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In this paper, we propose the Stokes’ transformation technique for
extracting the finite part of divergent series resulting from modal
dynamic analysis for support motion problems. From the compu-
tational point of view, Stokes’ transformation is the best method
as not only does it avoid calculating the quasistatic solution, it also
has the same convergence rate as the mode acceleration method.
It is found that the present method should only integrate a known
series instead of solving a partial differential equation (PDE) for the
quasistatic solution. The general formulation for a finite elastic
body subjected to support motions is derived. Finally, two
examples, a shear and a flexural beam subjected to multisupport
motions, are analysed. Both derivations for transient and statistical
responses are considered. The numerical results for random
responses are compared with the quasistatic decomposition
method proposed by Mindlin and Goodman and the exact solution
by Tsaur. Good agreement is obtained. Copyright © 1996 Elsevier
Science Ltd.
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employing Betti’s law. In avoiding this calculation by
merging the quasistatic solution into the total solution, the

Support motion problems are often encountered in earth- Gibbs phenomenon for displacement and divergent

quake engineering and structural dynamics. It is well
known that the quasistatic decomposition method is a feas-
ible technique for obtaining a solution using the modal
dynamic concept'. The mode acceleration method is so-
named because of its accelerating convergence rate. Never-
theless, as mentioned by Eringen and Suhubi?, the quasi-
static solution may still be very difficult to find for a con-
tinuous system, especially for two-dimensional (2D) and
three-dimensional (3D) problems, since it is necessary to
directly solve a partial differential equation. In a discrete
system, the quasistatic part is obtained at the cost of a large
matrix inversion®. Therefore, the quasistatic solution was
not present and merged into the total solution® after
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(oscillating) series for slope occurs as mentioned by Stren-
kowski* and Chen et al.>. Therefore, Yeh et al.® and Hong
and Chen’ proposed the Cesaro sum technique to deal with
the Gibbs phenomenon and the divergent series for the dis-
placement and shear force responses, respectively.
Although the quasistatic solution does not have to be
determined, low convergence makes the Cesaro sum tech-
nique inefficient in direct problems. Also, the Cesaro sum
technique is not suitable for a stiffer structure or low fre-
quency input since the quasistatic part is not determined
separately. However, the Cesaro sum technique is still a
useful tool in the regularization method for inverse prob-
lems. Using the idea of the Cesaro sum technique, decon-
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volution in site response analysis has been successfully
applied®. Any structure that tends to make the system more
‘static’ favours the use of the quasistatic decomposition
method in order to accelerate convergence as with the mode
acceleration method”. Finding a method with accelerating
convergence as in the quasistatic decomposition method but
which does not require the calculation of the quasistatic
solution for general structures was the goal of the present
study.

Here, we will propose the Stokes’ transformation that not
only omits the calculation of the quasistatic part but also
accelerates the convergence rate. Although the Stokes’
transformation was found in 1880'", there have been only
a few applications in the literature''~'>. Recently, the tech-
nique of Stokes’ transformation has been referred to in
books on the Fourier series and partial differential equ-
ation'®', although the technique was termed differently.
Mathematically speaking, Stokes’ transformation is a legal
method for series differentiation when term-by-term differ-
entiation is not permissible. For clarity, a systematic formu-
lation for a finite elastic body is derived. For simplicity,
we choose a shear and a flexural beam subjected to support
motions as examples to demonstrate the validity. The
results are also compared with the exact solutions derived

by Tsaur?*->* using dynamic shape functions.

2. Transient response of a finite elastic body to
boundary excitations

2.1.  Problem statement
Consider a homogeneous, isotropic, linear, elastic con-

tinuum with finite domain D bounded by boundary
B =B, U B,; the governing equation for the displacement
u(x,r) at a domain point x at time ¢ can be written as

pii + 2ap + BLO{a} + L{u} =0,

x e D, te(0,x) (b

where a and 3 are the Rayleigh-damping coefficients, p is
the mass density and the operator £ is

—(A + G)VV - u — GV?u, elastic body,

u
Lut =y -G PR elastic shear beam,
*u )
E e elastic flexural beam  (2)

where A and G are Lame’s constants, E is Young’s modulus
and I is the moment of inertia of the cross-section of the
flexural beam. The shear beam and flexural beam are shown
in Figure 1. The time-dependent boundary conditions are

Tlu(x,n)} = Hx,r) =#(x,t),x € B,, 3)
u(x,t)=d(xz),x € B,, 4)

pii + (2ap — BGLr)i — GL% =0 pii + (20p+ BEI Z5)is+ EIZ% = 0

HH

I shear beam I I flexural beam I

Figure 1 Shear beam and flexural beam

where @ is the prescribed displacement on B, ¢ is the trac-
tion on B, f is the prescribed traction on B, and T is the
traction operator defined as

[M(V -u)+GVu + GI - (uV)] -n, elastic body

ou

Tut=4 G P elastic shear beam
d'u .
-EI .—, elastic flexural beam (5)
ax
The initial conditions are
u(x,0) = uy(x) (6)
(x,0) = v(x) (7)

For comparison purposes, both of the integral formulations
for direct and modal elastodynamics are derived in the
next section.

2.2.  Direct dynamic elasticity

Extending the dual integral representation®-° to transient
elastodynamics, the displacement #(x,t) and traction #(x,?)
for a domain point x at time f can be written as

uix,t) =J J U(sx; 7,t) - t(s,7)dB(s)dT
B

[¢]

—J' J T(sx; 7,t) - u(s,7)dB(s)dt
B

0

+ j U(s,x; 0,t) - pro(s)dD(s)
D

+ f Us.x; 0,1) - pug(s)dD(s) (8)
D

Hx,t)= J J' L(sx; 7,t) - t(s,7)dB(s)dT
B

QO

- Jl jM(s,x; 7,0) - u(s,7)dB(s)dt
B

4]

+ J' L(sx; 0,t) - pro(s)dD(s)
D

+ J L(s.x; 0,) - pug(s)dD(s) (9)

where U(s x; 7.t), T(sx; 7.t), L(sx; 7,t) and M(sx; 7,t) are
four kernel functions. The closed-form solutions can be
found in Reference 26. The dual integral formulations for
the displacement and traction on a smooth boundary point
X at time t are

1

culxt)= RPVJ f U(sx; 7,t) - t(s,7)dB(s)dt
B

0

- CPV f’ J T(s.x; 7,t) - u(s,7)dB(s)dr
B

0

+ j U(s.x; 0,t) - pro(s)dD(s) + J Us x; 0,1)
D

D

- pto(s)dD(s) (10)
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[

ctxt)= CPVf J L(sx; 7,t) - t(s,7)dB(s)d7
B

0

- HPVj j M(sx; 7,t) - u(s,7)dB(s)dt
B

0

+ f L(s.x; 0,t) - pro(s)dD(s) + J' L(sx; 0,1)
D

D

- puy(s)dD(s) (1)

where ¢ is 1/2 for 1D, o for 2D, or 24 for 3D, and RPV,
CPV and HPV denote the Riemann integral, the Cauchy
principal value and the Hadamard (or Mangler) principal
value, respectively. In discretized numerical calculations, it
is found that matrix inversion is necessary at each time-
marching stage for the direct dynamic method. To avoid
these repetitive time-consuming inversions, the modal
dynamic method is employed, as in the next section.

2.3. Modal dynamic elasticity

In the derivation procedure, let the solution be decomposed
into two parts'

u(x,t) = Ux,r) + > qul1) uy(x) (12)

k=1

where U(x,t) denotes the quasistatic solution, and the
second term, which is composed of various eigenfunctions
u(x), k € N, N that are the set of natural numbers, and is
weighted by generalized co-ordinates g,(t), is the dynamic
contribution due to the inertia effect. Following the same
procedures of Tsaur?, the displacement u(x,f) can be rep-
resented by introducing a more generalized co-ordinate,
qt), as in the following series

u(x,) = 2, 1) ux)

k=1

= (A
= _S_ L < t
< {Nm e [cos(w,,, )

&n

/
y —
m

+ sin( wit)}

(UdmN m

+

J [Un(T) = T(D)]

m

e o’ = gin(@l(t — 7)) d’r}um(x) (13)

The above equation can also be derived by expanding
U(x,t) in equation (12) into series using Betti’s law>. We
can easily apply a traction operator to the summation sign
of equation (13) to obtain

3

tx,t) = 2 [;:7'" [e“fm‘”m’ cos(wit)

m=1

+ /L sin(w:;t)}
V=&

+ o et sin(as))]

+ ”",,Nm J [UR(T) = T3(7)]

e~ E&mem ) sin(wl(t — 7)) dT] t.(x) (14)

where

8N =f pu,(x) - wfx)dD(x) (15)

26,0, = 2a + B, (16)

Ay = f puy(x) - u,,(x)dD(x) (17)
D

K, = j pvo(x) - u,(x)dD(x) (18)
D

Un(n) = J u,(s) - &(s,1)dB(s)

+B a { u,(s): 3(S,t)dB(S)} (19)
dr ([,

(1) = f t,(s) - i(s,t)dB(s)

Bl{

d

+B U t,(s) - a(s, t)dB(s)} (20)
dr [ 5,

w‘rlnswm /1_61211 (21)

in which £, and w,, are the mth modal damping ratio and
modal frequency. Comparing equations (13) and (14) with
equations (8) and (9), we have

ES

1
Ulsx; )=, e bmontt=)
= N,

sin{ w(t — THu,(x) D u,(s) (22)
|
. — —,y 0, (1-T)
T(sx; 7,1) ,,12:. N ¢
sin( w(t = THu,(x) D t,(s) (23)

E3

1
L(sx; 7,) = Z N e~ Emm(=T)

m m
m=1

sin(wi(t — T)E(x) @ u,(s) (24)

ES

1
M(sx; 7.t) = 2 € &=
= N,

sin( wd(t — T)t.(x) Q t,(s) (25)

where ® is the dyadic product, and ¢,,(x) is the mth modal
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reaction. Equations (22)—(25) can be seen as the spectral
decomposition for closed-form kernels. In order to acceler-
ate the convergence to deal with the Gibbs phenomenon,
the Cesaro sum of order (C,1) is applied to equation (13)
while the (C,2) operator is utilized to extract the finite part
of the divergent series of equation (14) as follows

u(x,r) = (C.l) {E {[)\\{m efgm‘“mt|:COS((Df£,l‘)

m=1 m

+ L sin(wg’qt)jl
vi-&,
Km

(u:ilN”l

+ [e7emn' sin(ws,)]

t

+ w";N,,,J' (U7 = TH(D)]

0

e~ 5mm sin(wi(t — 1)) d*r}u,,,(x)] (26)

tHx,t)=(C,2) {Z {])\t]l [e74m“n’ cos(wit)

m
m=1

&n

+—— sin(wdt)]

\/1 - Sﬂzn

Kin

N,y

+ [e~%n sin(wd,)]

+

f [U(T) = To(D)]

0

1
&N,

e~ 5D sin(wl(t — 7)) dT]t,,,(x)} (27)

If regularized, equations (26) and (27) are the dual integral
representation in series forms or, briefly, the dual series
representation’. Each term of the series is seen to be a gen-
eral Duhamel integral. Its kernel functions U(sx; 1.1),
T(sx; 7t), L(sx; 7t) and M(sx; 7,t) all have the same
decaying oscillating factor e~6»=" sin(wl(t— 7)) and
represent system characteristics whereas its density func-
tions represent input excitations, but the initial disturbances
appear in the free terms, A,, and k,,, outside the integral
signs.

3. Regularization by the Stokes’ transformation

From the standpoint of ordinary convergence, the legit-
imacy of the term-by-term differentiation of series can only
be guaranteed by rather strong requirements. We shall relax
this constraint by using the regularization techniques of
Stokes’ transformation instead of a posterior treatment of
the Cesaro sum, which has been discussed in the previous
section and in detail elsewhere®®.

4. One-dimensional case of second-order
operator d%/9x> for a shear beam

A shear beam subjected to support motions is considered
in this subsection. The series representation for displace-
ment can be written as

u(xt) = 2 gi1) ufx), 0 < x < L (28)

=1

where 5,(1) is the generalized co-ordinate, and u,(x) is the
modal shape with the following properties

L

8/pN1 = J u(x) u[)('x) dx (29)

0

L

q(1) = 1% j u(x,t) u(x) dx (30)

0

Since termwise differentiation for series is not always
permissible, the legal way of series differentiation for
equation (28) by Stokes’ transformation shows

W) =2, g uj(x).0=x=L (31)
=1
where
_ 1 _
qi(1) = O w30} h=b + qu(r) (32)
L
O, N A = j uj(x) u,(x) dx (33)
o)
uj(x) = =y ux) (34)
Therefore,

x

|
()= D fulya) ()} B
u'(x,t) 2N, {uCy,r) ui (W)} b (x)

+ > g u(x),0=x =L (35)

=1

In equation (35), it is easily found that the term-by-term
differentiation for equation (28) drives away the boundary
terms (L/N, A, {u(y.) u/(y)} [iZ5 u)(x) and makes the series
diverge. This finding reveals that Stokes’ transformation is
a legal way for series differentiation.

5. One-dimensional case of fourth-order
operator 94/dx* for a flexural beam

For the flexural beam, the displacement can be superim-
posed by the following mode superposition

w(x1) =, gft) ufx), 0 < x < L (36)
=1
where
L
oy = f u)(x) u,(x) dx (37)
0

L
g,(t) =f u(x,t) u,(x) dx (38)

0
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The series differentiation by Stokes’ transformation
shows

W) = > qi() uj(x), 0 < x < L (39)
=1
where

_ 1(ft
q/(1) = A {f u'(x,r) up(x) dx}
i

0

1 , —
= {uten) w0} i+ i) (40)
1
in which
L
O, A = f uy(x) u,(x) dx 41)
0
uf(x) =~ A ufx) (42)

Similarly, we have
W)=, gl ul(x), 0 < x <L (43)
=

where

_ 1 (ft
q/(t) = ¥ {f u"(x,t) Uy (x) dx}

! 0
= Xl {w' (xt) uj (0} 5+ g1(0) (44)
in which
L
8y A7 = f u)(x) 1(x) dx (45)
1 (x) = =A, 1) (x) (46)

For the three-fold differentiation

W(xt) = 2 g u(x),0<x<L 47

=1
where

-, 1 L "
q,(1) = ¥ U u"(x,t) u)(x) dx}
1

0

1 _
=0 {u"(x,t) ui (O} 5+ ¢7(2) (48)
!
in which
L
8, A = J uy (x) uy(x) dx (49)
0
up' (x) = =\, uy(x) (50)

In equations (40), (43) and (47), the termwise differen-
tiation loses the boundary term, which is present if the
essential boundary condition is time dependent.

6. Navier operator for dynamic elasticity

The representation of the displacement field for a finite
elastic body can be expressed in component form

ux.t) = E qu(r) ui(x) (51)
where

8, = J i w(x) ul(x) dD (52)

qln) = j ulx) ufoe) 4D (53)

and the subscript of u{(x) indicates the ith component of
displacement, and the superscript denotes the /th mode.
First, we define the Navier operator

D= A+G) 30+ G ;00 (54)

Applying the Navier operator to u;, we have

Diu; = (A + Gy + Gty = 0 (35)
The strain field is
1
&=5 (i + w;,) (36)

and the stress field is

0y = €y + 2Ge; = A 5y
+ G + uy,) (57)

The above equation can be written in terms of the D,
operator

0y = A8;0; wy + G(9;0; + 9,04)
= DG uy (58)
where the Dg operator is

7 = A8;0y + G(9;6, + 9;8;) (59

Comparing equations (54) and (59), the relation between
the D¢, and D, operators is

3D = Dy (60)
Changing k and j in equation (59), we have
Dg; = A8,9; + G(3,8; + 9,8) (61)

Define the traction operator B; as
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B, = Dgn = Anid; + G(8,md, + nd,) (62)

The field representation of stress can be written as

.
o= Dy u;= 2, q7(t) DY it
=1

x

=2, 4i(1) o, (63)
=1
where
- 1
qo(t) = \ U' u?y Diu; dD} (64)
» D
in which
8y A= J Dy, vl uwr, dD (65)
D
D, uli(x) =— A, ullx) (66)

where A, is an eigenvalue. After using
f u} Byu? dB = J' u; Dguen, dB
B B

= J dduiDgurt dD = j uly Dy dD
D

D

+ J u} 0{ Dgury dD (67)
D

changing / and p and using Betti’s law, we have

f ul, Dt dD=J w?, Dyl dD (68)
D D

Using equation (68), equation (64) can be rewritten as
- 1
g = D“ffk Dgu; dD
yd

=i” u,-tf’dB} +q,(1) (69)
/\P B,

u

Therefore, the traction field can be represented by
1(x) = 2, 47(1) £(x) (70)
=1
Substituting equation (69) into equation (70), we have

1x) = %U u dB} #(x)
i BM

=1

+ 2 qin) x) (1)

=1

Equation (71) also reveals that the term-by-term traction
derivative of equation (51) loses the boundary terms
SE(UANSp,u 1 dB} f(x) on the right-hand side of the
equals sign in equation (71) and makes the series diverge.

After the secondary fields (stress/traction) are determ-
ined, the primary field (displacement) can be easily inte-
grated, and the essential time-dependent boundary con-
dition, i.e., the support motions, can be automatically
included.

7. Transient and random responses for general
structure subjected to multiple support motions

For the transient response, three representations for support
excitation problems are shown in Table I. In Table 1, U is
the quasistatic solution, U’ is the boundary solution by
Stokes’ transformation and U is derived by integrating the
secondary field.

After some lengthy, but otherwise straightforward
manipulations, the power spectrum density of the displace-
ment at location x is found to be

Ny Ny

Sprw) = D, D r0r(x) S w)

=1 j=1
N NoooN

+ 20 2 D [t (((0P,,H, (@)

=l j=1 m=i

+ 1P, H,(w)]’S{ )

Ne Ny N N
+ 2SS LX), P H w)

H,(0)]0*S{w) (72)
if
Ny N
u(x,) = 2, UDr(x) + 2 giulx) (73)

i=1 =1

where r(x), P,; and P, are shown in Table 2, H,(w)
denotes the transfer function and p can denote displacement
u or slope u' as shown in Table 2. For the random response,
the three representations for support excitation problems
are shown in Table 2, where N is the support number, N
is the mode number, I’ is the mth modal participation fac-
tor for the i support to ¢,,, and I',,; is the mth modal partici-
pation factor for the i support to g,,.
The mean square response can be obtained by

£

Oulx) = J S, w) dw (74)

—oc

o

(X)) = f Suw(x,0) do (75)

—0

8. Numerical example for a shear beam

Consider a simply supported uniform shear beam excited
by random boundary support motion at both ends. The data
prepared are shown below5?’



168 Transient and random responses of structures subject to support motions: J. T. Chen et al.

Table 1 Transient response of three different methods

Transient Quasistatic Cesaro Stokes’
response decomposition sum transformation
ulx,t) U+3 galthuix) (CANS qoltiun{x)} U+3 gltu,lx)
u'{xt) U + X gultiun{x) (C21 gatiup(x)} U +3 g {upx)

Table 2 Random response of three different methods

Random Quasistatic Cesaro Stokes’
response decomposition sum transformation
spp — Suu rix) — U; r{x) _’_0 rdx) _’_Ur
Prnj = T Prj—= Ty Prnj= Ui
(CIAS.}
Sop— Syw 0N = U; rix) =0 rix) — U;
Proj = T i Prj— T Pry—= T i
(€248, .}
governing equation
PUED) oap—8G L+ pii=0
ax P a2t TPET S
0<x<|!
natural frequency
_—
w, = nwc/l, where ¢ = \/G/p
natural mode
u,(x) = sin(nmwx/l)
modal reaction
-Gnwr
R.(0)= ] (76)
Gnm(—-1)"
Ry1) = ST an
Modal generalized mass
N, =pll2
The input power spectrum
S — [Sau Sab:|
Sba Sbb
6AS 6AS° o
F+0®) P+
(78)
6AS° ior 6A 5’
(5 + o) € (8 + o°)

where T is time lag, S, and S, denote the autopower spec-
tral densities of support displacement excitations at x = 0,/,
respectively, and S,, and S,, are cross-spectral densities
which are assumed to be

Sab = S;:u = SaaeimT = Sbbeim‘r (79)

in which the superscript * denotes a complex conjugate.
Model parameters

6=1,A=051=1,T,=2,§=§6=0.1,
p=1G=1

All the parameters are in consistent units®. According to
the representation in Tables 1 and 2, the data can be
obtained as follows

Uy(x) = (1 —%) (80)
U =7 (81)
U )—(1—5>+i_~2sin( 10 (82)
X)) = ! < nmx
Uy ="+ 5) 2 iy sin(rmed) (83)
2 = - 3
l oonm
Gmar
1-‘ml = wiNmi (84)
_ =Gmm(-1)"
.= ‘w,z,,le (85)
— -Gm1r )
le = le (86)
= _ Gmwm(-1)"
FmZ - le (87)

It is interesting to find that the modal participation factors
in equations (84)—(87) are proportional to the modal reac-
tions in equations (76) and (77). More detail can be found
in Reference 3. Equations (84)—(87) also show that the
modal participation factor is proportional to the modal reac-
tion as mentioned in Reference 3.

For such a simple case, an exact solution has been
derived by Tsaur®® using dynamic shape functions as fol-
lows

Su(%,0) = [H,(x,0)]’S (@)

+ |H,(x,0)*S),( ©)

+ 2Re{H(x,w)H,(x,0)S ( w)} (88)
Suw(%,0) = [Hy(%,0)Sal )

+ | Hi(x,w)2S,,( )

+ 2Re{H, (x,0)H,(x,0)S ()} (89)
where
H,(x,w)= m e ex(x_zl)} (90)
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6=10, £=0.1, £:=0.1, k=1

Shear beam model {mode no.=5)

46

o (Exact solution)

(Quasi-static decomposition)

(Stokes’ transformation)

,

+ SoOPSoDSS
NN
Qoo ot

2
aa

/a
o
&

2
a\l\l

0.0 0.5 1.0 1.5 20 26 3.0 3.5 40

Time lag /first period (7/T;)

Figure 2 Mean square displacement spectra for shear beam

Shear beam model(mode no.=10) §=10, £=0.1, £:=0.1, k=1

2
aa

o/

0.0 0% 1.0 15 2.0 25 30 35 40
Time lag /first period (7/T,)
Figure 3 Mean square slope spectra for shear beam
1 ACr—T) ~ACxH)

Hyxw) = o {et ™ - e} o1
w(—w + 2a)

A= \/ pr et e (92)
G(1 +iBw)

The mean square displacements and slopes at x// =0, 0.25,
0.5, 0.75 and 1.0 versus time delay are shown in Figures 2
and 3. The mean square displacement and slope along the
x-axis for fully coherent excitation without time delay
(7=0) are shown in Figures4 and 5, respectively. The

Shear beam model(mode no.=5) 6=10, £,=0.1, £:=0.1, 7=0, k=1
8.0

---- 5 modes eigenfunction expansion
xxxxx MSC/NASTRAN(20 elements)
50 ooooo Stokes’ transformation(5 modes)
: #aett Quasi—static decomposition(5 modes)
Ezxact solution

4 reference line
___________________________________________________ N

0.0 P 02 0.3 o4 0% (X 0.8 0.9 1.0

0.5
z/1
Figure 4 Mean square displacement along x-axis for shear
beam

Shear beam model(mode no. as shown) 6=10, £,=0.1, &=0.1, 7=0, k=1
40— -

\ =ee=s Cesaro sum (10 modes)
1203 1 seees Cesaro sum (30 modes) ;
-=-- Cesaro sum (50 modes) ;

(v e« Quasi—static decomposition (10 modes) |,
100y |1 cocae Stokes’ trensformation (10 modes) |
'\ —— Ezxact solution i

2
aa

2/0

Tuw,

0.0 0.1 0z 0.3 o

0.5
z/1
Figure 5 Mean square slope along x-axis for shear beam

Gibbs phenomenon and series divergence can be avoided
by using the method of Cesaro sum and Stokes’ transform-
ation, respectively. The Cesaro sum requires a larger num-
ber of modes to obtain the same accuracy than does the
Stokes’ transformation. The results of the present formu-
lation, Mindlin and Goodmans’ method and the exact sol-
ution are in good agreement. These figures exhibit the same
features observed by Masri and Udwadia®” and Yeh et al.®
in terms of magnitude and spectral peaks using both reg-
ularization techniques.

9. Random responses for a flexural beam

Consider a simply supported uniform flexural beam excited
by random boundary support motion at both ends. The data
prepared are shown below

governing equation

*u(x,t)

/84—+cu+pl}i=0, 0<x<l|!
X

El

natural frequency

w, = (nmfly \Ellp
normal mode

u,(x) = sin(nmwx/{)
modal generalized mass

N, =pl/2

modal reaction vector

3
R,(0) = EI(IL}”) (93)
—El(mm’
R(1) = ﬂ -1y (94)

The input power spectrum: modified Kanai—Tajimi spec-
trum model
Sea = Stp =
(wf + 4’ 2E2) s
[(02 - ?) + 4P 28]} — &) + 4P w}E] °
(95)
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S{lh = S;:a = SuueimT = Shhein (96)

Model parameters

@, =6.06 rad/s, & = 0.05, w, = 8.82 rad/s
w,=15.45rad/s, § = 0.60, §= 027, 5, =1
E=20x 10" N/m?, I =0.06 m?

p =2450 kg/m>, 1 =60 m

According to the representation in Tables I and 2, the
data can be obtained as

X
Uix) = (1 - i) (97)
X
Ux(x) = 1 (98)
Uy={1-> +i£'( 10 (99)
x)= / 2w sin(nmx
Tyx) ="+ i 2 (~1)" sin(nmx/l) (100)
AX) = l = nar X
—EIl(mm)*
I, =Tl (101)
B El(mm)3(—=1)"
sz - w'znlz (102)
=  —El(mm)y
L= (,’;”?—» (103)
= El(mm)¥(=1)y
T, = Homm s (104)
I
Similarly, the modal participation factors in

equations (101)—(104) are proportional to the modal reac-
tions in equations (93) and (94). More detail can be found
elsewhere®. Similarly for a shear beam, the Stokes’ trans-
formation technique is considered here and the autopower
spectrum can be written as

Ny N,

Sl 6,@) = D, 2 r{x)ri(x) S w)
=1 j=1
Ny No v

+ 2D [t (XX iH o @)

=1 j=1m=1
+ 1P, (w)] 'S (w)

Ny Ng N N

+ 2D [t )ity (X)P, P H @)

=1 j=1 m=In=1

H,(0))]o*Sy )

NY N.\
Suw(B@) = 2, 0 (x) Sy{w)
=1 j=I
Ny No N

+ 20D [~ (X)L ()PiH, @)

i=1 j=l m=1

+ 1] (P, (w))] @S, (@)

Ny No NN

+ 2220 Uy ()P, P H ()

i=l j=1 m=in=1

H,(o)]e'S(w)

Ny N,

Sunx.) = 2, EFCOEI(x) S,(w)
i=1 j=1

Ny No N

+ 2D [FEI () EN(X)P,H, (@)

i=1 =1 m=1
+ EIY{(x)P,H,(0))]0’S (w)

Ny Ny N N

+ 20 [ELi{x)EIL)(xX)P,.PH ) )

i=1 j=1 m=1n=1

H,(w))]w*S{w)

NS‘ N.\

Sylx.w) = > > EIF(OEIF (x) S w)
i=t j=1
Ny Ny N

+ 2, [~Eli (XX EIF ()P, H, ()

i=1 j=1 m=1
+ EIr;(x)P,H,(0))]&’S)(w)

NeNe N N

+ DD S Eu(X)ED(x)P,P . Hi( )

i=1 j=1 m=1n=1

H,(0))]w*S(w)

For this case, an exact solution has also been derived by
Tsaur?* using dynamic shape functions as follows

Sulx,0) = |H (x,0)P S, (®)

+ [Hy(x, ) Sy(@)

+ 2Re{H,(x,w)H,(x,)S . w)} (105)
Suw(%,0) = |Hy(x,0)F Sl w)

+ |[Hi(x, )P Sy w)

+ 2Re{H. (x,w)H,(x,0)S ,(w)} (106)
Spmx.0) = E{|H(x,0)* S, { @)

+ [Hy(x,0)P Syl w)

+ 2Re{H." (x,0)Hy(x,0)S ,( 0)}} (107)
Sv(x,0) = E{|H;(x,0)* S, ()

+ |H1:(xa‘1’)‘2 Spp(@)

+ 2Re{H," (x,w)H(x,0)S ()} (108)

where
_ 1-p A A (21-x)
Hxw) = o5 {eh - e}

1 —p;zzAzl {erzr — e} (109)



Transient and random responses of structures subject to support motions: J. T. Chen et al. 171

Flezural beam model(mode no.=710)

— T
- = - 2/1=0.50 (Ezact solution)
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\ ceoca g/l= 50 (Stokes’ transformation)
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T T T TreT T T T

0.0 0.5 1.0 1.6 2.0 z5 3.0 3.5 4.0

/T,

Figure 6 Mean square displacement spectra for flexural beam

Flexural beam model(mode no.=710)

] .25
1 50 (Exact solution)
] 75
R 25
P a:i 50 (Stokes’ transformation)
~d
\_ 0.02 ;
N d
3
b

o.01 4

Figure 7 Mean square slope spectra for flexural beam

Hy(x,w)= ez,\ - {eMm — M)
+ ﬁ ferati=0) _ ghateeh} (110)
w= /\‘A%)\Q (111)
b= {mwz;#} (112)
=i {maﬁ ;IiZw_c_}"4 (13)

The mean square displacements, slopes, moments and shear
forces at x/1=0, 0.25, 0.5, 0.75 and 1.0 versus time delay
are shown in Figures 6—9. The mean square displacement,
slope, moment and shear force of x for three different exci-
tations, including fully coherent, fully incoherent and phase
shift with one natural period of the first mode are shown
in Figures 10—13, respectively. The results of the present

Flexural beam model{mode no.=10)

3.084018

z/1=0.26
z;llfo .50 (Fzact solution)

« z/1=0.2
« z/1=0. 5n (Stokes’ tranaformation)
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2
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Figure 8 Mean square moment spectra for flexural beam
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Figure 9 Mean square shear spectra for fiexural beam
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Figure 10 Mean square displacement along x-axis for three
cases
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Figure 11 Mean square slope along x-axis for three cases
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Figure 12 Mean square moment along x-axis for three cases
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Figure 13 Mean square shear along x-axis for three cases

formulation, Mindlin and Goodmans’ method and the exact
solution are in good agreement. The oscillation behaviours
are qualitatively similar to the shear beam results as investi-
gated above; i.e., marked amplification is present for certain
dimensionless time delays. Figures 10-13 show that the
maximum variance occurs in the fully coherent case, and
the minimum variance occurs in the fully incoherent case.
This result was also found in Reference 28.

10. Conclusions

The Stokes’ transformation has been applied to a shear
beam, a flexural beam and a finite elastic body subjected
to multiple support motions. Only integrating a known ser-
ies is needed by the Stokes’ transformation instead of
directly solving a PDE by the quasistatic decomposition
method. The results of three available methods, quasistatic
decomposition, the Cesaro sum and the exact solution have
been compared with those of the proposed Stokes’ trans-
formation method. The numerical results for random
responses demonstrate the validity of applying the Stokes’
transformation. The FEM results by NASTRAN are also
satisfactory. This research paper has proposed a regulariz-
ation technique for divergent series, which is also a useful
tool for analytical formulation in series representation. The
proposed technique has also been successfully applied to
the string problem?®
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