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Thin structures have been widely designed and utilized in many industries. However, the analysis of the

mechanical behavior of such structures represents a very challenging and attractive task to scientists

and engineers because of their special geometrical shapes. The major difficulty in applying the

boundary element method (BEM) to thin structures is the coinstantaneous existence of the singular and

nearly singular integrals in conventional boundary integral equation (BIE). In this paper, a non-linear

transformation over curved surface elements is introduced and applied to the indirect regularized

boundary element method for 2-D thin structural problems. The developed transformation can remove

or damp out the nearly singular properties of the integral kernels, based on the idea of diminishing the

difference of the orders of magnitude or the scale of change of operational factors. For the test problems

studied, very promising results are obtained when the thickness to length ratio is in the orders of

1E�01 to 1E�06, which is sufficient for modeling most thin structures in industrial applications.

& 2010 Published by Elsevier Ltd.
1. Introduction

With the advances in material science and manufacturing,
more and more thin structures are frequently used for the design
in various industrial applications, such as coating or multi-coating
on machine components, sensors in smart materials and various
thin films in electronic devices. However, the widespread
experimental research in thin structure problems underlies a
general lack of modeling efforts that represents a great challenge
to researchers in computational mechanics.

For computational models of thin structures or thin shapes in
structures, two numerical methods can be employed: the finite
element method (FEM) and the boundary element method (BEM).
The FEM is a successful tool for the analysis of many industrial
applications. However, the FEM element count increases drama-
tically for thin structures due to aspect ratio limitations, and the
procedure therefore requires too much preprocessing and CPU
time as the thickness decreases. It is long believed that the BEM is
more efficient and accurate in thin structural problems due to the
boundary-only discretizations and its semi-analytical nature
[1–3]. However, the conventional boundary element method
(CBEM) cannot be applied readily to thin structures, because of
the nearly singular integral problem.
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The nearly singular integrals are not singular in the sense of
mathematics. However, from the point of view of numerical
integrations, these integrals cannot be calculated accurately by
using the conventional numerical quadrature since the integrand
oscillates very fiercely within the integration interval. Although
that difficulty can be overcome by using very fine meshes, the
process requires too much preprocessing and CPU time. In the
past decades, tremendous effort is devoted to derive convenient
integral forms or sophisticated computational techniques for
calculating the nearly singular integrals. These proposed methods
include, but are not limited to, interval subdivision method [4,5],
special Gaussian quadrature method [6], exact integration
method [7–10], and various non-linear transformation methods
[11–16]. In recent studies, the above methods have been reviewed
in detail by Zhang et al. [17] and Zhang and Sun [18].

Among the above methods, the transformation deserves
special mention due to the wide suitability and higher accuracy.
Most of previous transformations can be generalized into two
categories: one is removing the nearly zero factor by using
another zero factor that is usually generated by Jacobian; the
other one is converting the nearly zero factor in the denominator
to be part of the numerator, which profits from the idea of the
reciprocal transformation for the regularization of weakly singu-
lar integrals. Numerical tests show that the transformations based
on the former idea are effective for the calculation of nearly
weakly singular integrals but not satisfactory for nearly strong
singular or nearly hypersingular integrals. The latter transforma-
tions, based on the idea of reciprocal transformation, can convert
alysis of 2D thin walled structures with high-order geometry
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nearly singular kernels into regular kernels, but the original
regular parts would behave nearly singular after the transforma-
tions, so they are suitable only for a case when the regular part of
the integrand is constant. During the existing transformations, the
optimal transformations [11], the sinh transformation [13], and
the exponential transform [17] are predicted to be more efficient,
where the exponential transform is slightly better than the
formers according to extensive numerical experiments.

With the development of the numerical techniques for
calculation nearly singular integrals, considerable progress has
been made in the application of the BEM to the analysis of thin
walled structures in the past few years. Sladek et al. [19] have
obtained amount of the original results in this field. Non-singular
integral equations for thin-walled structures are proposed based
on a subtraction technique and mathematical regularization. Liu
et al. [2,20,21] have undertaken a lot of researches in this field.
The nearly singular surface integrals are transformed into a sum
of weakly singular integrals, and a non-linear coordinate
transformation is developed for nearly weakly singular integrals.
However, as shown in Ref. [22], only some boundary unknowns
are computed in Liu’s work. The physical quantities at interior
points need further investigation. Zhou et al.[10,22] proposed
semi-analytical or analytical integral algorithms to solve 2-D or 3-
D thin body problems, and both boundary and interior unknowns
are computed in their works.

Although great progresses have been achieved for each of the
above methods, it should be pointed out that the geometry of the
boundary element is often depicted by using linear shape
functions when nearly singular integrals need to be calculated.
In 2009, the author and co-workers proposed a general non-linear
transformation for evaluation nearly singular integrals over
curved surfaces arising in the boundary layer effect problem
[17]. In a more recent study, the theory is also applied to thermal
behavior analysis for thin-coated cutting tools [23].

This paper is an extension of our previous work [17] where a
novel non-linear transformation method over curved surface
elements was proposed and applied to treat the boundary layer
effect occurring in 2D elasticity problems. Herein, the proposed
transformation is extended to the indirect regularized boundary
element method for thin structural problems of 2D elasticity
problems. Both boundary and interior unknowns of thin struc-
tures with thickness-to-length ratios from 1E�1 to 1E�6, which
is sufficient for modeling most thin structures in industrial
applications, are well calculated by using the proposed approach.
Owing to the employment of the high-order element, only a small
number of elements need to be divided along the boundary, and
high accuracy can be achieved without increasing more computa-
tional efforts. The algorithm derived in this paper substantially
simplifies the programming and provided a general computa-
tional method for solving thin structure problems.
2. The BEM formulation for thin walled structural problems

In the following, the BEM formulation for general 2-D thin
walled structures is developed. Using the BEM-based technique
developed in [17,18], the formulation developed in this paper can
be used to solve many thin structural problems with large aspect
ratios.

In this paper, we always assume that O is a bounded domain in
R2, Oc is its open complement, and G denotes the boundary. t(x)
and n(x) (or t and n) are the unit tangent and outward normal
vectors of G to the domain O at the point x, respectively. For 2D
elastic problems, the indirect regularized BIEs are given in [24].
Without regard to the rigid body displacement and the body
Please cite this article as: Zhang Y-M, et al. Boundary element an
elements using transformation. Eng Anal Bound Elem (2010), doi:10
forces, the non-singular BIEs can be expressed as
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For the internal point y, the integral equations can be
written as

uiðyÞ ¼
Z
G
fkðxÞu

�
ikðy,xÞdG, yAÔ ð3Þ

ruiðyÞ ¼
Z
G
fkðxÞru�ikðy,xÞdG, yAÔ ð4Þ

In Eqs. (1)–(4), i, k¼1, 2; k0¼1/4p(1�v); G is the shear
modulus; fk(x) is the density function to be determined; u�ikðy,xÞ
denotes the Kelvin fundamental solution. For interior problems,
Ô¼O, Ŝ¼ 1, t̂ðxÞ and n̂ðxÞ are the unit tangent and outward
normal vectors of G to domain O at point x, respectively. For
exterior problems, Ô¼Oc , Ŝ¼ 0, t̂ðxÞ and n̂ðxÞ are the unit tangent
and outward normal vectors of G to domain Oc at point x,
respectively.

The Gaussian quadrature is directly used to calculate the
density function in the discretized Eqs. (1) and (2) in the CBEM.
However, if the domain of a considered problem is thin, some
boundaries will be very close to each other. Thus, the distance r

between some boundary nodes and integral elements probably
approaches zero. This would cause nearly singular integrals in
Eqs. (1) and (2), and the density functions cannot be calculated
accurately by Gauss quadrature, needless to say, to calculate the
physical quantities at interior points. Moreover, almost all the
interior points of thin bodies are very close to the integral
elements. Thus, there also exist nearly singular integrals in
Eqs. (3) and (4).

The above-mentioned nearly singular integrals can be ex-
pressed as the following generalized integrals:

I1 ¼
R
GcðxÞlnr2 dG

I2 ¼
R
GcðxÞ

1

r2a dG

8><
>: ð5Þ

where a40, c(x) is a well-behaved function including the
Jacobian, the shape functions and, ones which arise from taking
the derivative of the integral kernels.

Note that for most of existing methods the geometry of the
boundary element of Eq. (5) is often depicted by using linear
shape functions. However, the linear element is not an ideal one
as it cannot approximate with sufficient accuracy for the
geometry of curvilinear boundaries. For this reason, it is
recommended to use higher order elements—usually of second
order in most applications. As shown in Ref. [17], if isoparametric
quadratic boundary elements are employed, the distance square
r2 between the field point y and the source point x(x) can be
expressed as follows:

r2ðxÞ ¼ ðxk�ykÞðxk�ykÞ ¼ ðx�ZÞ2gðxÞþd2 ð6Þ
alysis of 2D thin walled structures with high-order geometry
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where d2
¼(xk(Z)�yk)(xk(Z)�yk),
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With the aid of Eq. (6), the nearly singular integrals in Eq. (5)
can be summarized to the following forms:

I1 ¼
R a

0 f ðxÞln½x2gðxÞþd2�dx

I2 ¼
R a

0

f ðxÞ

½x2gðxÞþd2�a
dx

8><
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where f( � ) is a regular function; a is a constant with respect to Z.
It is obvious that the above integrals would present various

orders of near singularity if d is very small. The key to achieving
high accuracy is to find an algorithm to calculate these integrals
accurately for a small value of d.

Introducing the following variable transformation [17,18]

x¼ dðekð1þ tÞ�1Þ, k¼ lnð1þa=dÞ=2 ð8Þ

which maps x(o, a) to t(�1,1). Substituting (8) into (7), then
Eq. (7) can be rewritten as

I1 ¼ dk
R 1
�1 f ðtÞ ln½ðekð1þ tÞ�1Þ2gðtÞþ1�ekð1þ tÞdtþdk

R 1
�1 f ðtÞlnd2ekð1þ tÞdt

I2 ¼ kd1�2a R 1
�1

f ðtÞekð1þ tÞ

½ðekð1þ tÞ�1Þ2gðtÞþ1�a
dt
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By following the procedures described above, the near
singularity of the boundary integrals has been fully regularized.
The final integral formulations over parabolic elements are
obtained as shown in Eq. (9), which can be computed straightfor-
ward by using the standard Gaussian quadrature.
 1E-1 1E-2 1E-3 1E-4 1E-5 1E-6

�

Fig. 2. Radial stresses sr at the boundary node A.
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3. Numerical verification

To verity the BEM formulation developed for thin structural
problems, two simple test problems are studied in which BEM
solutions are compared with the exact solutions.

Example 1. A thin-walled cylinder subjected to a uniform
internal pressure p¼1 is considered, as shown in Fig. 1. The
outer and inner radii of the cylinder are a and b, respectively, with
a¼10. The elastic shear modulus is G¼807692.3 N/cm2 and the
Poisson’s ratio is v¼0.3. The entire boundary is discretized by 60
discontinuous isoparametric quadratic elements.
x1

x2

B A

Fig. 1. A thin-walled cylinder subjected to uniform internal pressure.

Please cite this article as: Zhang Y-M, et al. Boundary element an
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In this example, d¼(a�b)/a is defined as the thickness-to-
length ratio of thin-walled structures [22]. For different
thickness-to-length ratios, the results of the unknown stresses at
the boundary node A(a, 0) are shown in Figs. 2 and 3. The results of
the stresses and its relative error (%) at interior point B((a+b)/2, 0)
are listed in Tables 1 and 2. For d¼1.0E�6, the stress results
calculated by using the present method are listed in Tables 3 and 4.

We can observe in Fig. 2 that the radial stress sr at boundary
node A can be accurately calculated by using the present method
even when d decreases to 1E�06. Fig. 3 illustrates that the results
1E-1 1E-2 1E-3 1E-4 1E-5 1E-6
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Fig. 3. Relative errors (%) of the tangential stresses sy at the boundary node A.
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Table 1
Radial stress sr at the interior point B.

d Exact CBEM Relative error (%) Present Relative error (%)

1.0E�1 �0.4605628E+00 �0.4605654E+00 �0.5639465E�03 �0.4605535E+00 0.2002811E�02

1.0E�2 �0.4962312E+00 0.1628417E+02 0.3381570E+04 �0.4962627E+00 �0.6353770E�02

1.0E�3 �0.4996248E+00 �0.3211114E+02 �0.6327051E+04 �0.4996301E+00 �0.1048724E�02

1.0E�4 �0.4999625E+00 0.1512744E+03 0.3035715E+05 �0.4999631E+00 �0.1128103E�03

1.0E�5 �0.4999962E+00 0.9089221E+02 0.1827858E+05 �0.4999964E+00 �0.3605676E�04

1.0E�6 �0.4999996E+00 0.8744101E+02 0.1758822E+05 �0.4997179E+00 0.5633904E�01

Table 2
Tangential stress sy at the interior point B.

d Exact CBEM Relative error (%) Present Relative error (%)

1.0E�1 0.8986879E+01 0.8986873E+01 0.5684806E�04 0.8986998E+01 �0.1324860E�02

1.0E�2 0.9899874E+02 0.9137400E+02 0.7701863E+01 0.9898402E+02 0.1487651E�01

1.0E�3 0.9989999E+03 0.9317472E+03 0.6732000E+01 0.9988080E+03 0.1920986E�01

1.0E�4 0.9999000E+04 �0.4040860E+04 0.1404126E+03 0.9997082E+04 0.1918569E�01

1.0E�5 0.9999900E+05 �0.2429923E+04 0.1024299E+03 0.9997990E+05 0.1909961E�01

1.0E�6 0.9999990E+06 �0.2338491E+04 0.1002338E+03 0.9997090E+06 0.2899701E�01

Table 3

Radial stress sr at interior points on the line x2¼0 (d¼1.0E�6).

x1 Exact CBEM Relative error (%) Present Relative error (%)

9.999991 �0.8999999E+00 0.8743318E+02 0.9814799E+04 �0.9012839E+00 �0.1426687E+00

9.999992 �0.7999998E+00 0.8743514E+02 0.1102940E+05 �0.8005229E+00 �0.6538819E�01

9.999993 �0.6999997E+00 0.8743710E+02 0.1259102E+05 �0.6998743E+00 0.1791863E�01

9.999994 �0.5999996E+00 0.8743906E+02 0.1467318E+05 �0.5996231E+00 0.6275614E�01

9.999996 �0.3999996E+00 0.8744297E+02 0.2196076E+05 �0.3998028E+00 0.4920305E�01

9.999997 �0.2999997E+00 0.8744493E+02 0.2924834E+05 �0.2997886E+00 0.7037746E�01

9.999998 �0.1999998E+00 0.8744688E+02 0.4382349E+05 �0.1999138E+00 0.4299207E�01

9.999999 �0.9999986E�01 0.8744884E+02 0.8754896E+05 �0.9991639E�01 0.8347362E�01

Table 4

Tangential stress sy at interior points on the line x2¼0 (d¼1.0E�6).

x1 Exact CBEM Relative error (%) Present Relative error (%)

9.999991 0.9999994E+06 �0.2338528E+04 0.1002339E+03 0.9997105E+06 0.2888914E�01

9.999992 0.9999993E+06 �0.2338519E+04 0.1002339E+03 0.9997101E+06 0.2891611E�01

9.999993 0.9999992E+06 �0.2338510E+04 0.1002339E+03 0.9997098E+06 0.2894310E�01

9.999994 0.9999991E+06 �0.2338500E+04 0.1002339E+03 0.9997094E+06 0.2897006E�01

9.999996 0.9999989E+06 �0.2338481E+04 0.1002338E+03 0.9997087E+06 0.2902395E�01

9.999997 0.9999988E+06 �0.2338472E+04 0.1002338E+03 0.9997083E+06 0.2905089E�01

9.999998 0.9999987E+06 �0.2338462E+04 0.1002338E+03 0.9997079E+06 0.2907783E�01

9.999999 0.9999986E+06 �0.2338453E+04 0.1002338E+03 0.9997076E+06 0.2910478E�01
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of tangent stress sy calculated by using CBEM become less
satisfactory when d less than 1E�02. In contrast, the results
calculated by using the proposed method are very consistent with
the exact solutions with the largest relative error less than 0.05%
even when d as small as 1E�06.

Tables 1 and 2 show that the CBEM can only be available to
calculate the acceptable radial stress and tangent stress at the
interior point B for d down to 1E�01, the results are out of true
with further decrease of d. Nevertheless, the results obtained by
using the present method are excellently consistent with the
analytical solutions even when d equals 1E�06.

Tables 3 and 4 present the results of radial stress and tangent
stress at eight different interior points with d equals 1E�06,
which further demonstrate the effectiveness of the present
method. In addition, the convergence curves of computed stresses
at interior points B are shown in Fig. 4, from which we can
Please cite this article as: Zhang Y-M, et al. Boundary element an
elements using transformation. Eng Anal Bound Elem (2010), doi:10
observe that the convergence speeds are still fast even when d
reached 1E�06. In Fig. 4, only the errors of the present method
are given, since the errors of the CBEM are relatively too large.

Example 2. As shown in Fig. 5, a thin coating with nonuniform
thickness on a shaft is considered. Both the shaft and coating
profiles remain circular, but their centers are misaligned (b)
compared to the uniform thickness case (a), producing some
normalized eccentricity d¼xc/(rb�ra), where xc is the center
offset. The coating and shaft have outer radii rb and ra,
respectively, with their center of curvature located at the point
o(0,0). In this example, the coated system is loaded by a uniform
pressure p, and the shaft is considered to be rigid when compared
to the coating, so the boundary conditions are ux¼uy¼0 for all
nodes at the shaft/coating interface. There are totally 16
discontinuous isoparametric quadratic elements divided along
alysis of 2D thin walled structures with high-order geometry
.1016/j.enganabound.2010.07.008
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the shaft and coating surfaces, regardless of the thickness of the
structure. The elastic shear modulus is G¼8.0�1010 Pa and
Poisson’s ratio is v¼0.2.

While no analytical solution exists for da0 case, the
asymptotic behavior of the solution as d-0 can be checked to
verify the formulation. In this example, shaft radius is held
constant at 0.1 and coating outer radius is also constant at 0.11;
the eccentricity has been systematically varied over the entire
range 0rdo1.

In 1998, Luo et al. [21] have handled this coating system, and
the radial stress sr at boundary node C has been obtained by using
the BEM. However, in their work only boundary unknown radial
stresses sr are computed. The boundary unknown tangential
stresses sy and physical quantities at interior points need further
investigation. In this paper, both boundary unknowns and
physical quantities at interior points over different d are given.

Fig. 6 shows the tangential stress prediction sy at boundary
node C (Note that the highest normalized eccentricity solved is
20 30 40 50 60 70 80 90 100
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0.5

1

1.5

Radial stress
Tangential stress

Number of elements 

R
el

at
iv

e 
er

ro
r (

%
)

Fig. 4. Convergence curves of the stresses at the interior point B with d¼1.0E�6.
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Fig. 5. A thin coating with nonu

Please cite this article as: Zhang Y-M, et al. Boundary element an
elements using transformation. Eng Anal Bound Elem (2010), doi:10
d¼0.999999). Fig. 7 shows the normalized radial stress sr at
boundary node C, and the results obtained by using Ref. [21] and
the FEM are also given to make comparison. Note first that the
asymptotic behavior of the BEM solution, which approaches the
analytical value of the sample problem as d-0 (case a). Also
notice that the same stress value at point C approaches the
applied pressure p as d-1, which is consistent with the physical
interpretation. The FEM solution, however, demonstrates a very
p

C

xc

niform thickness on a shaft.

Ta
0 0.2 0.4 0.6 0.8 0.999999

-0.268

-0.264

Eccentricity �

Fig. 6. Tangential stress at the boundary node C.

0.1 0.2 0.4 0.6 0.8 0.95
0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07 Ref [ Luo et al. (1998)]
Present
FEM

Fig. 7. Radial stress prediction at the boundary node C.
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Table 5

Radial and tangential stress prediction for d¼0.999999.

y Stresses at boundary nodes Stresses at interior points

sr sy sr sy

0 �0.1000000E+01 �0.2504534E+00 �0.1000000E+01 �0.2504112E+00

p/6 �0.1000000E+01 �0.2501923E+00 �0.1004975E+01 �0.2547527E+00

p/4 �0.1000000E+01 �0.2509350E+00 �0.1010772E+01 �0.2612035E+00

p/3 �0.1000000E+01 �0.2528999E+00 �0.1018067E+01 �0.2711574E+00

p/2 �0.1000000E+01 �0.2610801E+00 �0.1034176E+01 �0.3010530E+00

2p/3 �0.1000000E+01 �0.2725530E+00 �0.1047760E+01 �0.3358898E+00

5p/6 �0.1000000E+01 �0.2813670E+00 �0.1056084E+01 �0.3621889E+00

p �0.1000000E+01 �0.2843456E+00 �0.1058817E+01 �0.3717277E+00
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different behavior. While the low eccentricity cases are easily
solved with the FEM with a fairly small number of elements, the
solution requires significantly more effort for d-1. Indeed,
studies in Ref. [21] show that for d40.99, the FEM solution
becomes infeasible due to memory limitations.

In addition, for different angular coordinates, the radial and
tangential stress prediction for d¼0.999999 at the boundary
nodes (ra, y) and at the interior points ((ra+rb)/2, y) are given in
Table 5.
4. Conclusion

In this paper, an efficient BEM-based technique is developed
for thin structural problems occurring in 2D elasticity problems.
The seemingly difficult task of evaluating the nearly singular
integrals in the BIE can be dealt with accurately and efficiently by
using a general non-linear transformation. Two numerical
examples of elastic thin-walled structures with thickness-to-
length ratios ranging from 1E�01 to 1E�06 are presented to test
the proposed method. Both boundary unknown variables on the
boundary and physical quantities at interior points are accurately
calculated. Owing to the employment of the high-order element,
only a small number of elements need to be divided along the
boundary, and high accuracy can be achieved without increasing
more computational efforts.

The developed method of using the BEM can be extended
readily to model layered or multilayered coatings, thin films and
other more realistic models. Some work along this line for thin
structures is already underway.

In addition, extensive numerical experiments have indicated
that the proposed method is expected more efficient, in terms of
the necessary integration points and CPU-time, compared to
previous transformation methods when the thickness of consid-
ered structures is less than 10�6. In the follow-up work, the
author and co-workers will give some comments on the previous
results concerning transformations for calculating nearly singular
integrals using the boundary element analysis.
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