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9 Abstract

10 This paper presents the occurring mechanism why irregular frequencies are imbedded in the exterior acoustics using

11 the dual boundary element method (BEM). The modal participation factor which dominates the numerical instability is

12 derived for continuous and discrete systems. In addition, the irregular (fictitious) frequencies embedded in the singular

13 or hypersingular integral equations are discussed, respectively. It is found that the irregular values depend on the

14 kernels in the integral representation for the solution. A two-dimensional dual BEM program for the exterior acoustics

15 was developed. Numerical experiments are conducted to verify the concept of modal participation factor.

16 � 2002 Published by Elsevier Science Ltd.
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18 1. Introduction

19 Irregular frequencies, or so called fictitious frequencies for exterior acoustics in boundary element

20 method (BEM) or boundary integral equation method (BIEM), have been studied by many researchers
21 (Burton and Miller, 1971; Schenck, 1968) for a long time. For a continuous system, Chen (1998) proved

22 analytically using the dual series model that the positions of fictitious frequencies depend on the kernel in

23 the integral representation for the solution. The types of boundary condition can not change the positions

24 where fictitious frequencies occur once the integral formulation is chosen. Later, Chen and Kuo (2000)

25 applied the theory of circulants to understand the occurring mechanism of irregular frequencies for a

26 discrete system by considering a circular radiator. Numerical examples for nonuniform radiation problems

27 using the dual BEM were provided and irregular frequencies were easily found (Chen et al., 2000). Al-

28 though the fictitious frequencies can be predicted theoretically (Chen, 1998; Chen and Kuo, 2000), we may
29 not find the positions of numerical instability in the real computation for some cases. How to explain the
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30 reason is not trivial. Very few literature on this topic can be found to the authors� best knowledge. In

31 structural dynamics, the concept of modal participation factor (Chen et al., 1995) is well known for

32 structural engineers. It indicates the weighting how the corresponding mode contributes to the response.

33 This concept can be applied to the excitations of body force, boundary force and boundary support motion.
34 The modal participation factor for both the continuous system (Chen et al., 1996) and discrete system

35 (Chen et al., 1995; Chen et al., 1997) were derived in structural dynamics.

36 In this paper, we will propose the concept of modal participation factor for the numerical instability in

37 the dual BEM for exterior acoustics. A dual BEM program was implemented to examine how the modal

38 participation factor dominates the numerical instability near the fictitious frequency. The nonzero modal

39 participation factor causes the numerical oscillation since the total solution is contaminated by the cor-

40 responding fictitious mode. The positions of fictitious frequencies for the exterior problems using the first

41 equation of the dual BEM (the singular integral equation––UT method) or the second equation of the dual
42 BEM (the hypersingular integral equation––LM method) will be discussed. Four numerical examples of

43 radiation problems and scattering problems subject to the Dirichlet and Neumann boundary conditions,

44 will be illustrated to show how participation factor contributes numerical instability to the total solution.

45 Numerical results using four approaches, the UT method, the LM method, the CHIEF method, the Burton

46 and Miller method, will be verified in comparison with the analytical solutions and the DtN results (Harari

47 et al., 1997; Stewart and Hughes, 1997). The modal participation factor for the corresponding modes will be

48 determined to predict the contribution of the numerical instability. To circumvent the problem of numerical

49 instability near the fictitious frequency, the Burton and Miller method (Burton and Miller, 1971) and
50 CHIEF method (Schenck, 1968; Chen et al., 2001) will be employed for comparisons.

51 2. Dual formulation for two-dimensional radiation and scattering problems

52 The governing equation for an exterior acoustic problem is the Helmholtz equation as follows:

ðr2 þ k2Þuðx1; x2Þ ¼ 0; ðx1; x2Þ 2 D;

54 where u is the acoustic potential, r2 is the Laplacian operator, D is the domain and k is the wave number,

55 which is angular frequency over the speed of sound. The boundary conditions can be either the Neumann

56 or Dirichlet type. Based on the dual formulation, the dual equations for the boundary points are

puðxÞ ¼ CPV

Z
B
T ðs; xÞuðsÞdBðsÞ � RPV

Z
B
Uðs; xÞtðsÞdBðsÞ; x 2 B; ð1Þ

ptðxÞ ¼ HPV

Z
B
Mðs; xÞuðsÞdBðsÞ � CPV

Z
B
Lðs; xÞtðsÞdBðsÞ; x 2 B; ð2Þ

59 where CPV, RPV and HPV denote the Cauchy principal value, the Riemann principal value and the

60 Hadamard principal value, tðsÞ ¼ ouðsÞ=ons, Uðs; xÞ is the fundamental solution,

T ðs; xÞ ¼ oUðs; xÞ
ons

; Lðs; xÞ ¼ oUðs; xÞ
onx

and Mðs; xÞ ¼ o2Uðs; xÞ
onsonx

;

62 B denotes the boundary enclosing D and the U , T , L and M are the four kernels in the dual formulation. By

63 discretizing the boundary into boundary elements, the linear algebraic equations for the dual boundary

64 integral equations can be written as

½Tpq	fuqg ¼ ½Upq	ftqg; ð3Þ
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½Mpq	fuqg ¼ ½Lpq	ftqg; ð4Þ
67 where ½U 	, ½T 	, ½L	 and ½M 	 are the four influence matrices, fuqg and ftqg are the boundary potential and

68 flux, and the subscripts p and q correspond to the labels of the collocation element and integration element,

69 respectively. In order to avoid the problem of fictitious frequency, the Burton and Miller formulation

70 (Burton and Miller, 1971) is employed by combining the dual equations as follows,

½Tpq	
�

þ i
k
½Mpq	

�
fuqg ¼ ½Upq	

�
þ i
k
½Lpq	

�
ftqg; ð5Þ

72 where i2 ¼ �1. Also, the CHIEF method Schenck, 1968 by adding the constraints from the interior points

73 is considered for comparisons.

74 3. Modal participation factor for numerical instability––continuous system

75 For simplicity, we propose the concept of modal participation factor by a circular case. By expanding the

76 four kernels in the dual formulation, we have the following degenerate kernels,

Uðs; xÞ ¼
UiðR; h; q;/Þ ¼

P1
m¼�1

p
2
½�iJmðkRÞ þ YmðkRÞ	JmðkqÞ cosðmðh � /ÞÞ; R > q;

UeðR; h; q;/Þ ¼
P1

m¼�1

p
2
½�iJmðkqÞ þ YmðkqÞ	JmðkRÞ cosðmðh � /ÞÞ; R < q;

8>><
>>: ð6Þ

T ðs; xÞ ¼
T iðR; h; q;/Þ ¼

P1
m¼�1

p
2
½�iJ 0

mðkRÞ þ Y 0
mðkRÞ	JmðkqÞ cosðmðh � /ÞÞ; R > q;

T eðR; h; q;/Þ ¼
P1

m¼�1

p
2
½�iJmðkqÞ þ YmðkqÞ	J 0

mðkRÞ cosðmðh � /ÞÞ; R < q;

8>><
>>: ð7Þ

Lðs; xÞ ¼
LiðR; h; q;/Þ ¼

P1
m¼�1

p
2
½�iJmðkRÞ þ YmðkRÞ	J 0

mðkqÞ cosðmðh � /ÞÞ; R > q;

LeðR; h; q;/Þ ¼
P1

m¼�1

p
2
½�iJ 0

mðkqÞ þ Y 0
mðkqÞ	JmðkRÞ cosðmðh � /ÞÞ; R < q;

8>><
>>: ð8Þ

Mðs; xÞ ¼
MiðR; h; q;/Þ ¼

P1
m¼�1

p
2
½�iJ 0

mðkRÞ þ Y 0
mðkRÞ	J 0

mðkqÞ cosðmðh � /ÞÞ; R > q;

MeðR; h; q;/Þ ¼
P1

m¼�1

p
2
½�iJ 0

mðkqÞ þ Y 0
mðkqÞ	J 0

mðkRÞ cosðmðh � /ÞÞ; R < q;

8>><
>>: ð9Þ

81 where x ¼ ðq;/Þ, s ¼ ðR; hÞ, Jm and Ym are the first and second Bessel functions with order m, respectively. It

82 is found that the source and field points are separated in the degenerate kernels of Eqs. (6)–(9). For the

83 boundary densities, u and t, on the circular boundary, we have

uðhÞ ¼ a0 þ
X1
n¼1

ðan cos nh þ bn sin nhÞ; 06 h < 2p; ð10Þ

tðhÞ ¼ p0 þ
X1
n¼1

ðpn cos nh þ qn sin nhÞ; 06 h < 2p; ð11Þ
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86 where a0, an, bn, p0, pn and qn are the Fourier coefficients for u and t, respectively. For the Dirichlet case, a0,

87 an and bnðnP 1Þ are known, while p0, pn and qnðnP 1Þ need to be determined. By adopting the null-field

88 equation, we have

0 ¼
Z
B
T iðs; xÞuðsÞdBðsÞ �

Z
B
Uiðs; xÞtðsÞdBðsÞ; x 2 D; ð12Þ

90 where D is outside the domain of interest D. By substituting the series forms for the kernels of Eqs. (6) and

91 (7) and the boundary densities of Eqs. (10) and (11) into Eq. (12) and using the orthogonal properties of

92 Fourier bases, we have

p0 ¼ �H ð1Þ0
0 ðkaÞJ0ðkaÞ

H ð1Þ
0 ðkaÞJ0ðkaÞ

a0k; ð13Þ

pm ¼ �H ð1Þ0
m ðkaÞJmðkaÞ

H ð1Þ
m ðkaÞJmðkaÞ

amk; mP 1; ð14Þ

qm ¼ �H ð1Þ0
m ðkaÞJmðkaÞ

H ð1Þ
m ðkaÞJmðkaÞ

bmk; mP 1; ð15Þ

96 where H ð1Þ
m denotes the first kind Hankel function with order m. By substituting all the boundary unknowns

97 into the field equation, we have

uðq;/Þ ¼
X1
m¼0

H ð1Þ
m ðkqÞ

H ð1Þ
m ðkaÞ

 !
JmðkaÞ
JmðkaÞ

� 
ðam cosðm/Þ þ bm sinðm/ÞÞ

¼
X1
m¼0

H ð1Þ
m ðkqÞ

H ð1Þ
m ðkaÞ

 !
JmðkaÞ
JmðkaÞ

�  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
m þ b2

m

q
cosðm/ � sÞ; qP a; 06/ < 2p; ð16Þ

99 after employing the following identities

H ð1Þ
m ðkaÞ ¼ JmðkaÞ þ iYmðkaÞ; ð17Þ

H ð1Þ0
m ðkaÞ ¼ J 0

mðkaÞ þ iY 0
mðkaÞ; ð18Þ

Y 0
mðkaÞJmðkaÞ � iYmðkaÞJ 0

mðkaÞ ¼
2

pka
; ð19Þ

103 where s is the phase lag. By checking all the terms in the derivation, a term of zero divided by zero,
104 JmðkaÞ=JmðkaÞ, can be found in Eqs. (13)–(16) for the case of irregular values such that JmðkaÞ ¼ 0. This

105 motivates us to define the modal participation factor as ðH ð1Þ
m ðkqÞ=H ð1Þ

m ðkaÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
m þ b2

m

p
for the term of nu-

106 merical instability, JmðkaÞ=JmðkaÞ; with respect to the corresponding mode cosðm/ � sÞ. In a similar way, we

107 can derive the modal participation factor, ðH ð1Þ
m ðkqÞ=H ð1Þ

m ðkaÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
m þ b2

m

p
, for the term of numerical insta-

108 bility, J 0
mðkaÞ=J 0

mðkaÞ, with respect to the corresponding mode cosðm/ � sÞ in the LM method (hypersingular

109 equation). Mathematically speaking, the irregular values can not result in any difficulty since the term of

110 zero divided by zero can be directly determined by the L�Hospital�s rule. In an easier way, the same two zero

111 terms can be cancelled out straight forward. However, this is not the case in the real calculation since the
112 unknown densities are assumed in a separate way.
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113 4. Modal participation factor for numerical instability––discrete system

114 In this section, the modal participation factor for numerical instability resulted from the fictitious fre-

115 quencies is derived for a discrete system with an arbitrary boundary. By discreting 2N boundary elements
116 along the boundary and using the SVD technique for U and T matrices in Eq. (3), we have

UURUWy
U t ¼ UTRTW

y
T u; ð20Þ

118 where y denotes the transpose conjugate, UU , WU , UT and WT are the unitary matrices, RU and RT are the

119 diagonal matrices composed by the singular values rðUÞ
i and rðT Þ

i of U and T matrices, respectively. By

120 choosing the 2N column vectors in WU and WT as bases for t and u, respectively, we have

t ¼ WUa ¼
XN

n¼�ðN�1Þ
anw

ðUÞ
n ; ð21Þ

122 and

u ¼ WTb ¼
XN

n¼�ðN�1Þ
bnw

ðT Þ
n ; ð22Þ

124 where a and b are the generalized coordinates. By substituting Eqs. (21) and (22) into Eq. (20), we have

UURUa ¼ UTRTb; ð23Þ
126 after using the unitary properties for WU and WT . When k is a fictitious frequency (ki), there exists a /y

i

127 which satisfies

U yðkf Þ
T yðkf Þ

� �
/i ¼ 0; ð24Þ

129 after using the Fredholm alternative theorem. By taking the transpose conjugate with respect to Eq. (24),
130 we have

/y
i Uðkf Þ T ðkf Þ½ 	 ¼ 0: ð25Þ

132 Eqs. (24) and (25) are found to be the SVD updating terms and documents (Chen et al., 1999), respectively.

133 By premultiplying /y
i with respect to the left hand side and right hand side of the equal sign in Eq. (23), we

134 have

/y
iUURUa ¼ /y

iUTRTb: ð26Þ
136 For simplicity of demonstrable purpose, the Dirichlet problem is considered here. Eq. (26) is reduced to

ai ¼
rðT Þ
i

rðUÞ
i

bi; i no sum; ð27Þ

138 since /i is one of the column vectors in UU and UT . By checking the terms in Eq. (27), an undeterminate
139 term of zero divided by zero, rðT Þ

i =rðUÞ
i , can be found when k is an irregular value which satisfies

140 rðT Þ
i ¼ rðUÞ

i ¼ 0. The modal participation factor can be defined as ðrðT Þ
i =rðUÞ

i Þbi for the numerical instability,

141 with respect to the corresponding mode wðT Þ
i instead of /ðT Þ

i . In the same way, we can derive the modal

142 participation factor, ðrðMÞ
i =rðLÞ

i Þbi, with respect to the corresponding mode wðMÞ
i instead of /ðMÞ

i in the LM
143 method. By considering the special case of a circular radiator, Eq. (20) reduces to

UHJWyt ¼ UH 0JWyu; ð28Þ
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145 where

U ¼ W ¼ 1ffiffiffiffiffiffiffi
2N

p

1 ðei2p
2NÞ0 ðe�i2p

2NÞ0 � � � ðei2Np
2N Þ0

1 ðei2p
2NÞ1 ðe�i2p

2NÞ1 � � � ðei2Np
2N Þ1

..

. ..
. ..

. ..
. ..

.

1 ðei2p
2NÞ2N�2 ðe�i2p

2NÞ2N�2 � � � ðei2Np
2N Þ2N�2

1 ðei2p
2NÞ2N�1 ðe�i2p

2NÞ2N�1 � � � ðei2Np
2N Þ2N�1

2
666664

3
777775

2N�2N

; ð29Þ

H ¼

H ð1Þ
0 ðkaÞ 0 0 � � � 0

0 H ð1Þ
�1 ðkaÞ 0 ..

.
0

0 0 H ð1Þ
1 ðkaÞ ..

.
0

..

. ..
.

0 . .
.

0
0 0 0 0 H ð1Þ

N ðkaÞ

2
66666664

3
77777775

2N�2N

; ð30Þ

J ¼

J0ðkaÞ 0 0 � � � 0

0 J�1ðkaÞ 0 ..
.

0

0 0 J1ðkaÞ ..
.

0

..

. ..
.

0 . .
.

0
0 0 0 0 JN ðkaÞ

2
66666664

3
77777775

2N�2N

: ð31Þ

149 In a similar way, we can obtain the modal participation factor for each mode using the UT and LM methods

150 as shown in Tables 1 and 2, respectively.

Table 1

The modal participation factor in the UT method (singular equation)

Mode Participation factor

w0

H ð1Þ0
0 ðkaÞ

H ð1Þ
0 ðkaÞ

J0ðkaÞ
J0ðkaÞ

b0

w�1

H ð1Þ0
�1 ðkaÞ

H ð1Þ
�1 ðkaÞ

J�1ðkaÞ
J�1ðkaÞ

b�1

w1

H ð1Þ0
1 ðkaÞ

H ð1Þ
1 ðkaÞ

J1ðkaÞ
J1ðkaÞ

b1

..

. ..
.

w�ðN�1Þ
H ð1Þ0

�ðN�1ÞðkaÞ
H ð1Þ

�ðN�1ÞðkaÞ
J�ðN�1ÞðkaÞ
J�ðN�1ÞðkaÞ

b�ðN�1Þ

wðN�1Þ
H ð1Þ0

ðN�1ÞðkaÞ
H ð1Þ

ðN�1ÞðkaÞ
JðN�1ÞðkaÞ
JðN�1ÞðkaÞ

bðN�1Þ

wN
H ð1Þ0

N ðkaÞ
H ð1Þ

N ðkaÞ
JN ðkaÞ
JN ðkaÞ

bN

Where w0;w�1;w1;w�2; . . . ;w�ðN�1Þ;wðN�1Þ and wN are the 2N columns in W2N�2N matrices.
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151 5. Numerical examples

152 Case 1. A radiation problem (Dirichlet condition)

153 For the first example, a radiation problem is considered. The governing equation and boundary con-

154 dition are shown in Fig. 1. The normalized analytical solution to this cylinder problem of a radius a is

uðq;/Þ ¼ H ð1Þ
4 ðkqÞ

H ð1Þ
4 ðkaÞ

cosð4/Þ; qP a; 06/ < 2p; ð32Þ

156 subject to boundary condition uða;/Þ ¼ cosð4/Þ, where H ð1Þ
4 ðkqÞ denotes the first-kind Hankel function of

157 the fourth order. Fig. 2 shows the contour plots for the real-part solutions. The positions where the ir-
158 regular values occur can be found in Fig. 3 for the solution tða; 0Þ versus k by using either the UT or the LM
159 equation only. It is found that no irregular values can be found between zero to seven since the modal

160 participation factors in the range are all zeros. At the position of ka � 7:6, the numerical instability appear

161 since the value is the first zero of J4ðkaÞ with nonzero participation factor for the UT method. Similarly, the

Table 2

The modal participation factor in the LM method (hypersingular equation)

Mode Participation factor

w0

H ð1Þ0
0 ðkaÞ

H ð1Þ
0 ðkaÞ

J 0
0ðkaÞ
J 0

0ðkaÞ
b0

w�1

H ð1Þ0
�1 ðkaÞ

H ð1Þ
�1 ðkaÞ

J 0
�1ðkaÞ
J 0
�1ðkaÞ

b�1

w1

H ð1Þ0
1 ðkaÞ

H ð1Þ
1 ðkaÞ

J 0
1ðkaÞ
J 0

1ðkaÞ
b1

..

. ..
.

w�ðN�1Þ
H ð1Þ0

�ðN�1ÞðkaÞ
H ð1Þ

�ðN�1ÞðkaÞ
J 0
�ðN�1ÞðkaÞ
J 0
�ðN�1ÞðkaÞ

b�ðN�1Þ

wðN�1Þ
H ð1Þ0

ðN�1ÞðkaÞ
H ð1Þ

ðN�1ÞðkaÞ
J 0
ðN�1ÞðkaÞ
J 0
ðN�1ÞðkaÞ

bðN�1Þ

wN
H ð1Þ0

N ðkaÞ
H ð1Þ

N ðkaÞ
J 0
N ðkaÞ
J 0
N ðkaÞ

bN

Fig. 1. The uniform radiation problem (Dirichlet condition) for a cylinder.
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162 irregular value occurs at ka � 5:3 since the value is the first zero of J 0
4ðkaÞ with nonzero participation factor

163 for the LM method. The UT and LM results agree well as shown in Fig. 2 except at the irregular values. The

164 performance of the dual BEM in comparison with the analytical solution, CHIEF method, and Burton and

165 Miller approach is quite good. For engineering applications, CHIEF method may be the first choice for the

166 practical engineers due to its simplicity. For academic point of view, Burton and Miller approach can avoid

167 the fictitious frequency in a unified manner without taking any risk of failure.

168 Case 2. Nonuniform radiation problem (Neumann condition)
169 In order to clarify how modal participation factor dominates the numerical instability near the fictitious

170 frequencies, the second example with the nonuniform Neumann boundary condition is designed in Fig. 4.

171 The analytical solution is

Fig. 2. The contour plot for the real-part solutions.

Fig. 3. The positions of irregular values using different methods.
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uðq;/Þ ¼ 1

p
�a
k

H ð1Þ
0 ðkqÞ

H ð1Þ0
0 ðkaÞ

þ 2

p

X1
n¼1

�1

k
sinðnaÞ

n
H ð1Þ

n ðkqÞ
H ð1Þ0

n ðkaÞ
cosðn/Þ; q P a; 06/ < 2p: ð33Þ

173 Fig. 5 shows the contour plots for the real-part solutions. The irregular frequencies can be clearly found in

174 Fig. 6 since the modal participation factor is not zero due to nonuniform excitation. Both the Jn and J 0
n

175 zeros are found. It indicates that numerical results agree well with the analytical solution except at the

176 irregular positions using either UT or LM method.

177 Case 3. Scattering problem (Dirichlet condition)

178 In order to check the validity of the program for scattering problem, example 3 is considered. The in-

179 cident wave is plane wave and the object is a soft cylinder as shown in Fig. 7. The analytical solution for the
180 scattering field is

Fig. 5. The contour plot for the real-part solutions.

Fig. 4. The nonuniform radiation problem (Dirichlet condition) for a cylinder.
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uðq;/Þ ¼ � J0ðkaÞ
H ð1Þ

0 ðkaÞ
H ð1Þ

0 ðkqÞ � 2
X1
n¼1

in
JnðkaÞ
H ð1Þ

n ðkaÞ
H ð1Þ

n ðkqÞ cosðn/Þ; q P a; 06/ < 2p: ð34Þ

182 Fig. 8 shows the contour plots for the real-part solutions. The positions where the irregular values occur can
183 be found in Fig. 9 for the solution tða; 0Þ versus k by using either the UT or the LM equation only. It is

184 found that irregular values occur at Jm
n , the mth zeros of JnðkaÞ for the UT formulation, while the LM

185 formulation has the irregular values of J 0m
n , the mth zeros of J 0

nðkaÞ ¼ 0. In comparing Fig. 9 with Fig. 6, it

186 indicates that the irregular values are dominated by the chosen method, instead of boundary condition and

187 problem types. In Fig. 9, it is found that irregular values of J 0m
n are more evident than Jm

n after comparing

188 with the modal participation factors in Tables 1 and 2. The Burton and Miller formulation and the CHIEF

189 approach are employed to avoid the numerical resonance and the UT and LM results agree well except at

190 the irregular wave numbers as shown in Fig. 9. The performance of the dual BEM in comparison with the
191 analytical solution of Eq. (8) and the DtN results (Harari et al., 1997) is acceptable.

Fig. 6. The positions of irregular values using different methods.

Fig. 7. The scattering problem (Dirichlet condition) for a cylinder.
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192 Case 4. Scattering problem (Neumann condition)

193 In order to clarify how the irregular frequencies depend on the types of boundary conditions, the fourth

194 example with the Neumann boundary condition is designed. The soft scatter in Example 3 is replaced by a

195 rigid one in Fig. 10 with the following analytical solution

uðq;/Þ ¼ � J 0
0ðkaÞ

H ð1Þ0
0 ðkaÞ

H ð1Þ
0 ðkqÞ � 2

X1
n¼1

in
J 0
nðkaÞ

H ð1Þ0
n ðkaÞ

H ð1Þ
n ðkqÞ cosðn/Þ; qP a; 06/ < 2p: ð35Þ

Fig. 9. The positions of irregular values using different methods.
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Fig. 8. The contour plot for the real-part solutions (analytical solution: dashed line, numerical result: solid line).
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197 Fig. 11 shows the contour plots for the real-part solutions. The positions where the irregular values occur

198 can be found in Fig. 12 for the solution uða; 0Þ versus k by using either the UT or the LM equation only. The

199 performance of the UT and LM methods in comparison with the analytical solution of Eq. (9), the Burton

200 and Miller solution, the CHIEF solution and the DtN results (Stewart and Hughes, 1997) is quite good

201 except at the positions of irregular values where nonzero participation factors are predicted theoretically.

202 6. Concluding remarks

203 The mechanism why fictitious frequencies occur in the dual BEM has been examined by considering

204 radiation and scattering problems of a cylinder. The concept of modal participation factor for continuous

205 system and discrete system was proposed in a unified way by demonstrating a circular example. It is found
206 that modal participation factor dominates the numerical instability near the irregular frequencies for the
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Fig. 11. The contour plot for the real-part solutions (analytical solution: dashed line, numerical results: solid line).

Fig. 10. The scattering problem (Neumann condition) for a cylinder.
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207 corresponding fictitious mode. The irregular values depend on the integral formulation, either the UT
208 (singular) or the LM (hypersingular) equation, instead of the types of boundary condition (Dirichlet or

209 Neumann). Also, the radiation and scattering problems have the same fictitious frequencies once the

210 method is chosen. The concept of zero modal participation factor can explain why the numerical instability

211 near the predicted fictitious frequencies may not appear in the numerical experiments and was demon-

212 strated in the numerical results. All the examples show that the singular ðUT Þ equation results in fictitious

213 frequencies at the zeros of JnðkaÞ ¼ 0, which are associated with the interior eigenfrequencies of essential

214 homogeneous boundary conditions, while the hypersingular ðLMÞ equation produces fictitious frequencies
215 at the zeros of J 0

nðkaÞ ¼ 0, which are associated with the interior eigenfrequencies of natural homogeneous

216 boundary conditions. The numerical results using the dual BEM program agree very well with the ana-

217 lytical solutions and the DtN results except at and near the irregular values. For comparisons, the Burton

218 and Miller approach and the CHIEF method were successfully employed to deal with the problem of

219 numerical instability near the fictitious frequency.
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