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Abstract

In this paper, the regularized meshless method (RMM) is developed to solve two-dimensional Laplace problem with multiply-

connected domain. The solution is represented by using the double-layer potential. The source points can be located on the physical

boundary by using the proposed technique to regularize the singularity and hypersingularity of the kernel functions. The troublesome

singularity in the traditional methods is avoided and the diagonal terms of influence matrices are easily determined. The accuracy and

stability of the RMM are verified in numerical experiments of the Dirichlet, Neumann, and mixed-type problems under a domain having

multiple holes. The method is found to perform pretty well in comparison with the boundary element method.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, science and engineering communities have paid much attention to the meshless method in which the
element is free. Because of neither domain nor boundary meshing required for the meshless method, it is very attractive for
engineers in modeling. Therefore, the meshless method becomes promising in solving engineering problems.

The boundary knot method (BKM) [1–5], boundary particle method [6] and method of fundamental solutions (MFS)
[7–9] belong one kind of the boundary-discretization-type meshless methods. The BKM, developed in Ref. [4], uses the
non-singular general solution to avoid the fictitious boundary outside the physical domain in the MFS. Consequently, the
stability has greatly been improved, especially in handing multiply-connected problem in the BKM via the dual reciprocity
method and the RBF as in the MFS. In particular, the BKM can produce the symmetric interpolation matrix which is often
important in some problems (e.g., eigenvalue problem). The boundary particle method [6] is a truly boundary-only
meshfree method for inhomogeneous problems, where the fundamental solution or the general solution is used to evaluate
the homogeneous solution, while the high-order fundamental solution of the Laplace operator is employed to calculate the
particular solution. The method can produce very accurate results with the boundary nodes for problems whose
inhomogeneous function can be well represented by a polynomial approximation.

The MFS is attributed to Kupradze and Aleksidze [7] in 1964 and had been applied to potential [8], Helmholtz [10–12],
diffusion [13], biharmonic [14] and elasticity problems [15]. In the MFS, the solution is approximated by a set of
e front matter r 2006 Elsevier Ltd. All rights reserved.
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fundamental solutions of the governing equations which are expressed in terms of sources located outside the physical
domain. The unknown coefficients in the linear combination of the fundamental solutions are determined by matching the
boundary condition. The method is relatively easy to implement. It is adaptive in the sense that it can take into account
sharp changes in the solution and in the geometry of the domain [16,17] and can easily incorporate complex boundary
conditions [14]. A survey of the MFS and related method over the last 30 years can be found in Ref. [8]. However, the MFS
is still not a popular method because of the debatable artificial boundary (fictitious boundary) distance of source location
in numerical implementation especially for a complicated geometry. The diagonal coefficients of influence matrices are
divergent in conventional case when the fictitious boundary approaches the physical boundary. Despite singularity-free
merit, the influence matrices become severely ill posed when the fictitious boundary is far away from the physical boundary.
It results in an ill-posed problem since the condition number of the influence matrix becomes very large.

Recently, Young et al. [18] developed a modified MFS, namely regularized meshless method (RMM), to overcome the
drawback of MFS for solving the Laplace equation. The RMM eliminates the perplexing artificial boundary in the MFS,
which can be arbitrary. The subtracting and adding-back technique [18–20] can regularize the singularity and
hypersingularity of the kernel functions. This method can simultaneously distribute the observation and source points
on the physical boundary even using the singular kernels instead of non-singular kernels [21,22]. The diagonal terms of the
influence matrices can be extracted out by using the proposed technique.

Following the sources of [18] for simply-connected problems, this study makes the first attempt to extend the RMM to
the multiply-connected-domain problems [23,24]. A general-purpose program is developed to solve the multiply-connected
Laplace problems. The results will be compared with those of the BEM and analytical solutions. Furthermore, the
sensitivity and convergence test will be studied through several examples to show the validity of our method.

2. Formulation

2.1. Governing equation and boundary conditions

Consider a boundary value problem with a potential u(x), which satisfies the Laplace equation as follows:

r2uðxÞ ¼ 0; x 2 D, (1)

subject to boundary conditions:

uðxÞ ¼ u; x 2 Bu
p; p ¼ 1; 2; 3; . . . ; m, (2)

tðxÞ ¼ t; x 2 Bt
q; q ¼ 1; 2; 3; . . . ; m, (3)

where r2 is Laplacian operator, D is the domain of the problem, tðxÞ ¼ quðxÞ=qnxi
, m is the total number of boundaries

including m�1 numbers of inner boundaries and one outer boundary (the mth boundary), Bu
p is the essential boundary

(Dirichlet boundary) of the pth boundary in which the potential is prescribed by u and Bt
q is the natural boundary

(Neumann boundary) of the qth boundary in which the flux is prescribed by t. Both Bu
p and Bt

q construct the whole
boundary of the domain D as shown in Fig. 1(a).

2.2. Conventional MFS

By employing the RBF technique [3,25], the representation of the solution for multiply-connected problem as shown in
Fig. 1(a) can be approximated in terms of the aj strengths of the singularities at sj as

uðxiÞ ¼
XN

j¼1

Tðsj ; xiÞaj ¼
XN1

j¼1

Tðsj ;xiÞaj þ
XN1þN2

j¼N1þ1

Tðsj ; xiÞaj ;þ � � � þ
XN

j¼N1þN2þ ��� þNm�1þ1

Tðsj ; xiÞaj, (4)

tðxiÞ ¼
XN

j¼1

Mðsj ;xiÞaj ¼
XN1

j¼1

Mðsj ;xiÞaj þ
XN1þN2

j¼N1þ1

Mðsj ; xiÞaj þ � � � þ
XN

j¼N1þN2þ ��� þNm�1þ1

Mðsj ;xiÞaj, (5)

where xi and sj represent ith observation point and jth source point, respectively, aj are the jth unknown coefficients
(strength of the singularity), N1;N2; . . . ; Nm�1 are the numbers of source points on m�1 numbers of inner boundaries,
respectively, Nm is the number of source points on the outer boundary, while N is the total numbers of source points
ðN ¼ N1 þN2 þ � � � þNmÞ and

Mðsj ;xiÞ ¼
qTðsj ;xiÞ

qnxi

.
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(a)

(b)

Fig. 1. The distribution of the source points and observation points and definition of r; y;r;f by using the conventional MFS and the RMM for the

multiply-connected problems: (a) conventional MFS and (b) RMM.
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After collocating N observation points to match with B.C., we can derive the unknown coefficient aj

� �N

j¼1
. The

distributions of source points and observation points are shown in Fig. 1(a) for the MFS. The chosen bases are the double-
layer potentials [18,21,22] as

Tðsj ;xiÞ ¼
� ðxi � sjÞ; nj

� �
r2ij

, (6)

Mðsj ;xiÞ ¼
2 ðxi � sjÞ; nj

� �
ðxi � sjÞ; ni

� �
r4ij

�
ðnj ; niÞ

r2ij
, (7)

where (,) is the inner product of two vectors, rij is sj � xi

�� ��, nj is the normal vector at sj, and n̄i is the normal vector at xi.
It is noted that the double-layer potentials have both singularity and hypersingularity at origin, which lead to the

troublesome artificial boundary in the MFS. The fictitious distance between the fictitious (auxiliary) boundary (B0) and the
physical boundary (B), defined by d, shown in Fig. 1(a) needs to be chosen deliberately. To overcome the abovementioned
shortcoming, sj is distributed on the physical boundary, shown in Fig. 1(b), by using the proposed regularized technique as
written in Section 2.3. The rationale for choosing double-layer potential instead of the single-layer potential as used in the
RMM for the form of RBFs is to take the advantage of the regularization of the subtracting and adding-back technique, so
that no fictitious distance is needed when evaluating the diagonal coefficients of influence matrices which will be explained
in Section 2.4. The single-layer potential cannot be chosen because the following Eqs. (9), (12), (15) and (18) in Section 2.3
are not satisfied. If the single-layer potential is used, the regularization of subtracting and adding-back technique fails.
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2.3. Regularized meshless method

When the collocation point xi approaches the source point sj, the potentials in Eqs. (4) and (5) become singular. Eqs. (4)
and (5) for the multiply-connected problems need to be regularized by using the regularization of subtracting and adding-
back technique [18–20] as follows:

uðxI
i Þ ¼

XN1

j¼1

TðsIj ; x
I
i Þaj þ � � � þ

XN1þ ��� þNp

j¼N1þ ��� þNP�1þ1

TðsIj ; x
I
i Þaj þ � � � þ

XN1þ ...þNm�1

j¼N1þ ��� þNm�2þ1

TðsIj ;x
I
i Þaj

þ
XN

j¼N1þ ��� þNm�1þ1

TðsOj ;x
I
i Þaj �

XN1þ ��� þNp

j¼N1þ ...þNP�1þ1

TðsIj ;x
I
i Þai; xI

i 2 Bp; p ¼ 1; 2; 3; . . . ; m� 1; ð8Þ

where xI
i is located on the inner boundary ðp ¼ 1; 2; 3; . . . ; m� 1Þ and the superscript I and O denote the inward and

outward normal vectors, respectively, and

XN1þ ��� þNp

j¼N1þ ��� þNp�1þ1

TðsIj ;x
I
i Þ ¼ 0; xI

i 2 Bp; p ¼ 1; 2; 3; . . . ; m� 1. (9)

Therefore, we can obtain:

uðxI
i Þ ¼

XN1

j¼1

TðsIj ; x
I
i Þaj þ � � � þ

Xi�1
j¼N1þ ��� þNp�1þ1

TðsIj ;x
I
i Þaj þ

XN1þ...þNp

j¼iþ1

TðsIj ;x
I
i Þaj þ . . . þ

XN1þ ��� þNm�1

j¼N1þ ��� þNm�2þ1

� TðsIj ;x
I
i Þaj þ

XN

j¼N1þ ��� þNm�1þ1

TðsOj ;x
I
i Þaj �

XN1þ ��� þNp

j¼N1þ ��� þNP�1þ1

TðsIj ;x
I
i Þ � TðsIi ;x

I
i Þ

" #
ai,

xI
i 2 Bp; p ¼ 1; 2; 3; . . . ; m� 1. ð10Þ

When the observation point xO
i locates on the outer boundary (p ¼ m), Eq. (8) becomes

uðxO
i Þ ¼

XN1

j¼1

TðsIj ;x
O
i Þaj þ

XN1þN2

j¼N1þ1

TðsIj ;x
O
i Þaj þ � � � þ

XN1þ ��� þNm�1

j¼N1þ ��� þNm�2þ1

TðsIj ;x
O
i Þaj þ

XN

j¼N1þ ��� þNm�1þ1

� TðsOj ;x
O
i Þaj �

XN

j¼N1þ ��� þNm�1þ1

TðsIj ;x
I
i Þai; xO and I

i 2 Bp; p ¼ m, ð11Þ

where

XN

j¼N1þ ��� þNm�1þ1

TðsIj ;x
I
i Þai ¼ 0; xI

i 2 Bp; p ¼ m. (12)

Hence, we obtain:

uðxO
i Þ ¼

XN1

j¼1

TðsIj ;x
O
i Þaj þ

XN1þN2

j¼N1þ1

TðsIj ;x
O
i Þaj þ . . .þ

XN1þ ��� þNm�1

j¼N1þ ��� þNm�2þ1

TðsIj ;x
O
i Þaj

þ
Xi�1

j¼N1þ ��� þNm�1þ1

TðsOj ; x
O
i Þaj þ

XN

j¼iþ1

TðsOj ;x
O
i Þaj

�
XN

j¼N1þ ��� þNm�1þ1

TðsIj ;x
I
i Þ � TðsOi ;x

O
i Þ

" #
ai; xI and O

i 2 Bp; p ¼ m. ð13Þ

Similarly, the boundary flux is obtained as

tðxI
i Þ ¼

XN1

j¼1

MðsIj ;x
I
i Þaj þ � � � þ

XN1þ ��� þNp

j¼N1þ ��� þNp�1þ1

MðsIj ;x
I
i Þaj þ � � � þ

XN1þ ��� þNm�1

j¼N1þ ��� þNm�2þ1

MðsIj ;x
I
i Þaj

þ
PN

j¼N1þ ��� þNm�1þ1

MðsOj ; x
I
i Þaj �

PN1þ ��� þNp

j¼N1þ ��� þNP�1þ1

MðsIj ;x
I
i Þai; xI

i 2 Bp; p ¼ 1; 2; 3; . . . ; m� 1;

ð14Þ
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where

XN1þ ��� þNp

j¼N1þ ��� þNp�1þ1

MðsIj ;x
I
i Þ ¼ 0; xI

i 2 Bp; p ¼ 1; 2; 3; . . . ; m� 1. (15)

Therefore, we obtain:

tðxI
i Þ ¼

XN1

j¼1

MðsIj ;x
I
i Þaj þ � � � þ

Xi�1
j¼N1þ ��� þNp�1þ1

MðsIj ; x
I
i Þaj þ

XN1þ ��� þNp

j¼iþ1

MðsIj ;x
I
i Þaj

þ . . .þ
XN1þ ��� þNm�1

j¼N1þ ��� þNm�2þ1

MðsIj ; x
I
i Þaj þ

XN

j¼N1þ ��� þNm�1þ1

MðsOj ;x
I
i Þaj

�
XN1þ ��� þNp

j¼N1þ ��� þNP�1þ1

MðsIj ;x
I
i Þ �MðsIi ; x

I
i Þ

" #
ai; xI

i 2 Bp; p ¼ 1; 2; 3; . . . ;m� 1. ð16Þ

When the observation point locates on the outer boundary (p ¼ m), Eq. (14) yields

tðxO
i Þ ¼

XN1

j¼1

MðsIj ; x
O
i Þaj þ

XN1þN2

j¼N1þ1

MðsIj ; x
O
i Þaj þ � � � þ

XN1þ ��� þNm�1

j¼N1þ ��� þNm�2þ1

MðsIj ;x
O
i Þaj

þ
XN

j¼N1þ ��� þNm�1þ1

MðsOj ;x
O
i Þaj �

XN

j¼N1þ ��� þNm�1þ1

MðsIj ;x
I
i Þai; xO and I

i 2 Bp; p ¼ m. ð17Þ

where

XN

j¼N1þ ��� þNm�1þ1

MðsIj ;x
I
i Þ ¼ 0; xI

i 2 Bp; p ¼ m. (18)

Hence, we obtain:

tðxO
i Þ ¼

XN1

j¼1

MðsIj ; x
O
i Þaj þ

XN1þN2

j¼N1þ1

MðsIj ; x
O
i Þaj þ � � � þ

XN1þ ��� þNm�1

j¼N1þ ��� þNm�2þ1

MðsIj ;x
O
i Þaj

þ
Xi�1

j¼N1þ ��� þNm�1þ1

MðsOj ;x
O
i Þaj þ

XN

j¼iþ1

MðsOj ;x
O
i Þaj �

XN

j¼N1þ ��� þNm�1þ1

MðsIj ; x
I
i Þ �MðsOi ; x

O
i Þ

" #
ai,

xO and I
i 2 Bp; p ¼ m. ð19Þ

The detailed derivations of Eqs. (9), (12), (15) and (18) are given in the reference [18]. According to the dependence of the
normal vectors for inner and outer boundaries [18], their relationships are:

TðsIj ;x
I
i Þ ¼ �TðsOj ;x

O
i Þ; iaj;

TðsIj ;x
I
i Þ ¼ TðsOj ;x

O
i Þ; i ¼ j;

(
(20)

MðsIj ;x
I
i Þ ¼MðsOj ; x

O
i Þ; iaj;

MðsIj ;x
I
i Þ ¼MðsOj ; x

O
i Þ; i ¼ j;

(
(21)

where the left and right hand sides of the equal sign in Eqs. (20) and (21) denote the kernels for observation and source
point with the inward and outward normal vectors, respectively.
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By using the proposed technique, the singular terms in Eqs. (4) and (5) have been transformed into regular terms:

�
XN1þN2þ ��� þNp

j¼N1þN2þ ��� þNP�1þ1

TðsIj ; x
I
i Þ � TðsI or Oi ; xI or O

i Þ

" # 

and

�
XN1þ ��� þNp

j¼N1þ ��� þNp�1þ1

MðsIj ;x
I
i Þ �MðsI or Oi ;xI or O

i Þ

2
4

3
5
1
A

in Eqs. (10), (13), (16) and (19), respectively, where p ¼ 1; 2; 3; . . . ; m. The terms of

XN1þ ��� þNp

j¼N1þ ��� þNP�1þ1

TðsIj ;x
I
i Þ

and

XN1þ ��� þNp

j¼N1þ ��� þNp�1þ1

MðsIj ;x
I
i Þ

are the adding-back terms and the terms of TðsI or Oi ;xI or O
i Þ and MðsI or Oi ;xI or O

i Þ are the subtracting terms in the two
brackets for regularization. After using the above-mentioned method of regularization of subtracting and adding-back
technique [18–20], we are able to remove the singularity and hypersingularity of the kernel functions.

2.4. Derivation of influence matrices for arbitrary domain problems

By collocating N observation points to match with the BCs from Eqs. (10) and (13) for the Dirichlet problem, and the
linear algebraic system is obtained:

u1

..

.

uN1

8>><
>>:

9>>=
>>;

..

.

uN1þN2þ���þNm�1þ1

..

.

uN

8>><
>>:

9>>=
>>;

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

N�1

¼

T11½ �N1�N1
. . . T1m½ �N1�Nm

..

. . .
. ..

.

Tm1½ �Nm�N1
. . . Tmm½ �Nm�Nm

2
664

3
775

N�N

a1

..

.

aN1

8>><
>>:

9>>=
>>;

..

.

aN1þN2þ���þNm�1þ1

..

.

aN

8>><
>>:

9>>=
>>;

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

N�1

, (22)

where

T11½ � ¼

�
PN1

j¼1TðsIj ; x
I
1Þ � TðsI1;x

I
1Þ

h i
TðsI2; x

I
1Þ . . . TðsIN1

; xI
1Þ

TðsI1; x
I
2Þ �

PN1

j¼1

TðsIj ; x
I
2Þ � TðsI2;x

I
2Þ

" #
. . . TðsIN1

; xI
2Þ

..

. ..
. . .

. ..
.

TðsI1; x
I
N1
Þ TðsI2; x

I
N1
Þ . . . �

PN1

j¼1Tðs
I
j ; x

I
N1
Þ � TðsIN1

;xI
N1
Þ

h i

2
66666666664

3
77777777775

N1�N1

,

(23)

T1m½ � ¼

TðsON1þ���þNm�1þ1
; xI

1Þ TðsON1þ���þNm�1þ2
;xI

1Þ . . . TðsON ; x
I
1Þ

TðsON1þ���þNm�1þ1
; xI

2Þ TðsON1þ���þNm�1þ2
;xI

2Þ . . . TðsON ; x
I
2Þ

..

. ..
. . .

. ..
.

TðsON1þ���þNm�1þ1
; xI

N1
Þ TðsON1þ���þNm�1þ2

;xI
N1
Þ . . . TðsON ; x

I
N1
Þ

2
6666664

3
7777775

N1�Nm

, (24)
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Tm1½ � ¼

TðsI1;x
O
N1þ���þNm�1þ1

Þ TðsI2;x
O
N1þ���þNm�1þ1

Þ . . . TðsIN1
;xO

N1þ���þNm�1þ1
Þ

TðsI1;x
O
N1þ���þNm�1þ2

Þ TðsI2;x
O
N1þ���þNm�1þ2

Þ . . . TðsIN1
;xO

N1þ���þNm�1þ2
Þ

..

. ..
. . .

. ..
.

TðsI1;x
O
N Þ TðsI2;x

O
NÞ . . . TðsIN1

;xO
NÞ

2
6666664

3
7777775

Nm�N1

, (25)
Start

Choose the double-layer potential kernels,

T and M, as RBF (Eqs. (6) and (7)) 

Determine the diagonal term of [T] and [M]

x    BP
u or t,  p=1,2,3...m-1 (Eqs. (10) and (16))

Construct the linear algebraic equations

{u} = [T]{α}, {t} = [M]{α}

Obtain{�}

Find the field solution (Eq. (4))

Geometry and B.C. are given (Eqs. (2) and (3)) 

Construct the influence matrices [T] and [M]

Match B.C. to solve for {α}

[Tu]{�} = {u},[M]{�} = {t} (Eqs. (22) and (27))

End

Fig. 2. Solution procedure.
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Tmm½ � ¼

�
PN

j¼N1þ���þNm�1þ1

TðsIj ;x
I
N1þ���þNm�1þ1

Þ � TðsON1þ���þNm�1þ1
;xO

N1þ���þNm�1þ1
Þ

" #
. . . TðsON ; x

O
N1þ���þNm�1þ1

Þ

..

. . .
.

TðsON ; x
O
N1þ���þNm�1þ2

Þ

TðsON1þ���þNm�1þ1
;xO

NÞ . . . �
PN

j¼N1þ���þNm�1þ1
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Fig. 3. Problem sketch for the case 1 (r0 ¼ 2.0, r1 ¼ 0.5, r2 ¼ 0.25 and a ¼ 1).
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Fig. 4. Nodes distribution (200 nodes) for the case 1.
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For the Neumann problem, Eqs. (16) and (19) yield
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Fig. 5. The norm error along the radius r ¼ 1.6 vs. the number of nodes for the case 1.
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Fig. 7. Problem sketch for the case 2 (r0 ¼ 2.0, r1 ¼ 0.25 and a ¼ 1.0).
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For the mixed-type problem, a linear combination of Eqs. (22) and (27) is required to satisfy the mixed-type BCs. After

the unknown density fajg
N
j¼1

� �
are obtained by solving the linear algebraic equations, the field solution can be solved by

using Eqs. (4) and (5). The solution procedure using the RMM is shown in Fig. 2.

3. Numerical examples

In order to show the accuracy and validity of the proposed method, the potential problems with multiply-connected
domain subjected to the Dirichlet, Neumann and mixed-type BCs are considered.
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Fig. 8. Nodes distribution (175 nodes) for the case 2.
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Fig. 9. The norm error along the radius r ¼ 0.5 vs. the number of nodes for the case 2.
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Fig. 10. Absolute error with the exact solution for the entire domain of case 2 (400 nodes).
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Fig. 11. Problem sketch and the exact solution for the case 3: (a) problem sketch and (b) field potential of the exact solution.
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Case 1: Neumann problem.
The multiply-connected Neumann problem is shown in Fig. 3, and an analytical solution is

u ¼ r2 cosð2yÞ þ r sinðyÞ. (32)

The nodes distribution (200 nodes) is shown in Fig. 4 and vector plot denotes the direction of out normal vector. To
investigate the error analysis, the norm error is defined asZ 2p

0

uexactðr ¼ 1:6; yÞ � uðr ¼ 1:6; yÞ
�� ��2 dy.

The norm error vs. the total number N of source points is plotted in Fig. 5 by using the RMM and BEM, respectively. By
collocating 200 boundary points, we can obtain the convergent result and the norm error is less than 10�2. It is found that
the data using BEM and present method agree very well when the number of nodes is over 400. The potentials along the
radius r ¼ 1.6 vs. angle are presented in Fig. 6 by using the RMM and the BEM, respectively. The RMM and BEM results
perform pretty well in comparison with the exact solution.

Case 2: Mixed-type problem.
The mixed-type problem for multiply-connected domain is shown in Fig. 7, and an analytical solution is available as

follows:

u ¼ r3 cosð3yÞ. (33)

The nodes distribution (175 nodes) is shown in Fig. 8. The norm error is defined as
R 2p
0

uexactðr ¼ 0:5; yÞ � uðr ¼
��

0:5; yÞj2 dy: The norm error of the RMM vs. the total number N of source points by using the RMM and the BEM,
respectively, is shown in Fig. 9 and the convergent result is found after distributing 200 points. By adopting 200 boundary
points, the norm error is less than 10�3. The absolute errors of the RMM result (400 points) in the entire domain are
plotted in Fig. 10.

Case 3: Arbitrary-shape problem.
The arbitrary-shape problem with continuous BCs is given in Fig. 11(a). An analytical solution is available as follows:

u ¼ ex cosðyÞ. (34)

The field potential in Eq. (34) is shown in Fig. 11(b). The nodes distribution (200 nodes) is shown in Fig. 12. The norm

error is defined as
R 2p
0 uexactðr ¼ 0:9; yÞ � uðr ¼ 0:9; yÞ
�� ��2 dy: The norm error vs. the total number N of source points is shown

in Fig. 13 and the convergent result can be found from Fig. 13.
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Fig. 12. Nodes distribution (200 nodes) for the case 3.
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Fig. 13. The norm error along the radius r ¼ 0.9 vs. the number of nodes for the case 3.
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4. Conclusions

In this study, we use the RMM to solve the Laplace problems with multiply-connected domain subjected to the Dirichlet,
Neumann and mixed-type BCs. Only the boundary nodes on the physical boundary are required. The perplexing fictitious
boundary in the MFS is then circumvented. Despite the presence of singularity and hypersingularity of double-layer
potential, the finite values of the diagonal terms of the influence matrix can be extracted out by employing subtracting and
add-back techniques. The numerical results were obtained by applying the developed program to solve three problems with
different BCs and shapes of domain. The convergent result is found from the convergent study in the three cases.
Numerical results agreed very well with the analytical solutions and those of the BEM.
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