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Temperature measurement and prediction have been a major focus of machining for several decades,

but now these problems become more complex due to the wider use of advanced cutting tool coatings.

In all literature items cited the boundary element method (BEM) were used to find the distribution of

temperature inside the uncoated tool body or along the tool–chip interface in the machining processes.

The BEM-based approach proposed in this paper overcomes this limit and the temperature distribution

in thin coated layers is well studied. In this study, a general strategy based on a nonlinear

transformation technique is introduced and applied to evaluate the nearly singular integrals occurring

in two dimensional (2D) thin-coated structures. For the test problems studied, very promising results

are obtained when the thickness to length ratio is in the orders of 1.0E�6 to 1.0E�10, which is

sufficient for modeling most thin-coated structures in the micro- or nano-sclaes.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Following improvements in coating deposition techniques and
the development of more advanced coating materials, more and
more thin-coating films are being designed and utilized in
industrial applications to improve machining performance due
to better temperature and wear resistant properties than their
substrate counterparts. During machining processes, heat is a
source that strongly influences the tool performance. The cutting
temperature field determines key process issues such as many
parameters including accuracy of the machined surface, tool wear,
tool life, mechanics of chip formation, surface quality, and cutting
forces as well as process quality [1]. The coatings of cutting tools
have significant influence on heat conduction in the tools during
machining. Thus, having a clear understanding about the
temperature distribution in coated cutting tools is very useful
and important. However, the widespread experimental research
in coatings underlies a general lack of modeling efforts, which
represents a great challenge to researchers in computational
mechanics.

It is well-known that the thermal model of heat conduction in
coated tools have been performed by utilizing experimental,
analytical and numerical methods. The usual numerical methods
such as the finite element method (FEM), the finite difference
method (FDM) and the boundary element method (BEM) can be
ll rights reserved.

Boundary element analysis
bound.2010.03.014
applied to solve heat transfer problems in cutting tools. The FEM
is a successful tool for the analysis of many industrial problems.
However, the number of elements in FEM increases dramatically
for thin structures due to aspect ratio limitations, and the
procedure therefore requires much preprocessing and CPU time
as the thickness decreases. BEM is a powerful and efficient
computational method if boundary integrals can be evaluated
accurately. The main advantage of the BEM resulting from the
reduction of the dimension of the boundary value problem is
well-known. However, it is popular as well that the standard BEM
formulations include singular and nearly singular integrals, and
thus the integrations should be performed very carefully. In the
area of calculation of temperature distributions for cutting tools,
several researchers have recently utilized the boundary element
method. In the pioneering work in this area, Chandra and Chan [2]
solved the steady-state heat conduction problem by using a
two-dimensional boundary element method. Stephenson et al. [3]
later expanded Chandra and Chan’s work to perform numerical
simulations of transient heat conduction problems in the
machining using a three-dimensional boundary element method.
In a more recent work, Du et al. [4] proposed two techniques to
determine the temperature fields in materials containing thin
coatings. The first method utilizes a multi-domain approach, but
this method is inefficient when the coating is very thin due to the
lack of efficient techniques to calculate the nearly singular
integrals. The second technique, which is based on the finite
difference approximation, is geared towards applications where
the coating thickness is very small. However, the temperature
distribution in thin-coated layers is not given in their work.
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Despite the significant contributions of each of the above
works, it is important to note that they were all focused on
observing the distribution of temperature inside the uncoated
tool body or along the tool–chip interface. To the author’s best
knowledge, we do not find any work in the literature for
determining the temperature distribution in the thin-coated
layers, which is obviously more important in the manufacturing
community. The objective of this paper is to develop a general
BEM-based simulation for predicting the temperature distribution
in thin-coated layers as well as in their substrate counterparts.

In the authors’ opinion, the following three major concerns
must be well addressed in applying the BEM to thin-coated
structural problems: (1) Calculating the singular integrals accu-
rately. It is well-known that the domain variables can be
computed by integral equations after all the boundary quantities
have been obtained, and the accuracy of boundary quantities
directly affects the validity of the interior quantities. Therefore,
we have to deal with the singular boundary integrals when
calculating the boundary quantities and a good choice is using the
regularized boundary integral equations (BIEs) [5–15]. (2) Using
high-order geometry element. The advantage of using high-order
geometry elements in thin structural problems is the concerning
power to improve the calculation accuracy. More importantly,
computational models of thin structural problems demand a
higher level of the geometry approximation, and the usage of
high-order geometry in computational models can meet
this requirement. For example, if the boundary geometry is
depicted by using the straight line, the linear element of the outer
surface will attach (AB) or even pass through (CD) the inner
boundary if the thickness of the considered structure is very small
(Fig. 1). Consequently, the actual geometry of considered domain
cannot be described lively, and thus lower-order geometry
approximation will fail to yield reliable results for such
problems. In order to avoid this phenomenon, very fine meshes
mush be used in this situation, but this yields too much
preprocessing and CPU time. In addition, a great number of
meshes will produce a lot of artificial corners that will lead to the
uncontinuity of the tangent derivative of the boundary unknowns.
This is fatal to many engineering problems. (3) Calculating the
nearly singular integrals accurately. It is well-known that the
conventional BIE using the standard Gaussian quadrature fails to
yield reliable results for thin structural problems. The major
reason for this failure is that the conventional BIE not only
includes singular integrals but also presents various orders of near
singularities, owing to the mesh on one side of the thin body
being too close to the mesh on the opposite side. Moreover, since
all the interior points of thin bodies are very close to the
boundary, the calculation of nearly singular integrals is also
B

A

C

D

Fig. 1. A thin-walled structure with illogical geometry element.
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inevitable when physical quantities at an interior point need to be
calculated.

The nearly singular integrals are not singular in the sense of
mathematics. However, from the point of view of numerical
integrations, these integrals cannot be calculated accurately by
using the conventional numerical quadrature since the integrand
oscillates seriously within the integration interval. Although that
difficulty can be overcome by using very fine meshes, the process
requires too much preprocessing and CPU time. In the past
decades, tremendous effort was devoted to derive convenient
integral forms or sophisticated computational techniques for
calculating the nearly singular integrals. These proposed methods
can be divided on the whole into two categories: ‘‘indirect
algorithms’’ and ‘‘direct algorithms’’. The indirect algorithms,
which benefit from the regularization ideas and techniques for the
singular integrals, are mainly adopted to calculate indirectly or
avoid calculating the nearly singular integrals by establishing new
regularized BIE [15–19]. The direct algorithms are employed to
calculate the nearly singular integrals directly. They usually
include interval subdivision method [20,21], special Gaussian
quadrature method [22], exact integration method [23–26], and
various nonlinear transformation methods [27–35]. In a recent
study, the above methods have been reviewed in detail by Zhang
and Sun [34]. It is noteworthy that Sladek et al. early discussed the
regularization of the nearly singular integrals by using nonlinear
transformations. An effective transformation based on the func-
tion x¼sinh y is proposed in Refs. [7, pp. 387–392] and [29]. The
transformation proposed in this paper is inspired by the previous
works of the above researches.

Although great progresses have been achieved for each of the
above methods, it should be pointed out that the geometry of the
boundary element is often depicted by using linear shape functions
when nearly singular integrals need to be calculated [35,36]. In
fact, to the authors’ best knowledge, no work is found in the
literature that can be used to calculate the nearly singular integrals
under high-order geometry effectively. However, as mentioned
above, computational models of thin structural problems demand a
higher level of the geometry approximation, and the usage of high-
order geometry in computational models can meet this require-
ment. When the geometry of the boundary element is approxi-
mated by using high-order elements—usually of second order, the

Jacobian J(x) is not a constant but a non-rational function, which

can be expressed as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþbxþcx2

q
, where a, b, and c are constants,

x is the dimensionless coordinate. The distance r between the field
points and the source point is a non-rational function of the typeffiffiffiffiffiffiffiffiffiffiffi

p4ðxÞ
p

, where p4(x) is the fourth order polynomial. Thus, the forms

of the integrands in boundary integrals become more complex, and
it is, unfortunately, more difficult to implement when nearly
singular integrals need to be calculated.

In this work, a general BEM-based method is introduced for
evaluating the temperature field in a material containing a thin-
layered coating. The main work of this paper can be summarized
as follows: (1) introduce the regularized indirect BIEs to estimate
the singular integrals on curved boundaries. It is important to
note that the regularized BIEs only apply within each layer of
material separately because of differences in thermal conductiv-
ity. Thus, a two-dimensional multi-domain boundary approach,
which is applicable for a wide range of coating thicknesses, is
utilized in this paper; (2) a general nonlinear transformation is
adopted to remove or damp out the near singularities of kernels’
integration by smoothing out the rapid variations of the integrand
of nearly singular integrals. The present general nonlinear
transformation is available for high-order geometry elements,
which can meet the rigorous requirement of the model of
complex thin structural problems in industrial applications.
of the thermal behaviour in thin-coated cutting tools. Eng Anal
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The temperature distributions both in thin coated layers and its
substrate counterparts are well studied. For the test problems
studied, very promising results are obtained when the thickness
to length ratio of the coatings in the orders of 1E�01 to 1E�10,
which is sufficient for modeling most thin coated cutting tools in
the micro- or nano-scales. The algorithm derived in this paper
substantially simplifies the programming and provided a general
computational method for solving thin coating problems.
n
2Γ n

Fig. 2. Boundary discretization for two subdomains.

2. Non-singular boundary integral equations (BIEs)

It is well-known that the domain variables would be computed
by using integral equations only after all the boundary quantities
have been obtained, and the accuracy of boundary quantities
directly affects the validity of the interior quantities. However,
when calculating the boundary quantities, we have to deal with
the singular boundary integrals, and a good choice is to use the
regularized BIEs. In this paper, we always assume that O is a
bounded domain in R2, Oc is its open complement; G¼qO denotes
their common boundary; t(x) and n(x) are the unit tangent and
outward normal vectors of G to domain O at point x, respectively.
The temperature field in the cutting tool is governed by the
Laplace’s equation r2u¼0. For two dimensional potential pro-
blems, the equivalent non-singular BIEs with indirect variables
are given in Ref. [14]. For the domain O, the equations are given asZ
G
fðxÞdCxþ

Z
O

f ðxÞdX¼ 0 ð1Þ

uðyÞ ¼
Z
G
fðxÞu�ðx,yÞdGþ

Z
O

f ðxÞu�ðx,yÞdOþC,yAG ð2Þ

ruðyÞ ¼ nðyÞfðyÞþ
R
G½fðxÞ�fðyÞ�ru�ðx,yÞdC

�fðyÞ
Z
G
½tðxÞ�tðyÞ

� �
@u�ðx,yÞ

@tx
dC

þ

Z
G
½nðxÞ�nðyÞ

�
@u�ðx,yÞ

@nx
dCgþ

Z
O

f ðxÞru�ðx,yÞdX, yAC

ð3Þ

where u�ðx,yÞ ¼�ð1=2pÞlnr is the fundamental solution in two
dimension problems.

For the domain Oc, the equations are given asZ
G
fðxÞdCxþ

Z
Oc

f ðxÞdXc
¼ 0 ð4Þ

uðyÞ ¼
Z
G
fðxÞu�ðx,yÞdCxþ

Z
Oc

f ðxÞu�ðx,yÞdXc
þC,yAC ð5Þ

ryuðyÞ ¼
R
G½fðxÞ�fðyÞ�ryu�ðx,yÞdCx

�fðyÞ
Z
G
½tcðxÞ�tcðyÞ�ru�ðx,yÞUtcðxÞdCx

�

þ

Z
G
½ncðxÞ�ncðyÞ�ru�ðx,yÞUncðxÞdCx

�

þ

Z
Oc

f ðxÞryu�ðx,yÞdXc ,yAC: ð6Þ

where tc(x) and nc(x) are the unit tangent and outward normal
vectors of G to domain Oc at point x, respectively.

For the internal point y, the integral equations can be
expressed as

uðyÞ ¼

Z
G
fðxÞu�ðx,yÞdGxþ

Z
Ô

f ðxÞu�ðx,yÞdÔþC,yAÔ ð7Þ

ryuðyÞ ¼

Z
G
fðxÞryu�ðx,yÞdGxþ

Z
Ô

f ðxÞryu�ðx,yÞdÔ,yAÔ: ð8Þ
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In Eqs. (1)–(8), f(x) is the density function to be determined; f(x)
is the body function, and in Eqs. (7) and (8) Ô¼O or Oc. It is
important to note that in coated cutting tools, Eqs. (1)–(8) only
apply within each layer of material separately because of
differences in thermal conductivity.

In the machining industry, the coatings consist of one layer or
more layers. Thin layers of coating protect the tool against adhesion,
diffusion and intensive abrasive wear. They also provide a barrier for
the intensive heat flow from the contact area into the substrate
material. One way to model the tool containing coatings is to use the
multi-domain BEM. In order to make this procedure clearer, only one
layer of coating is treated in this paper. Although the formulation can
be extended to multiple layers, the solution for multi-coating
systems will merely increase the number of the equation, and we
encounter no difficulty. A generic two domains problem is illustrated
in Fig. 2 where the entire domain is composed of two homogenous
and isotropic subdomains O1 and O2. The exterior boundary of
subdomain O1 is G1 and that of subdomain O2 is G2. The contact
interface between the two subdomains is GI. The coefficients of heat
conductivity of two subdomains are denoted by k1 and k2.

In order to make the BEM-based procedures clearer without
loss of generality, we here suppose that the temperature boundary
conditions are prescribed on external surfaces G1 and G2.

First, the exterior boundary of subdomain O1, as shown in
Fig. 2, is analyzed. One has the following discretized form of the
BIE given in (1)–(6):

G1
� � f1

n o

f1
I

n o
0
B@

1
CA¼ U1

� 	
, G1

I

� � f1
n o

f1
I

n o
0
B@

1
CA¼ U1

I

� 	
ð9aÞ

H1
� � f1

n o

f1
I

n o
0
B@

1
CA¼ Q1

� 	
, H1

I

� � f1
n o

f1
I

n o
0
B@

1
CA¼ Q1

I

� 	
ð9bÞ

where U1
I and Q1

I are the interface temperature and normal
derivative of temperature of the subdomain O1 on the interface GI,
f1 the density function on G1, f1

I the density function of the
subdomain O1 on the interface GI, U1 and Q1 the temperature and
normal derivative of temperature of the subdomain O1 on the
remaining surfaces.

Similarly, for the subdomain O2, we have

G2
� � f2

n o

f2
I

n o
0
B@

1
CA¼ U2

� 	
, G2

I

� � f2
n o

f2
I

n o
0
B@

1
CA¼ U2

I

� 	
ð10aÞ

H2
� � f2

n o

f2
I

n o
0
B@

1
CA¼ Q2

� 	
, H2

I

� � f2
n o

f2
I

n o
0
B@

1
CA¼ Q2

I

� 	
ð10bÞ

where U2
I and Q2

I are the interface temperature and normal derivative
of temperature of the subdomain O2 on the interface GI, U2 and Q2 the
temperature and normal derivative of temperature of the subdomain
of the thermal behaviour in thin-coated cutting tools. Eng Anal
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O2 on the remaining surfaces, f2 the density function on G2, f2
I the

density function of the subdomain O2 on the interface GI.
For a well-posed boundary value problem, there is only

unknown (either U or Q) at each nodal point on the boundaries.
However, along the interface GI, both U and Q are unknowns. To
solve the problem numerically, there will be the same number of
algebraic equations as the unknowns. Therefore, the following
continuity conditions at the interface must be considered:
(a)
Ple
Bo
Continuity of temperature on GI:

U1
I ¼U2

I ð11Þ

Continuity of normal flux on GI:
(b)
k1Q1
I ¼�k2Q2

I ð12Þ
t
2 ( 1)ξ =x

1( 1)ξ = −x

Mx

Γ

Ω

n

y
d

r

( )p ξ η=x

( )ξx

3 ( 0)ξ =x

Fig. 3. The minimum distance d from the field point y to the boundary element.
According to the equilibrium and compatibility conditions (11)
and (12) at the interface, discretized algebraic equations (9) and
(10) can be coupled as

G1
� �

½0�

G1
I

� �
� G2

I

� �
H1

I

� � k2

k1
H2

I

� �
½0� G2

� �

0
BBBBBB@

1
CCCCCCA

f1
n o

f1
I

n o
0
B@

1
CA

f2
n o

f2
I

n o
0
B@

1
CA

2
6666666664

3
7777777775
¼

U1
� 	
f0g

f0g

U2
� 	

2
66664

3
77775 ð13Þ

More equations will be added to this system in a similar way
for multi-coating problems. The system still needs to be reordered
according to the prescribed temperature and normal flux
boundary conditions. The system of equations (13) can be solved
simultaneously for the boundary and interface unknowns. Once
the boundary unknowns are solved, Eqs. (7) and (8) can be
integrated to obtain the temperature distributions at any point
inside each subdomain.

Note that, the traditional Gaussian quadrature is directly used
to calculate the density function in the algebraic equation (13) in
the conventional boundary element method (CBEM). However, if
the coating of a considered cutting tool is thin, some discretized
boundaries will be very close to each other. Thus, the distance r

between some boundary nodes and integral elements probably
approaches zero. This would cause the coefficients of matrices
G1, G1

I , H1
I in (13) present various orders of near singularities, and

the density functions cannot be calculated accurately by using
the traditional Gauss quadrature. Therefore, calculation of the
physical quantities at interior points also needs special care. On
the other hand, almost all the interior points in thin coatings are
very close to the integral elements. Thus, there also exist nearly
singular integrals in Eqs. (7) and (8).

The above mentioned nearly singular integrals can be
expressed as the following generalized integrals:

I1 ¼
R
GcðxÞlnr2 dC

I2 ¼
R
GcðxÞ

1

r2a dC

8><
>: ð14Þ

where a40, c(x) is a well-behaved function including the
Jacobian, the shape functions and ones that arise from taking
the derivative of the integral kernels. Under such a circumstance,
either a very fine mesh with massive integration points or a
special integration technique needs to be adopted. In the last two
decades, numerous research works have been published on this
subject in the BEM literature. Most of the work has been focused
on the numerical approaches, such as subdivisions of the element
of integration, adaptive integration schemes, exact integration
methods and so on. However, most of these earlier methods are
either inefficient or cannot provide accurate results when the
ase cite this article as: Zhang Y, et al. Boundary element analysis
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thickness of the thin structure is smaller than 10�6. In this work, a
very efficient transformation method is proposed to avoid the
integration difficulty for thin coatings with the thickness to length
ratio in micro- or nano-scales.
3. Nearly singular integrals under curvilinear elements

The quintessence of the BEM is to discretize the boundary into
a finite number of segments, not necessarily equal, which are
called boundary elements. Two approximations are made over
each of these elements. One is about the geometry of the
boundary, while the other has to do with the variation of the
unknown boundary quantity over the element. The linear element
is not an ideal one as it cannot approximate with sufficient
accuracy for the geometry of curvilinear boundaries. For this
reason, it is recommended to use higher order elements, namely,
elements that approximate geometry and boundary quantities by
higher order interpolation polynomials—usually of second order.
In this paper, the geometry segment is modeled by a continuous
parabolic element, which has three knots, two of which are placed
at the extreme ends and the third somewhere in-between, usually
at the mid-point. Therefore the boundary geometry is approxi-
mated by a continuous piecewise parabolic curve. On the other
hand, the distribution of the boundary quantity on each of these
elements is depicted by a discontinuous quadratic element, three
nodes of which are located away from the endpoints.

Assume x1 ¼ ðx1
1,x1

2Þ and x2 ¼ ðx2
1,x2

2Þ are the two extreme points
of the segment Gj, and x3 ¼ ðx3

1,x3
2Þ is in-between one. Then the

element Gj can be expressed as follows:

xkðxÞ ¼N1ðxÞx1
kþN2ðxÞx2

kþN3ðxÞx3
k , k¼ 1,2 ð15Þ

where N1ðxÞ ¼ xðx�1Þ=2, N2ðxÞ ¼ xðxþ1Þ=2, N3ðxÞ ¼ ð1�xÞð1þ
xÞ,� 1rxr1.

As shown in Fig. 3, the minimum distance d from the field
point y¼ ðy1,y2Þ to the boundary element Gj is defined as the
length of yxp , which is perpendicular to the tangential line t and
through the projection point xp. Letting ZA(�1,1) is the local
coordinate of the projection point xp, i.e. xp ¼ ðx1ðZÞ,x2ðZÞÞ. Then Z
is the real root of the following equation:

x0kðZÞðxkðZÞ�ykÞ ¼ 0 ð16Þ

If the field point y sufficiently approaches the boundary, then
Eq. (16) has a unique real root. In fact, setting

FðZÞ ¼ x0kðZÞðxkðZÞ�ykÞ

there is

F 0ðZÞ ¼ x0kðZÞx
0
kðZÞþx00kðZÞðxkðZÞ�ykÞ ¼ J2ðZÞþx00kðZÞðxkðZÞ�ykÞ

where J(Z) is the Jacobian of the transformation from parabolic
element to the line interval [�1,1]. Therefore, when the field
point y is sufficiently close to the element, we explicitly have
F
0

(Z)40.
of the thermal behaviour in thin-coated cutting tools. Eng Anal
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The unique real root of Eq. (16) can be evaluated numerically
by using the Newton’s method or computed exactly by adopting
the algebraic root formulas of 3rd algebraic equations. In this
paper, two ways are all tested, and practical applications show
that both ways can be used to obtain desired results. Furthermore,
the Newton’s method is more simple and effective, especially if
the initial approximation is properly chosen and if we can do this,
only two or three iterations are sufficient to approximate the real
root. For the root formula of 3rd algebraic equations, let us
consider the following algebraic equation:

ax3þbx2þcxþd¼ 0

if there exists only one real root, the analytical solution can be
expressed as follows:

x¼�
b

3a
þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2þt2
p
 �1=3

3
ffiffiffiffiffiffi
2a3
p cos

1

3
arccos

sffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2þt2
p

� 

where s¼�2b3+9acb�27a2d,

t¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4ð3ac�b2Þ

3
�ð�2b3þ9acb�27a2dÞ2

q
.

1r
2r

3r

1Ω (Coating)

2Ω (Substrate)

B
AC

20T =

10T =

1x

2x

Fig. 4. Cross section of a shaft with a thin coating.

Table 1
Results of temperatures at the point A in the domain O1.

(r3�r2)/r1 Exact CBEM

1.0E�01 0.1846705E+02 0.1846820E+02 �

1.0E�02 0.1977389E+02 0.1954567E+02

1.0E�03 0.1997628E+02 0.1795833E+02

1.0E�04 0.1999762E+02 0.1558630E+02

1.0E�05 0.1999976E+02 0.1506173E+02

1.0E�06 0.1999998E+02 0.1500866E+02

1.0E�07 0.2000000E+02 0.1500528E+02

1.0E�08 0.2000000E+02 0.1499499E+02

1.0E�09 0.2000000E+02 0.1497120E+02

1.0E�10 0.2000000E+02 0.1494523E+02

Table 2
Results of fluxes qT/qx1 at the point A in the domain O1.

(r3�r2)/r1 Exact CBEM

1.0E�01 0.3132081E+01 0.3131908E+01

1.0E�02 0.4532361E+01 0.2996638E+01

1.0E�03 0.4744335E+01 0.1056759E+01

1.0E�04 0.4766628E+01 0.1163437E+01

1.0E�05 0.4768868E+01 0.5210141E+00

1.0E�06 0.4769093E+01 0.6550840E�01

1.0E�07 0.4769115E+01 0.6883414E�02

1.0E�08 0.4769117E+01 0.2444019E�02

1.0E�09 0.4769118E+01 0.5601441E�02

1.0E�10 0.4769122E+01 0.1781746E�02
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Using the procedures described above, we can obtain the value
of the real root Z. Thus, we have

xk�yk ¼ xk�xp
kþxp

k�yk ¼
1

2
ðx�ZÞ ðx1

k�2x3
kþx2

k ÞðxþZÞþðx
2
k�x1

kÞ
� �

þxkðZÞ�yk

ð17Þ

By using Eq. (17), the distance square r2 between the field
point y and the source point x(x) can be written as

r2ðxÞ ¼ ðxk�ykÞðxk�ykÞ ¼ ðx�ZÞ2gðxÞþd2 ð18Þ

where d2
¼(xk(Z)�yk)(xk(Z)�yk)

gðxÞ ¼
1

4
ðx1

k�2x3
kþx2

k Þðx
1
k�2x3

kþx2
k ÞðxþZÞ

2

þ
1

2
ðx1

k�2x3
kþx2

k Þðx
2
k�x1

k ÞðxþZÞ

þh2þðx1
k�2x3

kþx2
k ÞðxkðZÞ�ykÞ,where

h¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2

k�x1
k Þðx

2
k�x1

k Þ

q

Apparently, there is g(x)Z0.
By some simple deductions, the nearly singular integrals in

Eq. (14) can be reduced to the following two types:

I1 ¼
R1
�1

f ðxÞln ðx�ZÞ2gðxÞþd2
h i

dx

I2 ¼
R1
�1

f ðxÞ

ðx�ZÞ2gðxÞþd2
h ia dx

8>>>>><
>>>>>:

ð19Þ

where f( U ) is a regular function that consists of shape function,
Jacobian, and ones which arise from taking the derivative of the
integral kernels. It is obvious that the above integrals would
present various orders of near singularity if d is very small. The
key to achieving high accuracy is to find an algorithm to calculate
these integrals accurately for a small value of d.
Relative error (%) Present Relative error (%)

0.6231714E�02 0.1846830E+02 �0.6758478E�02

0.1154139E+01 0.1977404E+02 �0.7531768E�03

0.1010176E+02 0.1997629E+02 �0.1885485E�04

0.2205923E+02 0.1999761E+02 0.5266084E�04

0.2469045E+02 0.1999975E+02 0.5978710E�04

0.2495660E+02 0.1999996E+02 0.6050036E�04

0.2497359E+02 0.1999999E+02 0.6057122E�04

0.2502505E+02 0.1999999E+02 0.6057561E�04

0.2514399E+02 0.1999999E+02 0.6056653E�04

0.2527384E+02 0.1999999E+02 0.6053826E�04

Relative error (%) Present Relative error (%)

0.5541639E�02 0.3131919E+01 0.5200833E�02

0.3388350E+02 0.4531794E+01 0.1250955E�01

0.7772588E+02 0.4743731E+01 0.1273312E�01

0.1244080E+03 0.4766126E+01 0.1051473E�01

0.1109253E+03 0.4768008E+01 0.1804674E�01

0.1013736E+03 0.4767268E+01 0.3826259E�01

0.1001443E+03 0.4768719E+01 0.8308074E�02

0.9994875E+02 0.4773356E+01 0.8888261E�01

0.9988255E+02 0.4778376E+01 0.1941299E+00

0.1000374E+03 0.4780034E+01 0.2288118E+00
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4. The transformation for nearly singular integrals

The nearly singular integrals in Eq. (19) can be divided into
two parts at point Z as follows:

I1 ¼

ZZ

�1

þ

Z 1

Z

8<
:

9=
;f ðxÞln ðx�ZÞ2gðxÞþd2

h i
dx ð20Þ

I2 ¼

ZZ

�1

þ

Z 1

Z

8<
:

9=
;

f ðxÞ

ðx�ZÞ2gðxÞþd2
h ia dx ð21Þ

By some simple deductions, the integrals in Eqs. (20) and (21)
can be reduced to the following forms:

I1 ¼

Z a1

0

~f 1ðx1Þln x2
1
~g1ðx1Þþd2

h i
dx1þ

Z a2

0

~f 2ðx2Þln x2
2
~g2ðx2Þþd2

h i
dx2

ð22Þ

I2 ¼

Z a1

0

~f 1ðx1Þ

x2
1
~g1ðx1Þþd2

h ia dx1þ

Z a2

0

~f 2ðx2Þ

x2
2
~g2ðx2Þþd2

h ia dx2 ð23Þ

where x1¼Z�x , x2¼x�Z , a1¼1+Z, a2¼1�Z.
Introducing the following variable transformation

xi ¼ dðekið1þ tÞ�1Þ, i¼ 1,2 ð24Þ

where ki ¼
1
2ln 1þðai=dÞ
� �

, we can map xi(0, ai) to t(�1,1).
Substituting (24) into (22) and (23), then Eqs. (22) and (23) can

be rewritten as

I1 ¼ dk1

R1
�1

f1ðtÞln ðe
k1ð1þ tÞ�1Þ2g1ðtÞþ1

h i
ek1ð1þ tÞdt

þdk1

Z1

�1

f1ðtÞlnd2ek1ð1þ tÞdt
Table 3
Results of temperatures at the point B in the interface of domains O1 and O2.

(r3�r2)/r1 Exact CBEM Relative error (%) Present Relative error (%)

1.0E�01 0.1686594E+02 0.1686795E+02 �0.1190594E�01 0.1686795E+02 �0.1192834E�01

1.0E�02 0.1954676E+02 0.1907841E+02 0.2396030E+01 0.1954705E+02 �0.1468819E�02

1.0E�03 0.1995256E+02 0.1580660E+02 0.2077908E+02 0.1995256E+02 �0.3807003E�04

1.0E�04 0.1999523E+02 0.1106799E+02 0.4464686E+02 0.1999521E+02 0.1045727E�03

1.0E�05 0.1999952E+02 0.1010611E+02 0.4946826E+02 0.1999950E+02 0.1188223E�03

1.0E�06 0.1999995E+02 0.1001529E+02 0.4992341E+02 0.1999993E+02 0.1202490E�03

1.0E�07 0.2000000E+02 0.1001003E+02 0.4994986E+02 0.1999997E+02 0.1203917E�03

1.0E�08 0.2000000E+02 0.9990413E+01 0.5004793E+02 0.1999998E+02 0.1204057E�03

1.0E�09 0.2000000E+02 0.9944868E+01 0.5027566E+02 0.1999998E+02 0.1204069E�03

1.0E�10 0.2000000E+02 0.9895194E+01 0.5052403E+02 0.1999998E+02 0.1204068E�03

Table 4
Results of normal fluxes qT/qn at the point B in the interface of domains O1 and O2.

(r3�r2)/r1 Exact CBEM Relative error (%) Present Relative error (%)

1.0E�01 0.6548898E+01 0.6546801E+01 0.3201660E�01 0.6546808E+01 0.3190413E�01

1.0E�02 0.9105925E+01 0.8409471E+01 0.7648362E+01 0.9100165E+01 0.6325216E�01

1.0E�03 0.9492983E+01 0.3865038E+01 0.5928531E+02 0.9486709E+01 0.6608956E�01

1.0E�04 0.9533689E+01 0.5203181E+00 0.1054577E+03 0.9527363E+01 0.6634726E�01

1.0E�05 0.9537780E+01 0.1528142E+00 0.1016022E+03 0.9531450E+01 0.6637273E�01

1.0E�06 0.9538190E+01 0.1512037E�01 0.1001585E+03 0.9531859E+01 0.6637528E�01

1.0E�07 0.9538231E+01 0.1768267E�02 0.9998146E+02 0.9531900E+01 0.6637536E�01

1.0E�08 0.9538235E+01 0.2832121E�02 0.1000297E+03 0.9531904E+01 0.6637651E�01

1.0E�09 0.9538236E+01 0.1668181E�01 0.1001749E+03 0.9531904E+01 0.6638850E�01

1.0E�10 0.9538244E+01 0.3103467E�01 0.1003254E+03 0.9531904E+01 0.6646671E�01

Please cite this article as: Zhang Y, et al. Boundary element analysis of the thermal behaviour in thin-coated cutting tools. Eng Anal
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þdk2

Z1

�1

f2ðtÞln ðe
k2ð1þ tÞ�1Þ2g2ðtÞþ1

h i
ek2ð1þ tÞdt

þdk2

Z1

�1

f2ðtÞlnd2ek2ð1þ tÞdt ð25Þ

I2 ¼ k1d1�2a
Z1

�1

f1ðtÞe
k1ð1þ tÞ

ðek1ð1þ tÞ�1Þ2g1ðtÞþ1
h ia dtþk2d1�2a

Z1

�1

f2ðtÞe
k2ð1þ tÞ

ðek2ð1þ tÞ�1Þ2g2ðtÞþ1
h ia dt ð26Þ
Table 5
Results of normal fluxes qT/qn at the point D in the interface of domains O1 and O2.

h Exact CBEM

1.0E�01 0.3000000E+01 0.2998325E+01

1.0E�02 0.3000000E+01 0.3032585E+01 �

1.0E�03 0.3000000E+01 0.3527544E+00

1.0E�04 0.3000000E+01 �0.1733515E+01

1.0E�05 0.3000000E+01 �0.2577272E+01

1.0E�06 0.3000000E+01 �0.2663291E+01

1.0E�07 0.3000000E+01 �0.2671899E+01

1.0E�08 0.3000000E+01 �0.2672760E+01

1.0E�09 0.3000000E+01 �0.2672846E+01

1.0E�10 0.3000000E+01 �0.2672855E+01
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Fig. 8. Rectangle with a thin coating.
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Fig. 7. Convergence curves of the computed temperature at points A, B, and C.
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where fi(t)¼ f[Z+(�1)id(eki(1+ t)
�1)], gi(t)¼g[Z+(�1)id(eki(1+ t)

�1)],
i¼1,2.

We know that the denominator always (ek(1 + t)
�1)2g(t)+1Z1

if g(x)40 is a regular function as assumed above. Thus, the
integrand is fully regular even if the value of d is very small.

By following the procedures described above, the near
singularity of the boundary integrals has been fully regularized
even if the thickness of the coatings is in the orders of
10�6

�10�9. The final integral formulations over parabolic
elements are obtained as shown in Eqs. (25) and (26), which
can now be computed straightforward by using the standard
Gaussian quadrature.
5. Numerical examples

To verify the method developed above, two simplified coating
test cases are studied in which BEM solutions are compared with
the exact solutions.

5.1. Test problem 1: a thin coating on a shaft

In the first test case, which is depicted in Fig. 4, a circular shaft
with a thin coating is studied. The mediums of domains O1 and O2

are assumed to, respectively, have heat conductivities of k1¼2
and k2¼1 W/mK. The inner and outer radii of the domain O2 are
r1¼10 and r2¼11, respectively. The domain O1 is considered to be
the coating with an outer radius r3. The given boundary
conditions are temperatures T1¼20 on the coating’s outer
surface and T2¼10 on the substrate’s inner surface. From the
theory of heat transfer, the analytical temperature solutions are
given by

T1ðxÞ ¼ T1þ
C�T1

lnðr2=r3Þ
ln

r

r3
for the domain O1

T2ðxÞ ¼ T2þ
C�T2

lnðr2=r1Þ
ln

r

r1
for the domain O2

where

C ¼
MT1K1=K2�T2

MK1=K2�1
, M¼

lnðr2=r1Þ

lnðr2=r3Þ

here r denotes the radius of the considered points.
There are 10 quadratic boundary elements divided along the

inner surface, and 15 uniform quadratic boundary elements on
the outer and contact interface surfaces, respectively. Therefore
the total number of the elements is 40. Quadratic discontinuous
interpolation is adopted to approximate the boundary functions.

In this example, (r3�r2)/r1 is defined as the thickness-to-
length ratio. As r1 and r2 are fixed, the ratio reduces as r3

decreases. To the authors’ knowledge, there does not exist
any work in the literature for determining the temperature
Relative error (%) Present Relative error (%)

0.5583312E�01 0.2999972E+01 0.9283084E�03

0.1086175E+01 0.2999787E+01 0.7085004E�02

0.8824152E+02 0.3000048E+01 �0.1610846E�02

0.1577838E+03 0.3000024E+01 �0.8152285E�03

0.1859091E+03 0.2998634E+01 0.4554992E-01

0.1887764E+03 0.2998325E+01 0.5583312E�01

0.1890633E+03 0.2999276E+01 0.2412128E�01

0.1890920E+03 0.2998910E+01 0.3631889E�01

0.1890949E+03 0.3001953E+01 0.6510119E�01

0.1890952E+03 0.2975448E+01 0.8184141E+00
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distribution in the coating layers of the coated cutting tool using
the BEM-based simulation. In this numerical test, the physical
quantities in the coatings and substrates are considered. For
different thickness-to-length ratios, the temperatures and fluxes
qT/qx1 at the interior point A ((r2+r3)/2,0) in the domain O1 are
listed in Tables 1 and 2, respectively. The temperatures and
normal fluxes qT/qn at the point B(r2,0) in the interface of the
domains O1 and O2 are listed in Tables 3 and 4, respectively. The
temperatures and fluxes qT/qx1 at the interior point C ((r1+r2)/2,0)
in the domain O2 are shown in Figs. 5 and 6, respectively.

For quantities in thin coating layers, Tables 1 and 2 show that
the CBEM can only be available to calculate the acceptable
temperatures and fluxes results for the thickness-to-length ratio
down to 1.0E�2. In contrast with the CBEM, the present method
can be used to obtain the accurate temperatures and fluxes results
at the point A even when the thickness-to-length ratio decreases
to 1.0E�10, which is sufficient for modeling most thin coatings in
the micro- or nano-scales.

For quantities in the interface of domain O1 and O2, Tables 3
and 4 demonstrate that the temperatures and fluxes results
Table 6
Results of fluxes qT/qx1 at the point E in the domain O1.

h Exact CBEM

1.0E�01 0.6100000E+01 0.6099934E+01

1.0E�02 0.6010000E+01 0.5872755E+01

1.0E�03 0.6001000E+01 �0.1115987E+01

1.0E�04 0.6000100E+01 �0.1780758E+01

1.0E�05 0.6000010E+01 �0.1774198E+01

1.0E�06 0.6000001E+01 �0.1772776E+01

1.0E�07 0.6000000E+01 �0.1772626E+01

1.0E�08 0.6000000E+01 �0.1772611E+01

1.0E�09 0.6000000E+01 �0.1772610E+01

1.0E�10 0.6000000E+01 �0.1772610E+01

Table 7
Fluxes qT/qx1 at the point of the coating layer on the line x1¼0.5.

x2 Exact CBEM

1.0000000001 0.600E+01 �0.1772610E+01

1.0000000002 0.600E+01 �0.1772610E+01

1.0000000003 0.600E+01 �0.1772610E+01

1.0000000004 0.600E+01 �0.1772610E+01

1.0000000006 0.600E+01 �0.1772610E+01

1.0000000007 0.600E+01 �0.1772610E+01

1.0000000008 0.600E+01 �0.1772610E+01

1.0000000009 0.600E+01 �0.1772610E+01
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Fig. 9. Relative errors (%) of the calculated temperatures at the point E.
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obtained by using the CBEM are unacceptable for the relative
errors (%) already greater than 20% when the thickness-to-length
ratio smaller than 1.0E�3. Nevertheless, the present method
yields highly accurate results with the largest relative error (%)
less than 0.07% even when the thickness-to-length ratio as small
as 1.0E�10.

The same results of quantities in the domain O2 can be found
in Figs. 5 and 6. The convergence curves of computed tempera-
tures at points A, B, and C are shown in Fig. 7, from which we
can observe that the convergence rate is fast even when the
thickness-to-length ratio reaches 1.0E�9. In Fig. 7, only the errors
of the present method are given, since the errors of the CBEM are
relatively too large.
5.2. Test problem 2: a thin coating on a rectangle

In the second test case, we construct a configuration that is
closer to a real machining process. As shown in Fig. 8, a 2�1 m2

rectangle with a thin coating of thickness h is considered. The
boundary conditions specified in Fig. 8 are complicated enough to
ensure two-dimensional heat transfer. In 2001, Du et al. [4]
considered a similar coating test case, in which the exact solution
is T¼x2/(1+h). By contrast, the test case presented in this paper is
more general, and thus the numerical results are expected to be
more accurate if the example in Ref. [4] is revisited.

In this example, the domain O1 is considered to be the
coating layer and O2 is its substrate counterpart. The domain O1

and O2 are assumed to have heat conductivities of k1¼1 and
k2¼2 W/mK, respectively.

For the subdomain O1, there are 6 uniform linear elements on
the each horizontal long side, 1 linear element are divided on each
vertical short side. For the subdomain O2, there are 6 linear
elements on the each boundary. Therefore, the total number of
elements is 38. When the thickness h ranges from 1.0E�1 to
1.0E�10, the normal fluxes qT/qn at the point D(1.5, 1) in the
interface of domain O1 and O2 are listed in Table 5. It is obvious
that the results calculated by using the CBEM deteriorate quickly
as the thickness is less than 1.0E�2. In contrast, the results
Relative error (%) Present Relative error (%)
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Relative error (%) Present Relative error (%)
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calculated by using the proposed method are very consistent
with the exact solutions even though the thickness is small as
1.0E�10. The temperatures and fluxes qT/qx1 at the point
E(0.5, 1+h/2) are shown in Fig. 9 and Table 6, respectively. For
h¼1.0E�9, the fluxes qT/qx1 at the point of the coating layer on
the line x1¼0.5 are listed in Table 7. These results calculated by
using the present BEM are all in good agreement with the exact
solutions. However, the CBEM cannot yield acceptable results as
the thickness decreases.

For h¼1.0E�9, convergence curves of the fluxes at points D

and E calculated by using the presented method are shown in
Fig. 10. We can observe that the convergence rate is fast even
when the thickness-to-length ratio is small as 1.0E�9.
6. Conclusions

In this work, the multi-domain boundary element techniques
were developed for determining the temperature distribution in
materials containing thin coating films. In contrast with the
previous works in the literature, the proposed BEM-based
algorithm has the following specific features:
1.
P
B

The nearly singular integrals in the BIE can be evaluated
accurately even if the thickness to length ratio of the coated
film is smaller than the order of 1.0E�9, which is sufficient for
modeling most thin coatings in the micro- or nano-scales.
2.
 Both temperatures and temperature gradients, not only in the
substrate but also in the coated layer, are well studied in this
paper. The difficult task of determining the temperature
distributions in thin coated structures can be dealt with effec-
tively and efficiently.
3.
 High-order elements to discretize the geometry of the
considered domain are adopted when nearly singular integrals
need to be calculated. To the authors’ best knowledge, no
similar work in the literature can be found to efficiently
calculate the nearly singular integrals occurring on high-order
geometry elements. Owing to the employment of the high-
order elements, only a small number of elements need to be
divided along the boundary. High accuracy can be achieved
without increasing other computational efforts.

This BEM-based approach can be extended easily to model
multi-layered coatings, for analyzing contact stresses, interfacial
cracks, thermal effects, and nonlinear deformations. All of these
topics can be dealt with effectively and efficiently by using the
BEM. Some work along this line for thin structures is already
underway.
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