘ

ΘΘ

ΘΘ

ΘΘ

ΘΘ

ΘΘ

000
000
000
000

0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000

][

22212221

12111211

22212221

12111211

22212221

12111211

22212221

12111211

θθθθ

θθθθ

 (61)

Based on the equivalence between the SVD 

technique and the least-squares method in 

mathematical essence, the zero determinant of 

the matrix [ ] [ ]CC T  is implies the nontrivial 

solution. After a length derivation, the only 

possibility for the zero determinant of the 

matrix [ ] [ ]CC T  is only the true eigenequation 

to be zero, such that 

0]det[ =ccTl  (62)

This indicates that only the true eigenequation 

of the clamped circular plate is sorted out in the 

SVD updating matrix since the true 

eigenequation is simultaneously embedded in 

the six formulations. The result matches well 

with Eqs.(36) and (49) in the continuous and 

discrete systems. 

4.2 The Burton & Miller method 

In the exterior acoustics of Helmholtz equation 
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by using the dual BEM, Burton & Miller 

utilized the product of hypersingular equation 

with an imaginary constant and added to the 

singular equation in dealing with fictitious- 

frequency problem which results in a 

non-uniqueness solution. By extending this 

concept to solve the spurious eigenequation in 

the complex-valued BEM, we have 

[ ] [ ]




















=





















+

0
0
0
0

)(

2

1

2

1

21

m
m
v
v

SMiSM cccc  (63)

4.3 CHIEF method 

By adding the CHIEF point )( b<ρ  to solve 

the multiply-connected plate eigenproblem in 

null-field integral equation, we have 

NN

cc

c
CCUCUC
CCUCUC

SM
82

3 2121
2121

][
×









ΘΘ
ΘΘ

=
θθθθ

(64)

where the index  denotes the CHIEF point 

in the null-field integral equation and the 

subscript  indicates the number of 

additional CHIEF points. The symbols, 

 and 

 mean the influence row vectors resulted 

from of the U  and  kernels which 

is collocating the CHIEF point. Combining the 

Eqs.(42) and (64) together to obtain the 

overdetermined system, we can sort out the true 

eigenvalues. 

C

)

2C

U,Θ

1(≥CN

θ ,1C ΘΘ

,

θθθθ 1,2,1,,2,1 CUCUCUCUC Θ

θ2CΘ

θ θΘ

 

5. Numerical results and discussions 
We consider an annular plate with the outer 

radius of one meter  and the inner 

radius of 0.5 meter b

)1( ma =

m5.0=  of  and , 

respectively, and the Poisson ratio 1 . The 

outer and inner boundaries are both discretized 

into ten constant boundary elements, 

respectively. Three cases (C-C, S-S and F-F 

annular plates) were considered.  

1B 2B

3/

Figures 1.(a) ~ 1.(c) show the determinant of 

 versus frequency parameter ][SM λ  for the 

three cases of annular plate using the 

complex-valued formulations ),( θu

[Sb

. Both the 

true and spurious eigenvalues occur 

simultaneously. After comparing with (a), (b) 

and (c) results, the spurious eigenvalues (6.392, 

9.222 and 11.810) are obtained no matter what 

the boundary condition is. It reconfirms that the 

spurious eigenvalues depends on the 

formulation instead of the specified boundary 

condition. All the spurious eigenvalues satisfy 

the spurious eigenequation (  in 

Eq.(52)) in the Table 2. The spurious 

eigenequation of multiply-connected 

eigenproblem by using the 

0=]θu
n

θ,u  formulation is 

found to be the true eigenequation of the 

simply-connected clamped plate with a radius 

 which is the inner radius of the annular plate 

[3,4]. 

b

Three methods, the SVD technique of 

updating term ( ),(),( vmu +θ  formulation), the 

Burton & Miller method ( ),(),( vimu θ+  

formulation) and CHIEF method (two points), 

the true eigenvalues were obtained as shown in 

Figures 1.(d)-(f). 

All the numerical data of the true 

eigenvalues are satisfied the true eigenequation 

in the Table 1, and the eigenvalues agree well 

with the data in Leissa and Laura et al. 

[11,14,15]. It is worth mentioning that we 
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provide the unified form of the true 

eigenequations for the three cases of annular 

plates in Table 1 instead of the separate form 

(n=0,1,2) [11]. The true eigenvalues are well 

compared with the Leissa's numerical results. 

However, the obtained eigenvalues according 

to the Leissa's eigenequation are not consistent 

to those in his book. The possible explanation 

is that the eigenequations in the Leissa's book 

for some cases were wrongly typed. 

 

6. Conclusions 
A complex-valued BEM formulation has 

been derived for the free vibration of annular 

plate. The true and spurious eigenequations 

were derived analytically by using the Fourier 

series, degenerate kernels and circulants in both 

the continuous and discrete systems. Since 

either two equations in the plate formulation (4 

equations) can be chosen, six options can be 

considered. The occurrence of spurious 

eigenequation only depends on the formulation 

instead of the specified boundary condition, 

while the true eigenequation is independent of 

the formulation and is relevant to the specified 

boundary condition. It is interesting that the 

spurious eigenequation of multiply-connected 

plate eigenproblem by using the θ,u  

formulation is found to be the true 

eigenequation of simply-connected clamped 

plate with a radius  which is the inner radius 

of the annular plate. All the results are shown in 

the Tables 1 and 2. Three methods (SVD 

updating technique, the Burton & Miller 

method and the CHIEF method) were adopted 

to suppress the occurrence of the spurious 

eigenvalues, only the true eigenvalues obtained. 

b

A C-C annular plate was demonstrated 

analytically to see the validity of the present 

method. Several examples of plates were 

illustrated to check the validity of the present 

formulations. Although the annular case lacks 

generality, it leads significant insight into the 

occurring mechanism of true and spurious 

eigenequation. Although the proof is only 

limited to the annular case, it is a great help to 

the researchers who may require analytical 

explanation for the reason why the spurious 

eigenevalues appears. The same algorithm in 

the discrete system can be applied to solve 

arbitrary-shaped plate numerically without any 

difficulty. Nevertheless, mathematical 

derivation in the continuous and discrete 

systems can not be done anaytically. 
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Table 1. True eigenequations for the annular plate. 
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Table 2. Spurious eigenequations for the annular plate. 

 [ ]nSb  B.C. of the simply-connected plate 
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Figure 1.(a)  v.s. ][ ccSMDet λ  (C-C annular plate) 
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Figure 1.(d) SVD updating term (F-F annular plate) 
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Figure 1.(b)  v.s. ][ SSSMDet λ  (S-S annular plate) 
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Figure 1.(e) The Burton & Miller method (F-F annular plate) 
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Figure 1.(c)  v.s. ][ FFSMDet λ  (F-F annular plate) 
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Figure 1.(f) The CHIEF method (F-F annular plate) 
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