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The nonexistence and nonuniqueness problems associated with integral equation methods for exterior

acoustics are revisited. The Fredholm alternative theorem in conjunction with the singular value

decomposition updating technique is used to simultaneously determine the fictitious frequencies and

corresponding modes in exterior acoustics. After selecting the combined Helmholtz interior integral

equation formulation (CHIEF) points, the influence row vectors are obtained. A criterion in selecting the

minimum number of CHIEF points and their positions is proposed by testing the orthogonal condition

between the influence row vector and the right unitary vector. It is proved in the discrete system for

arbitrary-shape problems that the source of numerical instability of irregular frequency originates from

the zero divided by zero using the generalized coordinates of unitary vectors. The mathematical

structures of the four influence matrices in the dual boundary element method (BEM) are examined by

using the left and right unitary matrices. Extracting the true eigenvalue and filtering out the fictitious

frequency can be unified by using the updating term and updating document, respectively. Radiation

problems of a cylinder and a square rod are demonstrated to see the validity of the present formulation.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Integral equations and their implementation to boundary
element method (BEM) have been employed to solve radiation
and scattering problems for many years. It is well known that
fictitious frequency [1,2] and spurious eigenvalue [3] appear in the
exterior and interior acoustics, respectively. A good review article
on this topic can be found in [4]. Both problems stem from the
rank deficiency of the matrix. The Fredholm alternative theorem
and singular value decomposition (SVD) updating techniques have
been utilized to study the rank-deficiency matrices [5]. Juhl [6] and
Poulin [7] also employed the SVD technique to study the numerical
instability due to the irregular frequency. To deal with this
problem, Burton and Miller [1] solved the problem by combining
singular and hypersingular equations with an imaginary number.
However, the calculation for the hypersingular integral is required.
To avoid this computation, an alternative method was proposed by
Schenck [2]. He proposed the combined Helmholtz interior
integral equation formulation (CHIEF) method by collocating the
point outside the domain as an auxiliary constraint to promote the
rank of influence matrices. Chen et al. [8,9] extended the CHIEF
method to combined Helmholtz exterior integral equation for-
ll rights reserved.
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mulation (CHEEF) method for overcoming the problem of spurious
eigenvalues in the eigenproblem. However, both CHIEF and CHEEF
ideas may cause failure in selecting the point. Wu et al. [10]
proposed a CHIEF-block idea to enforce the constraints in a
weighted residual sense over a small region. If the CHIEF point
locates on or near the nodal line of its corresponding mode, it may
not provide a valid constraint [8,9]. To overcome this problem,
Chen et al. [8,9] presented an analytical study to select the valid
number and position of CHIEF points for the circular case by using
circulants. However, their discussions were limited in a circle case.
The extension to the problems of arbitrary shapes is not trivial.

In this paper, a general case will be considered to construct a
criterion for selecting the number and location of CHIEF points by
employing the Fredholm alternative theorem and the SVD
updating techniques. The mathematical structure for the four
influence matrices in the dual BEM will be examined by using the
SVD technique. Extracting the true eigenvalue and filtering out the
fictitious frequency can be unified by using the SVD updating term
and document, respectively. Numerical examples will be demon-
strated to see the validity of the present formulation.
2. Problem statement and review of the combined Helmholtz
interior equation formulation method using the dual
formulation

In this section, the CHIEF method for the two-dimensional
Helmholtz equation is briefly summarized. The governing equation

www.elsevier.com/locate/enganabound
dx.doi.org/10.1016/j.enganabound.2009.06.001
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for the exterior acoustics is

r2uðxÞ þ k2uðxÞ ¼ 0; x 2 D; ð1Þ

where uðxÞ and k are the acoustic pressure and the wave number,
respectively, and D is the exterior domain. To solve the problem by
using the boundary integral formulation, the singular integral
equation yields

puðxÞ ¼ CPV

Z
B

Tðs; xÞuðsÞdBðsÞ � RPV

Z
B

Uðs; xÞ
@uðsÞ

@ns
dBðsÞ; x 2 B; ð2Þ

where Uðs; xÞ is the fundamental solution, B is the boundary,
Tðs; xÞ ¼ @Uðs; xÞ=@ns, x is the boundary point, s is the source point,
ns is the normal vector for the source point s, CPV and RPV denote
the Cauchy principal value and Riemann principal value, respec-
tively. Discretization of the boundary integral equation (BIE) in
Eq. (2) into N constant elements yields the following linear
algebraic equation:

½U�ftg ¼ ½T�fug; ð3Þ

where t ¼ @u=@n, ½U� and ½T� are the influence matrices.
For the fictitious frequency case, the influence matrices, ½U�

and ½T�, are both singular, i.e., the rank is deficient. In order to
promote the rank, the CHIEF method by collocating the point
outside the domain for the null-field BIE as an auxiliary constraint,
is applied to deal with this problem. The null-field integral
equation is

0 ¼

Z
B

Tðs; xÞuðsÞdBðsÞ �

Z
B

Uðs; xÞ
@uðsÞ

@ns
dBðsÞ; ð4Þ

where x is collocated outside the domain. The additional
constraints are

/wSftg ¼ /vSfug; ð5Þ

where /wS and /vS are the influence row vectors by collocating
the points in the null-field singular integral equation. By
combining Eq. (3) with Eq. (5), the over-determined system is
obtained as

½U�

/wS

" #
ftg ¼

½T�

/vS

" #
fug; ð6Þ

if the sufficient number of CHIEF points are provided.
Similarly, the CHIEF method can be applied to the following

hypersingular formulation:

p @uðxÞ

@nx
¼ HPV

Z
B

Mðs; xÞuðsÞdBðsÞ � CPV

Z
B

Lðs; xÞ
@uðsÞ

@ns
dBðsÞ; x 2 B;

ð7Þ

where the two kernels are

Lðs; xÞ �
@Uðs; xÞ

@nx
; ð8Þ

Mðs; xÞ �
@2Uðs; xÞ

@nx@ns
; ð9Þ

and HPV is the Hadamard (Mangler) principal value. By discretiz-
ing the hypersingular formulation in Eq. (7) into N constant
elements, the linear algebraic equation is obtained as

½M�ftg ¼ ½L�fug; ð10Þ

where ½M� and ½L� are the influence matrices. For the case of
fictitious frequency, the influence matrices, ½M� and ½L� are both
singular, i.e., the rank is deficient. In order to promote the rank,
the CHIEF method by collocating the point outside the domain for
the null-field BIE as an auxiliary constraint, was successfully
applied to deal with this problem. The null-field integral equation
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Fig. 1. The flowchart of a criterion to check the validity of the selected CHIEF point.
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is obtained as

0 ¼

Z
B

Mðs; xÞuðsÞdBðsÞ �

Z
B

Lðs; xÞ
@uðsÞ

@ns
dBðsÞ; ð11Þ

where x is collocated outside the domain. The additional
constraints are

/whSftg ¼ /vhSfug; ð12Þ

where /whS and /vhS are the influence row vectors by
collocating the points in the null-field hypersingular integral
equation. By combining Eq. (12) with Eq. (10), an over-deter-
mined system for the conventional CHIEF concept is ob-
tained as

½M�

/whS

" #
ftg ¼

½L�

/vhS

" #
fug; ð13Þ

if the sufficient number of CHIEF points are provided.
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Fig. 2. The first minimum singular value versus the wave number k by using SVD updating technique.
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3. Detection of the fictitious frequency and fictitious mode for
exterior acoustics using the Fredholm alternative and the
updating techniques of singular value decomposition
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Fredholm alternative theorem. The linear algebraic equation

½K�fug ¼ fbg has a unique solution if and only if the continuous

solution to the homogeneous equation

½K�fug ¼ f0g ð14Þ

is fug � f0g. Alternatively, the homogeneous equation has at least one

solution if the homogeneous adjoint equation

½K�Hffg ¼ f0g ð15Þ

has a nontrivial solution ffg, where ½K�H is the transpose conjugate

matrix of ½K� and fbgmust satisfy the constraint ðfbgHffg ¼ 0Þ. The UT

formulation of Eq. (3) yields

½UðkÞ�ftg ¼ ½TðkÞ�fug ¼ fbg: ð16Þ

According to the Fredholm alternative theorem, Eq. (16) has at
least one solution for ftg if the homogeneous adjoint equation

½Uðkf Þ�
Hff1g ¼ f0g; ð17Þ

has a nontrivial solution ff1g, where kf is the fictitious wave
number, and in which the constraint ðfbgHff1g ¼ 0Þ must be
satisfied. Substitution of fbg ¼ ½Tðkf Þ�fug for the Dirichlet problem
in Eq. (16) into fbgHff1g ¼ 0 yields

fugH½Tðkf Þ�
Hff1g ¼ 0: ð18Þ

Eq. (18) implies

½Tðkf Þ�
Hff1g ¼ f0g ð19Þ

since fug is an arbitrary vector, where ff1g is the fictitious mode.
Combination of Eq. (17) with Eq. (19) yields

½Uðkf Þ�
H

½Tðkf Þ�
H

" #
ff1g ¼ f0g or ff1g

H½ ½Uðkf Þ� ½Tðkf Þ� � ¼ f0g: ð20Þ

Eq. (20) indicates that the two matrices have the same fictitious
mode ff1g corresponding to the same zero singular value when
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Fig. 3. CHIEF points outside the domain.
the rank deficiency occurs in the case of fictitious frequency. The
former and latter matrices in Eq. (20) are the expressions of
updating term and of updating document, respectively. The
fictitious wave number, kf of a multiplicity P, satisfies

½Uiðk
s
f Þ�

H

½Tiðk
s
f Þ�

H

2
4

3
5ffjg ¼ f0g; j ¼ 1;2; . . . ;P; ð21Þ

½Liðk
h
f Þ�

H

½Miðk
h
f Þ�

H

2
4

3
5ffjg ¼ f0g; j ¼ 1;2; . . . ; P; ð22Þ

where the subscript i denotes the use of interior kernel for the
exterior problem using null-field integral equations and ks

f and kh
f

are the fictitious wave number for the singular and hypersingular
formulations, respectively.
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Fig. 4. (a) The real-part determinant for the fictitious frequency with multiplicity

of one ðP ¼ 1Þ. (b) The imaginary-part determinant for the fictitious frequency with

multiplicity of one ðP ¼ 1Þ.
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4. Mathematical structure for the four influence matrices
using the updating technique of singular value decomposition

According to the SVD technique, Eq. (21) results in

½Ui�fc
ðUÞ
j g ¼ 0ffjg ¼ f0g; j ¼ 1;2; . . . ; P; ð23Þ

½Ti�fc
ðTÞ
j g ¼ 0ffjg ¼ f0g; j ¼ 1;2; . . . ; P; ð24Þ

where fcðUÞj g and fcðTÞj g are the right unitary vectors for ½U� and ½T�,
ffjg are the common left unitary vector. For the eigenproblem, the
singular UT and the hypersingular LM formulations can obtain
the same eigenmode cD, where fcD

g is the boundary mode for the
Dirichlet eigenproblem. By using the updating term for deriving
the true boundary mode fcD

g, an assembled system is obtained as

½Ue�

½Le�

" #
fcD

j g ¼ f0g; j ¼ 1;2; . . . ; P; ð25Þ
Fig. 5. (a) The boundary value versus the wave number k by using the UT formulations. (

from the nodal line.
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Fig. 6. (a) The real-part determinant for the fictitious frequency with multiplicity of

multiplicity of two ðP ¼ 2Þ.
where the subscript e denotes the use of exterior kernel for the
interior problem using the null-field integral formulation. The
kernel functions have the following symmetry and transpose
symmetry properties:

Ueðs; xÞ ¼ Uiðx; sÞ or ½Ue� ¼ ½Ui� symmetry; ð26Þ

and

Leðs; xÞ ¼ Tiðx; sÞ or ½Le� ¼ ½Ti� transpose symmetry: ð27Þ

By using Eqs. (26) and (27), Eq. (25) reduces to

½Ui�

½Ti�

" #
fcD

j g ¼ f0g; j ¼ 1;2; . . . ; P: ð28Þ

Comparison of Eq. (28) with Eqs. (23) and (24) yields

fcðUÞj g ¼ fc
ðTÞ
j g ¼ fc

D
j g; j ¼ 1;2; . . . ; P: ð29Þ
b) The boundary value versus the wave number k by locating one CHIEF point away
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It means that the ½Ui� and ½Ti� matrices for the exterior acoustics,
have the same right singular vector ðfcD

j gÞ as ½Ue� and ½Le�matrices
have for the Dirichlet eigenproblem.

In order to examine the left and right singular vectors in the
singular matrix, Eq. (21) is rewritten as follows:

½Uiðkf Þ�
H

½Tiðkf Þ�
H

" #
2N�N

ffjgN�1 ¼ 0
cD

j

cD
j

8<
:

9=
;

2N�1

; j ¼ 1;2; . . . ; P: ð30Þ

Generally speaking, the matrix of Eq. (30) can be decomposed into

½Ui�
H

½Ti�
H

" #
2N�N

¼ ½CD
�2N�2N½S�2N�N½F�

H
N�N ; ð31Þ

where

½CD
�2N�2N ¼

fcD
1 g � � � fc

D
P g ^ fcPþ1g � � � fc2Ng

fcD
1 g � � � fc

D
P g ^ fcPþ1g � � � fc2Ng

2
4

3
5

2N�2N

;

ð32Þ

½S�2N�N ¼

0 � � � � � � � � � � � � � � � 0

^ 0 ^

^ & ^

^ 0 ^

^ spþ1 ^

^ & ^

0 � � � � � � � � � � � � � � � sN

0 � � � � � � � � � � � � � � � 0

^ & ^

^ & ^

^ & ^

^ & ^

^ & ^

^ � � � � � � � � � � � � � � � 0

2
666666666666666666666666666664

3
777777777777777777777777777775

2N�N

ð33Þ

and

½F�HN�N ¼ ½
ff1g � � � ffPg j ffPþ1g � � � ffNg �

H
N�N : ð34Þ

Eq. (31) indicates that all the fictitious modes ffig;1rirP; and
the true modes fcD

i g;1rirP, are simultaneously obtained once
the updating matrix is decomposed by using the SVD updating
technique.

In summary, the SVD structure for the four influence matrices
in the dual BEM is unified in Table 1.
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Fig. 8. The boundary value versus the wave number k by locating two CHIEF points

away from the nodal line.
5. Source of numerical instability—zero divided by zero

The analytical study and numerical experiments for the
optimum numbers and proper positions of the selected CHIEF
points have been proposed by Chen et al. for a circular case. Here,
the general case in a discrete system is extended. In the case of the
fictitious frequency of multiplicity P, P CHIEF points are needed.
One can obtain P fictitious modes by using Eq. (21). The source of
numerical instability stems from zero divided by zero. By
employing the right unitary vectors fcig embedded in the ½T�
and ½U� matrices, the boundary data are expanded into

fug ¼
XN

i¼1

bifc
ðTÞ
i g ¼ ½C

ðTÞ
�fbg; ð35Þ

ftg ¼
XN

i¼1

aifc
ðUÞ
i g ¼ ½C

ðUÞ
�fag; ð36Þ

where N is the number of unknowns, ai and bi are the generalized
coordinates for u and t, respectively. By using the SVD technique,
Eq. (16) is rewritten as

½FðUÞ�½SðUÞ�fag ¼ fbg: ð37Þ

By premultiplying the regular mode ffðUÞi g
H; P þ 1rirN; to both

sides of Eq. (37) and using the orthogonal property, Eq. (37) is
changed to

sðUÞi ai ¼ ff
ðUÞ
i g

Hfbg; P þ 1rirN: ð38Þ

Since the singular values sðUÞi ; P þ 1rirN, are nonzero, the
generalized coordinates ai; P þ 1rirN, can be easily



ARTICLE IN PRESS

6420
k

1e-005

0.0001

0.001

0.01

0.1

1

σ 1

6420
k

0.01

0.1

1

10

6420
k

0.001

0.01

0.1

1

10

σ 1

6420
k

0.0001

0.001

0.01

0.1

1

10

6420
k

0.001

0.01

0.1

1

10

σ 1

6420
k

0.01

0.1

1

10

[U ]

M H

L H

T H

U H

2.22 

2.22 

2.22 

3.51 

3.51 

3.51 

4.44 

4.44 

4.44 

4.96 

5.66 

4.96 

5.66 

4.96 

5.66 

0.07 

0.07 

0.07 
1.57 

1.57 

2.22 

3.14 

3.51 

2.22 

3.14 
3.51 

1.57 

2.22 

3.14 

3.51 

σ 1
σ 1

σ 1

[ L]

[M ][T ]

Fig. 9. The first minimum singular value versus the wave number k by using SVD updating technique.

J.T. Chen et al. / Engineering Analysis with Boundary Elements 33 (2009) 1289–13011296



ARTICLE IN PRESS

J.T. Chen et al. / Engineering Analysis with Boundary Elements 33 (2009) 1289–1301 1297
determined by

ai ¼
1

sðUÞi

ffðUÞi g
Hfbg; P þ 1rirN: ð39Þ

By premultiplying the fictitious mode ffðUÞi g
H ; 1rirP, to both

sides of Eq. (37), it is reduced to

sðUÞi ai ¼ ff
ðUÞ
i g

Hfbg; 1rirP: ð40Þ

Since the singular values sðUÞi ; 1rirP, are zero, the coefficients
ai; 1rirP, cannot be determined due to zero divided by zero
from Eq. (39) in the fictitious frequency of multiplicity P.

It is interesting to find that the generalized coordinates,
a1;a2; . . . ; and aP are the terms of zero divided by zero in
Eq. (40) since

ffðUÞi g
H½T�fug ¼ 0; P þ 1rirN; ð41Þ

after using fbg ¼ ½T�fug and ½T�HffðUÞi g ¼ f0g from Eq. (19).
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6. A criterion to check the validity of CHIEF points

For the fictitious frequency of a multiplicity P, the generalized
coordinates a1;a2; . . . ;aP�1 and aP cannot be determined from Eq.
(39). By choosing P CHIEF points, additional constraints are
obtained as

½UPP ^ UPK �

a1

a2

^

aP

---

aPþ1

^

aN

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

¼ ½ TPP ^ TPK �fbg; ð42Þ

where the subscripts P and K denote the degree of freedom
separated by the fictitious set ð1;2; . . . ; PÞ and the regular set
ðP þ 1; P þ 2; . . . ;NÞ. The elements in ½UPP �, ½UPK �, ½TPP� and ½TPK � are
defined as

ðUPPÞij ¼ /wiSfc
ðUÞ
j g; 1ri; jrP; ð43Þ
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Fig. 10. CHIEF points outside the domain.
ðUPK Þij ¼ /wiSfc
ðUÞ
j g; 1rirP; P þ 1rjrN; ð44Þ

ðTPPÞij ¼ /viSfc
ðTÞ
j g; 1ri; jrP; ð45Þ

ðTPK Þij ¼ /viSfc
ðTÞ
j g; 1rirP; P þ 1rjrN; ð46Þ

where /viS and /wiS are the influence row vectors by collocating
the null-field integral equations on the CHIEF points. Since
aPþ1;aPþ2; . . ., and aN can be determined by Eq. (39), Eq. (42)
reduces to

½UPP�

a1

^

aP

8><
>:

9>=
>; ¼ ½TPPjTPK �

b1

^

bN

8><
>:

9>=
>;� ½UPK �

aPþ1

^

aN

8><
>:

9>=
>; ¼ ff g: ð47Þ

The terms of the right hand side of the equal sign can be
calculated as a load vector ff g since their values can
be determined. The unknown vector, fagP�1, is solvable once the
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Fig. 11. (a) The real-part determinant for the fictitious frequency with multiplicity

of one ðP ¼ 1Þ, R ¼ 2.22. (b) The imaginary-part determinant for the fictitious

frequency with multiplicity of one ðP ¼ 1Þ, R ¼ 2.22.
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determinant of the matrix ½UPP � is nonzero as follows:

det

/w1Sfc
ðUÞ
1 g � � � /w1Sfc

ðUÞ
P g

^ & ^

/wPSfc
ðUÞ
1 g � � � /wPSfc

ðUÞ
P g

��������

��������
a0: ð48Þ

Whether the number of the CHIEF point is sufficient or not
depends on the multiplicity P, i.e., at least P CHIEF points for the
fictitious frequency of multiplicity P to determine the P coeffi-
cients ða1; . . . ;aPÞ in Eq. (47) are needed. Once the P CHIEF points
are selected, the solvability condition depends on the nonzero
determinant of Eq. (48).

For the special case of multiplicity one ðP ¼ 1Þ, Eq. (48) reduces to

/w1Sfc
ðUÞ
1 ga0: ð49Þ

By collocating the interior point, the magnitude of the determinant
represents the inner product of the influence row vector and the
interior mode since fcðUÞg is the true boundary mode of the Dirichlet
eigenproblem. The magnitude is equal to the amplitude of interior
mode for the corresponding interior eigenvalue.

For the special case of multiplicity two ðP ¼ 2Þ, Eq. (48) reduces
to

det
/w1Sfc

ðUÞ
1 g /w1Sfc

ðUÞ
2 g

/w2Sfc
ðUÞ
1 g /w2Sfc

ðUÞ
2 g

������
������a0: ð50Þ

In the following examples, both the multiplicity one ðP ¼ 1Þ
and two ðP ¼ 2Þ will be discussed for the cylinder and square rod
radiators.

For the Neumann problem, the same criterion is adopted in a
similar way by replacing /wS and fcðUÞj g with /vS and fcðTÞj g,
respectively.
7. Numerical examples

7.1. Case 1: a cylinder radiator

An exterior acoustic problem of a cylinder with radius a ¼ 1 m
subjected to the nonuniform radiation for the Neumann boundary
conditions is considered. According to the flowchart illustrated in
Fig. 1, the Fredholm alternative theorem and SVD updating
techniques are employed to detect the fictitious frequencies as
shown in Fig. 2. Twenty boundary elements are considered. It is
found that ½U� and ½T� matrices have the same fictitious poles of
JnðkaÞ ¼ 0; ðn ¼ 0;1;2; . . .Þ, as predicted by using circulants. The
6420 k

-2

-1

0

1

2

u 
(1

.0
)

____ CHIEF method

Fig. 12. (a) The boundary value versus the wave number k by using the UT formulation
spurious poles agree with the true poles of the Dirichlet
eigenproblem. For the hypersingular formulation, ½L� and ½M�
matrices also have the same fictitious poles of
Jn
0ðkaÞ ¼ 0; ðn ¼ 0;1;2; . . .Þ, which are the true eigenvalues for the

Neumann problem. After checking the multiplicity of the fictitious
pole, two cases of multiplicity one ðk ¼ Jð2Þ0 ¼ 5:53Þ, and
multiplicity two ðk ¼ Jð1Þ1 ¼ 3:84Þ, are adopted for demonstrating
the validity of the present formulation.
1.
u 
(1

.0
)

-

-

s. (
Multiplicity of one ðk ¼ Jð2Þ0 ¼ 5:53Þ: For selecting all the possible
CHIEF points, their positions locate inside the circle as shown
in Fig. 3. In this case, the determinants of Eq. (49) were
calculated for each interior point and were plotted as shown in
Fig. 4(a) and (b). Contour plot shows the distribution of the
magnitude of the real and imaginary parts of determinant. The
selected CHIEF point of the dark color is valider than the point
with the white color. The failure points are found on the nodal
line with white color and the results matched well with the
analytical prediction. Without locating any CHIEF points, the
fictitious frequencies appear as shown in Fig. 5(a). By selecting
one valid CHIEF point which is not on the nodal line, the
fictitious frequencies ðk ¼ Jð1Þ0 ¼ 2:41 and Jð2Þ0 ¼ 5:53Þ are
suppressed as shown in Fig. 5(b).
2.
 Multiplicity of two ðk ¼ Jð1Þ1 ¼ 3:84Þ: In this case, the first CHIEF
point was fixed at (0.5, 0.5) and then consider the other CHIEF
point as a variable. For selecting all the possible CHIEF points,
their positions locate inside the circle as shown in Fig. 3. The
determinants were calculated by changing the second position of
the CHIEF point in the interior region and were plotted in Fig. 6(a)
and (b). Contour plot shows the distribution of the magnitude of
the real and imaginary parts of determinants. Since the unitary
vector is adopted, it is found that real-part determinant is very
small. The selected CHIEF point of the dark color is valider than
the point with the white color. The failure points are found on the
nodal line with white color and the results match well with the
analytical prediction. If two improper CHIEF points are selected,
the fictitious frequencies ðk ¼ Jð3Þ1 ¼ 6:380Þ and ðk ¼ Jð1Þ2 ¼ 7:061Þ
cannot be suppressed as shown in Fig. 7. By selecting the two
proper CHIEF points away from the nodal line, the fictitious
frequency disappears as shown in Fig. 8.

7.2. Case 2: plane scattering wave for a rigid square rod

An exterior scattering problem of a square rod with a lateral
length a ¼ 2 m for the Neumann boundary conditions is con-
sidered here. The Fredholm alternative theorem and SVD updating
6420
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b) The boundary value versus the wave number k by locating one CHIEF point.
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Fig. 13. (a), (c) and (e) The real-part determinant for the fictitious frequency with multiplicity of two ðP ¼ 2Þ, R ¼ 3.51. (b), (d) and (f) The imaginary-part determinant for

the fictitious frequency with multiplicity of two ðP ¼ 2Þ, R ¼ 3.51.
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Fig. 14. The boundary value versus the wave number k by locating two CHIEF
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Fig. 15. The boundary value versus the wave number k by locating two CHIEF

points away from the nodal line.
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techniques are employed to detect the fictitious frequencies as
shown in Fig. 9. Forty boundary elements are considered.
1.
 Multiplicity of one ðk ¼ 2:22Þ: For selecting all the possible
CHIEF points, their positions locate inside the square section as
shown in Fig. 10. In this case, the determinants of Eq. (49) were
calculated for each interior point and were plotted as shown in
Fig. 11(a) and (b). Contour plot shows the distribution of the
magnitude of the real and imaginary parts of determinant. The
selected CHIEF point of the dark color is valider than the point
with the white color. The failure points are found on the nodal
line labeled by zero value. Without locating any CHIEF
points, all fictitious frequencies appear as shown in Fig. 12(a).
If one proper CHIEF point is selected, the fictitious frequency
ðk ¼ 2:22Þ is suppressed as shown in Fig. 12(b).
2.
 Multiplicity of two ðk ¼ 3:51Þ: In this case, the first CHIEF
point was fixed at either ð0;0:5Þ or ð�0:5; -0:5Þ, and then
consider the other CHIEF point as a variable. By selecting all the
possible CHIEF points, their positions locate inside the square
section as shown in Fig. 10. The value of determinants were
calculated for each interior point by changing the second CHIEF
point and were plotted in Fig. 13(a)–(f). Contour plot shows the
distribution of the magnitude of the real and imaginary parts
of determinants. The selected CHIEF point of the dark color is
valider than the point with the white color. The failure points
are found on the nodal line labeled by zero value. If the two
selected points locate on the nodal line, the fictitious frequency
ðk ¼ 3:51Þ cannot be suppressed as shown in Fig. 14. By
selecting the two valid CHIEF points and locating them away
from the nodal line, the fictitious frequencies disappear as
shown in Fig. 15.

8. Conclusions

The fictitious frequency in BEM was revisited. In order to
overcome the rank-deficiency problem due to fictitious frequency,
the CHIEF method was reformulated in a unified manner by using
the Fredholm alternative theorem and SVD updating technique in
a discrete system for arbitrary-shape problems. The fictitious
mode and frequency were simultaneously obtained in the left
singular vectors of SVD once the updating matrix was decom-
posed by using the SVD technique. Mathematical structures for
the four influence matrices in the dual BEM were found by using
the SVD. Besides, the minimum number of valid CHIEF points was
also addressed. A criterion for checking the number and position
of the CHIEF points was analytically derived in the discrete system
by using unitary vectors. In addition, the source of numerical
instability due to fictitious frequencies was found to originate
from the term of zero divided by zero. Numerical examples of the
cylinder and square radiator sections were demonstrated to see
the validity of the unified formulation.
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