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SUMMARY

In this paper, we employ the regularized meshless method to solve antiplane shear problems with multiple
inclusions. The solution is represented by a distribution of double-layer potentials. The singularities of
kernels are regularized by using a subtracting and adding-back technique. Therefore, the troublesome
singularity in the method of fundamental solutions (MFS) is avoided and the diagonal terms of influence
matrices are determined. An inclusion problem is decomposed into two parts: one is the exterior problem
for a matrix with holes subjected to remote shear, the other is the interior problem for each inclusion.
The two boundary densities, essential and natural data, along the interface between the inclusion and
matrix satisfy the continuity and equilibrium conditions. A linear algebraic system is obtained by matching
boundary conditions and interface conditions. Finally, numerical results demonstrate the accuracy of the
present solution. Good agreements are obtained and compare well with analytical solutions and Gong’s
results. Copyright q 2007 John Wiley & Sons, Ltd.

Received 25 July 2006; Revised 13 March 2007; Accepted 8 May 2007

KEY WORDS: antiplane shear; elastic; inclusion; MFS; regularized meshless method; hypersingularity;
displacement field

1. INTRODUCTION

Engineering materials always contain some defects in the form of inclusions or second-phase
particles. The distribution of stress in an infinite medium containing inclusions under antiplane
shear has been studied by many investigators [1–10]. In 1967, Goree and Wilson [6] presented
numerical results for an infinite medium containing two inclusions under remote shear. Besides,
Sendeckyj [8] proposed an iterative scheme for solving problems with multiple inclusions in 1971.
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In addition, analytical solutions for two identical holes and inclusions were obtained by Stief [9]
and by Budiansky and Carrier [2], respectively. Zimmerman [10] employed the Schwartz alternative
method [8] for plane problems with two holes or inclusions to obtain a closed-form solution. In
1992, Honein et al. [7] derived the analytical solution for two unequal inclusions perfectly bonded to
an infinite elastic matrix under antiplane shear. The solution was obtained via iterations of Möbius
transformations involving the complex potential [7]. On the other hand, Bird and Steele [1] used
a Fourier series procedure to revisit the antiplane elasticity problems of Honein et al. [7]. For a
triangle pattern of three inclusions under antiplane shear, Gong [5] derived the general solution
by employing complex potentials and the Laurent series expansion method in 1995. Based on the
technique of analytical continuity and the method of successive approximation, Chao and Young
[3] studied the stress concentration on a hole surrounded by two inclusions. Recently, Chen and
Wu [4] have successfully solved the antiplane problem with circular holes and/or inclusions by
using the boundary integral equation in conjunction with degenerate kernel and Fourier series. In
this study, we will bring a meshless method systematically for multiple inclusions under antiplane
shear.

The meshless implementation of the local boundary integral equation [11, 12], boundary knot
method [13–15], boundary collocation method [16–18], non-dimensional dynamic influence func-
tions method [19, 20] and method of fundamental solutions (MFS) [21–27] are several important
meshless methods belonging to a boundary method for solving boundary value problems, which
can be viewed as a discrete type of the indirect boundary element method [16]. To our knowledge,
one of the very important meshless methods is the boundary collocation method [16–18, 28, 29].
Instead of using the singular fundamental solutions, the non-singular kernels were employed to
evaluate the homogeneous solution for solving partial differential equations. In the MFS, the so-
lution is approximated by a set of fundamental solutions, which are expressed in terms of sources
located outside the physical domain. The unknown coefficients in the linear combination of the
fundamental solutions, are determined by matching the boundary condition. The method is rela-
tively easy to implement. It is adaptive in the sense that it can take into account sharp changes in
the solution and in the geometry of the domain and can easily handle complex boundary condi-
tions. A survey of the MFS and related methods over the last 30 years has been found [25–27].
However, the MFS is still not a popular method because of the debatable artificial boundary dis-
tance of source location in numerical implementation, especially for complicated geometry. The
diagonal coefficients of influence matrices are divergent in the conventional case when the fictitious
boundary approaches the physical boundary. In spite of its gain of singularity free, the influence
matrices become ill-posed when the fictitious boundary is far away from the physical boundary. It
results in an ill-posed problem since the condition number for the influence matrix becomes very
large.

Recently, we developed a modified MFS, namely the regularized meshless method (RMM), to
overcome the drawback of MFS for solving the simply connected and multiply connected Laplace
problem [30, 31]. The method eliminates the well-known drawback of equivocal artificial boundary.
The subtracting and adding-back technique [30–32] is implemented to regularize the singularity and
hypersingularity of the kernel functions. This method can simultaneously distribute the observation
and source points on the physical boundary even when using the singular kernels instead of non-
singular kernels. The diagonal terms of the influence matrices can be extracted by using the
proposed technique. Following the successful experiences in References [30, 31] for potential
problems, this paper extends the developed meshless method (RMM) to carry out numerical
results systematically for an infinite medium containing multiple inclusions (multi-domain) under
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antiplane shear. References [30, 31] were limited to simply connected and multiply connected
problems, the purpose of this paper is to solve the multi-domain problems with various material
properties by employing the RMM in conjunction with the domain decomposition technique. We
have proposed a general algorithm for the stress fields around circular holes or inclusions. The
method shows great generality and versatility for the problem.

In this paper, the RMM is provided to solve the antiplane shear problem with multiple inclusions.
A general-purpose program was developed to solve antiplane shear problems with arbitrary number
of inclusions. The results are compared with analytical solutions [7] and those of the Laurent series
expansion method [5]. Furthermore, the stress concentration for different shear modulus ratio will
be studied through several examples to show the validity of our method.

2. FORMULATION

2.1. Governing equation and boundary conditions

Consider the inclusions embedded in an infinite matrix as shown in Figure 1. The inclusions
and the matrix have different elastic material properties. The matrix is subject to a remote
antiplane shear, �zy = �. The displacement field of the antiplane deformation is defined as
follows:

u = v = 0, w = w(x, y) (1)

τ

x

y

0)(2 =∇ xw

∞Γ
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Inclusion

Inclusion

Inclusion
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Figure 1. Problem sketch for a multiple inclusion problem under remote shear.
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where w is the function of x and y. For a linear elastic body, the stress components are

�xz = �zx = �
�w

�x
(2)

�yz = �zy = �
�w

�y
(3)

where � is the shear modulus. The equilibrium equation can be simplified to

��zx

�x
+ ��zy

�y
= 0 (4)

Substituting Equations (2) and (3) into (4), we have

�2w
�x2

+ �2w
�y2

= ∇2w = 0 (5)

The continuity equilibrium conditions across the interface of the matrix–inclusion are
described as

wm = wi (6)

�m
�wm

�n
= −�i

�wi

�n
(7)

where the superscripts i and m denote the inclusion and the matrix, respectively. The loading is
remote shear.

2.2. Methodology

2.2.1. Review of conventional method of fundamental solutions. By employing the RBF technique
[28, 29, 33–39], the representation of the solution in Equation (5) for the multiple-inclusion problem
as shown in Figure 1, can be approximated in terms of the strengths � j of the singularities
as s j as

w(xi ) =
N∑
j=1

T (s j , xi )� j

=
N1∑
j=1

T (s j , xi )� j+
N1+N2∑
j=N1+1

T (s j , xi )� j+· · ·+
N∑

j=N1+N2+···+Nm−1+1
T (s j , xi )� j (8)

and

�w(xi )

�nxi
=

N∑
j=1

M(s j , xi )� j

=
N1∑
j=1

M(s j , xi )� j+
N1+N2∑
j=N1+1

M(s j , xi )� j+· · ·+
N∑

j=N1+N2+···+Nm−1+1
M(s j , xi )� j (9)
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Figure 2. The distribution of the source points and observation points and definitions
of r, �, �,� by using the conventional MFS and the RMM for the multi-domain

problems: (a) conventional MFS and (b) RMM.

where T (s j , xi ) is a bivariate function of double-layer potential, xi and s j represent the i th
observation point and the j th source point, respectively, � j are the j th unknown coefficients
(strength of the singularity), N1, N2, . . . , Nm are the numbers of source points on m number of
boundaries of inclusions, respectively, while N is the total number of source points (N = N1 +
N2 + · · · + Nm) and M(s j , xi ) = �T (s j , xi )/�nxi . After boundary conditions are satisfied at the
boundary points, the coefficients {� j }Nj=1 can be determined. The distributions of source points and
observation points are shown in Figure 2(a) for the MFS. The chosen bases are the double-layer
potentials [30, 31]:

T (s j , xi ) = −〈(xi − s j ), n j 〉
r2i j

(10)

M(s j , xi ) = 2〈(xi − s j ), n j 〉〈(xi − s j ), ni 〉
r4i j

− 〈n j , ni 〉
r2i j

(11)

where 〈 , 〉 is the inner product of two vectors, ri j is |s j − xi |, n j is the normal vector at s j and
ni is the normal vector at xi .

It is noted that the double-layer potentials have both singularity and hypersingularity when
source and field points coincide, which leads to difficulty in the conventional MFS. The fic-
titious distance, d , between the fictitious (auxiliary) boundary (B ′) and the physical boundary
(B) as shown in Figure 2(a) need to be chosen deliberately. To overcome the above-mentioned
shortcoming, s j is distributed on the physical boundary as shown in Figure 2(b), by using the
proposed regularized technique as given in Section 2.2.2. The rationale for choosing double-layer
potentials instead of single-layer potentials as the form of RBFs is to take advantage of the reg-
ularization of the subtracting and adding-back technique, so that no fictitious distance is needed
when evaluating the diagonal coefficients of influence matrices that will be elaborated later in
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Section 2.2.3. If the single-layer potential is chosen as RBF, the regularization of the subtracting
and adding-back technique fails because Equations (13), (16), (19) and (22) in Section 2.2.2 are not
satisfied.

2.2.2. Regularized meshless method. The antiplane shear problem with multiple inclusions is
decomposed into two problems as shown in Figure 3. One is the exterior problem for the matrix
with holes subject to remote shear and the other is the interior problem for each inclusion. The
two-boundary data between the matrix and the inclusion satisfy the continuity and equilibrium
conditions in Equations (6) and (7). Furthermore, the exterior problem for the matrix can be
superimposed by two systems as shown in Figure 4. One is the matrix with no hole subject to
remote shear and the other is the matrix with holes. The representations of the two solutions for
the interior problem (w(x Ii )) and the exterior problem (w(xOi )) can be solved by using the RMM
as follows:

(1) Interior problem: When the collocation point xi approaches the source point s j , the kernels
in Equations (8) and (9) become singular. Equations (8) and (9) for the multiply connected problem
as shown in Figure 2(b) need to be regularized by using the regularization of the subtracting and
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Figure 3. Decomposition of the problem.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 73:1251–1273
DOI: 10.1002/nme



REGULARIZED MESHLESS METHOD FOR ANTIPLANE SHEAR PROBLEMS 1257

τ

x

y

r

)()( xwxw O= ,

n

xw

n

xw O

∂
∂=

∂
∂ )()(

τ

x

y

r

)()( xwxw ∞= ,

n

xw

n

xw

∂
∂=

∂
∂ ∞ )()(

x

y

r

)()()( xwxwxw O ∞−=

n

xw

n

xw

n

xw O

∂
∂−

∂
∂=

∂
∂ ∞ )()()(

Figure 4. Decomposition of the problem of Figure 3(a).

adding-back technique [30–32] as follows:

w(x Ii ) =
N1∑
j=1

T (sIj , x
I
i )� j + · · · +

N1+···+Np∑
j=N1+···+Np−1+1

T (sIj , x
I
i )� j

+ · · · +
N1+···+Nm−1∑

j=N1+···+Nm−2+1
T (sIj , x

I
i )� j +

N∑
j=N1+···+Nm−1+1

T (sIj , x
I
i )� j

−
N1+···+Np∑

j=N1+···+Np−1+1
T (sIj , x

I
i )�i , x Ii ∈ Bp, p= 1, 2, 3, . . . ,m (12)

in which

N1+···+Np∑
j=N1+···+Np−1+1

T (sIj , x
I
i ) = 0, x Ii ∈ Bp, p= 1, 2, 3, . . . ,m (13)

where m is the total number of boundaries. The superscript I and subscript p denote the interior
problem and the pth boundary, respectively. The detailed derivation of Equation (13) is given in
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Reference [31]. Therefore, we can obtain

w(x Ii ) =
N1∑
j=1

T (sIj , x
I
i )� j + · · · +

i−1∑
j=N1+···+Np−1+1

T (sIj , x
I
i )� j

+
N1+···+Np∑

j=i+1
T (sIj , x

I
i )� j + · · · +

N1+···+Nm−1∑
j=N1+···+Nm−2+1

T (sIj , x
I
i )� j

+
N∑

j=N1+···+Nm−1+1
T (sIj , x

I
i )� j −

[
N1+···+Np∑

j=N1+···+Np−1+1
T (sIj , x

I
i ) − T (sIi , x

I
i )

]
�i

x Ii ∈ Bp, p= 1, 2, 3, . . . ,m (14)

Similarly, the boundary flux is obtained as

�w(x Ii )

�nx Ii
=

N1∑
j=1

M(sIj , x
I
i )� j + · · · +

N1+···+Np∑
j=N1+···+Np−1+1

M(sIj , x
I
i )� j

+ · · · +
N1+···+Nm−1∑

j=N1+···+Nm−2+1
M(sIj , x

I
i )� j +

N∑
j=N1+···+Nm−1+1

M(sIj , x
I
i )� j

−
N1+···+Np∑

j=N1+···+Np−1+1
M(sIj , x

I
i )�i , x Ii ∈ Bp, p= 1, 2, 3, . . . ,m (15)

in which

N1+···+Np∑
j=N1+···+Np−1+1

M(sIj , x
I
i ) = 0, x Ii ∈ Bp, p= 1, 2, 3, . . . ,m (16)

The detailed derivation of Equation (16) is also given in Reference [31]. Therefore, we obtain

�w(x Ii )

�nx Ii
=

N1∑
j=1

M(sIj , x
I
i )� j + · · · +

i−1∑
j=N1+···+Np−1+1

M(sIj , x
I
i )� j

+
N1+···+Np∑

j=i+1
M(sIj , x

I
i )� j + · · · +

N1+···+Nm−1∑
j=N1+···+Nm−2+1

M(sIj , x
I
i )� j

+
N∑

j=N1+···+Nm−1+1
M(sIj , x

I
i )� j −

[
N1+···+Np∑

j=N1+···+Np−1+1
M(sIj , x

I
i ) − M(sIi , x

I
i )

]
�i

x Ii ∈ Bp, p= 1, 2, 3, . . . ,m (17)
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(2) Exterior problem: When the observation point xOi locates on the boundaries Bp, p =
1, 2, 3, . . . ,m, Equation (12) becomes

w(xOi ) =
N1∑
j=1

T (sOj , xOi )� j + · · · +
N1+···+Np∑

j=N1+···+NP−1+1
T (sOj , xOi )� j

+ · · · +
N1+···+Nm−1∑

j=N1+···+Nm−2+1
T (sOj , xOi )� j +

N∑
j=N1+···+Nm−1+1

T (sOj , xOi )� j

−
N1+···+Np∑

j=N1+···+Np−1+1
T (sIj , x

I
i )�i , xO or I

i ∈ Bp, p= 1, 2, 3, . . . ,m (18)

where xOi is also located on the boundaries Bp and O denotes the exterior problem. Hence, we
obtain

w(xOi ) =
N1∑
j=1

T (sOj , xOi )� j + · · · +
i−1∑

j=N1+···+Np−1+1
T (sOj , xOi )� j

+
N1+···+Np∑

j=i+1
T (sOj , xOi )� j + · · · +

N1+···+Nm−1∑
j=N1+···+Nm−2+1

T (sOj , xOi )� j

+
N∑

j=N1+···+Nm−1+1
T (sOj , xOi )� j −

[
N1+···+Np∑

j=N1+···+Np−1+1
T (sIj , x

I
i ) − T (sOi , xOi )

]
�i

xO or I
i ∈ Bp, p= 1, 2, 3, . . . ,m (19)

Similarly, the boundary flux is obtained as

�w(xOi )

�nxOi
=

N1∑
j=1

M(sOj , xOi )� j + · · · +
N1+···+Np∑

j=N1+···+Np−1+1
M(sOj , xOi )� j

+ · · · +
N1+···+Nm−1∑

j=N1+···+Nm−2+1
M(sOj , xOi )� j +

N∑
j=N1+···+Nm−1+1

M(sOj , xOi )� j

−
N1+···+Np∑

j=N1+···+Np−1+1
M(sIj , x

I
i )�i , xO or I

i ∈ Bp, p= 1, 2, 3, . . . ,m (20)
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Hence, we obtain

�w(xOi )

�nxOi
=

N1∑
j=1

M(sOj , xOi )� j + · · · +
i−1∑

j=N1+···+Np−1+1
M(sOj , xOi )� j

+
N1+···+Np∑

j=i+1
M(sOj , xOi )� j + · · · +

N1+···+Nm−1∑
j=N1+···+Nm−2+1

M(sOj , xOi )� j

+
N∑

j=N1+···+Nm−1+1
M(sOj , xOi )� j −

[
N1+···+Np∑

j=N1+···+Np−1+1
M(sIj , x

I
i ) − M(sOi , xOi )

]
�i

xO or I
i ∈ Bp, p= 1, 2, 3, . . . ,m (21)

According to the dependence of the normal vectors for inner and outer boundaries [31], their
relationships are

T (sIj , x
I
i ) = −T (sOj , xOi ), i �= j

T (sIj , x
I
i ) = T (sOj , xOi ), i = j

(22)

M(sIj , x
I
i ) = M(sOj , xOi ), i �= j

M(sIj , x
I
i ) = M(sOj , xOi ), i = j

(23)

where the left-hand side and the right-hand side of the equal sign in Equations (22) and (23)
denote the kernels for observation and source points with the inward and outward normal vectors,
respectively.

By using the proposed technique, the singular terms in Equations (8) and (9) have been trans-
formed into regular terms

−
[

N1+N2+···+Np∑
j=N1+N2+···+Np−1+1

T (sIj , x
I
i ) − T (sI or O

i , x I or O
i )

]
and

−
[

N1+···+Np∑
j=N1+···+Np−1+1

M(sIj , x
I
i ) − M(sI or O

i x I or O
i )

]

in Equations (14), (17), (19) and (21), respectively, where p= 1, 2, 3, . . . ,m. The terms∑N1+···+Np
j=N1+···+Np−1+1 T (sIj , x

I
i ) and

∑N1+···+Np
j=N1+···+Np−1+1 M(sIj , x

I
i ) are the adding-back terms and the

terms T (sI or O
i , x I or O

i ) and M(sI or O
i , x I or O

i ) are the subtracting terms in the two brackets for
regularization. After using the above-mentioned method of regularization of the subtracting and
adding-back technique [30–32], we are able to remove the singularity and hypersingularity of the
kernel functions.
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2.2.3. Construction of influence matrices for arbitrary domain problems. (1) Interior problem
(inclusion): From Equations (14) and (17), the linear algebraic system can be yielded as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w1

...

wN

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= [T I]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�1

...

�N

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎣

[T I
11] · · · [T I

1N ]
...

. . .
...

[T I
N1] · · · [T I

NN ]

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�1

...

�N

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(24)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�w1

�n
...

�wN

�n

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

= [M I]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�1

...

�N

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎣

[M I
11] · · · [M I

1N ]
...

. . .
...

[M I
N1] · · · [M I

NN ]

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�1

...

�N

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(25)

where

[T I
11] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
[

N1∑
j=1

T (sIj , x
I
1) − T (sI1, x

I
1)

]
T (sI2, x

I
1) · · · T (sIN1

, x I1)

T (sI1, x
I
2) −

[
N1∑
j=1

T (sIj , x
I
2) − T (sI2, x

I
2)

]
· · · T (sIN1

, x I2)

.

.

.
.
.
.

. . .
.
.
.

T (sI1, x
I
N1

) T (sI2, x
I
N1

) · · · −
[

N1∑
j=1

T (sIj , x
I
N1

) − T (sIN1
, x IN1

)

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N1×N1

(26)

[T I
1N ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

T (sIN1+···+Nm−1+1, x
I
1) T (sIN1+···+Nm−1+2, x

I
1) · · · T (sIN , x I1)

T (sIN1+···+Nm−1+1, x
I
2) T (sIN1+···+Nm−1+2, x

I
2) · · · T (sIN , x I2)

...
...

. . .
...

T (sIN1+···+Nm−1+1, x
I
N1

) T (sIN1+···+Nm−1+2, x
I
N1

) · · · T (sIN , x IN1
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

N1×Nm

(27)

[T I
N1] =

⎡
⎢⎢⎢⎢⎢⎢⎣

T (sI1, x
I
N1+···+Nm−1+1) T (sI2, x

I
N1+···+Nm−1+1) · · · T (sIN1

, x IN1+···+Nm−1+1)

T (sI1, x
I
N1+···+Nm−1+2) T (sI2, x

I
N1+···+Nm−1+2) · · · T (sIN1

, x IN1+···+Nm−1+2)

.

.

.
.
.
.

. . .
.
.
.

T (sI1, x
I
N ) T (sI2, x

I
N ) · · · T (sIN1

, x IN )

⎤
⎥⎥⎥⎥⎥⎥⎦

Nm×N1

(28)
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[T I
NN ]

=

⎡
⎢⎢⎢⎢⎢⎣

−
[

N∑
j=N1+···+Nm−1+1

T (sIj , x
I
N1+···+Nm−1+1)−T (sIN1+···+Nm−1+1, x

I
N1+···+Nm−1+1)

]
· · · T (sIN1+···+Nm−1+1, x

I
N )

.

.

.
.
.
.

.

.

.

T (sIN , x IN1+···+Nm−1+1) · · · −
[

N∑
j=N1+···+Nm−1+1

T (sIj , x
I
N )−T (sIN , x IN )

]

⎤
⎥⎥⎥⎥⎥⎦

Nm×Nm

(29)

[M I
11]=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
[

N1∑
j=1

M(sIj , x
I
1)−M(sI1, x

I
1)

]
M(sI2, x

I
1) · · · M(sIN1

, x I1)

M(sI1, x
I
2) −

[
N1∑
j=1

M(sIj , x
I
2)−M(sI2, x

I
2)

]
· · · M(sIN1

, x I2)

.

.

.
.
.
.

. . .
.
.
.

M(sI1, x
I
N1

) M(sI2, x
I
N1

) · · · −
[

N1∑
j=1

M(sIj , x
I
N1

)−M(sIN1
, x IN1

)

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N1×N1

(30)

[M I
1N ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

M(sIN1+···+Nm−1+1, x
I
1) M(sIN1+···+Nm−1+2, x

I
1) · · · M(sIN , x I1)

M(sIN1+···+Nm−1+1, x
I
2) M(sIN1+···+Nm−1+2, x

I
2) · · · M(sIN , x I2)

...
...

. . .
...

M(sIN1+···+Nm−1+1, x
I
N1

) M(sIN1+···+Nm−1+2, x
I
N1

) · · · M(sIN , x IN1
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

N1×Nm

(31)

[M I
N1] =

⎡
⎢⎢⎢⎢⎢⎣

M(sI1, x
I
N1+···+Nm−1+1) M(sI2, x

I
N1+···+Nm−1+1) · · · M(sIN1

, x IN1+···+Nm−1+1)

M(sI1, x
I
N1+···+Nm−1+2) M(sI2, x

I
N1+···+Nm−1+2) · · · M(sIN1

, x IN1+···+Nm−1+2)

.

.

.
.
.
.

. . .
.
.
.

M(sI1, x
I
N ) M(sI2, x

I
N ) · · · M(sIN1

, x IN )

⎤
⎥⎥⎥⎥⎥⎦

Nm×N1

(32)

[M I
NN ]

=

⎡
⎢⎢⎢⎢⎢⎣

−
[

N∑
j=N1+···+Nm−1+1

M(sIj , x
I
N1+···+Nm−1+1)−M(sIN1+···+Nm−1+1, x

I
N1+···+Nm−1+1)

]
· · · M(sIN1+···+Nm−1+1, x

I
N )

.

.

.
.
.
.

.

.

.

M(sIN , x IN1+···+Nm−1+1) · · · −
[

N∑
j=N1+···+Nm−1+1

M(sIj , x
I
N )−M(sIN , x IN )

]

⎤
⎥⎥⎥⎥⎥⎦
Nm×Nm

(33)
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(2) Exterior problem (matrix): Equations (19) and (21) yield

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w1

...

wN

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= [TO]

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�1

...

�N

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎣

[TO
11] · · · [TO

1N ]
...

. . .
...

[TO
N1] · · · [TO

NN ]

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�1

...

�N

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(34)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�w1

�n

...

�wN

�n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

= [MO]

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�1

...

�N

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎣

[MO
11] · · · [MO

1N ]
...

. . .
...

[MO
N1] · · · [MO

NN ]

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�1

...

�N

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(35)

in which

[TO
11] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
[

N1∑
j=1

T (sIj , x
I
1)−T (sO1 , xO1 )

]
T (sO2 , xO1 ) · · · T (sON1

, xO1 )

T (sO1 , xO2 ) −
[

N1∑
j=1

T (sIj , x
I
2)−T (sO2 , xO2 )

]
· · · T (sON1

, xO2 )

.

.

.
.
.
.

. . .
.
.
.

T (sO1 , xON1
) T (sO2 , xON1

) · · · −
[

N1∑
j=1

T (sIj , x
I
N1

)−T (sON1
, xON1

)

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N1×N1

(36)

[TO
1N ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

T (sON1+···+Nm−1+1, x
O
1 ) T (sON1+···+Nm−1+2, x

O
1 ) · · · T (sON , xO1 )

T (sON1+···+Nm−1+1, x
O
2 ) T (sON1+···+Nm−1+2, x

O
2 ) · · · T (sON , xO2 )

...
...

. . .
...

T (sON1+···+Nm−1+1, x
O
N1

) T (sON1+···+Nm−1+2, x
O
N1

) · · · T (sON , xON1
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

N1×Nm

(37)

[TO
N1] =

⎡
⎢⎢⎢⎢⎢⎢⎣

T (sO1 , xON1+···+Nm−1+1) T (sO2 , xON1+···+Nm−1+1) · · · T (sON1
, xON1+···+Nm−1+1)

T (sO1 , xON1+···+Nm−1+2) T (sO2 , xON1+···+Nm−1+2) · · · T (sON1
, xON1+···+Nm−1+2)

.

.

.
.
.
.

. . .
.
.
.

T (sO1 , xON ) T (sO2 , xON ) · · · T (sON1
, xON )

⎤
⎥⎥⎥⎥⎥⎥⎦

Nm×N1

(38)
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[TO
NN ]

=

⎡
⎢⎢⎢⎢⎢⎣

−
[

N∑
j=N1+···+Nm−1+1

T (sIj , x
I
N1+···+Nm−1+1)−T (sON1+···+Nm−1+1, x

O
N1+···+Nm−1+1)

]
· · · T (sON1+···+Nm−1+1, x

O
N )

.

.

.
.
.
.

.

.

.

T (sON , xON1+···+Nm−1+1) · · · −
[

N∑
j=N1+···+Nm−1+1

T (sIj , x
I
N )−T (sON , xON )

]

⎤
⎥⎥⎥⎥⎥⎦

Nm×Nm

(39)

[MO
11] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
[

N1∑
j=1

M(sIj , x
I
1)−M(sO1 , xO1 )

]
M(sO2 , xO1 ) · · · M(sON1

, xO1 )

M(sO1 , xO2 ) −
[

N1∑
j=1

M(sIj , x
I
2)−M(sO2 , xO2 )

]
· · · M(sON1

, xO2 )

.

.

.
.
.
.

. . .
.
.
.

M(sO1 , xON1
) M(sO2 , xON1

) · · · −
[

N1∑
j=1

M(sIj , x
I
N1

)−M(sON1
, xON1

)

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N1×N1

(40)

[MO
1N ] =

⎡
⎢⎢⎢⎢⎢⎢⎣

M(sON1+···+Nm−1+1, x
O
1 ) M(sON1+···+Nm−1+2, x

O
1 ) · · · M(sON , xO1 )

M(sON1+···+Nm−1+1, x
O
2 ) M(sON1+···+Nm−1+2, x

O
2 ) · · · M(sON , xO2 )

...
...

. . .
...

M(sON1+···+Nm−1+1, x
O
N1

) M(sON1+···+Nm−1+2, x
O
N1

) · · · M(sON , xON1
)

⎤
⎥⎥⎥⎥⎥⎥⎦

N1×Nm

(41)

[MO
N1] =

⎡
⎢⎢⎢⎢⎢⎣

M(sO1 , xON1+···+Nm−1+1) M(sO2 , xON1+···+Nm−1+1) · · · M(sON1
, xON1+···+Nm−1+1)

M(sO1 , xON1+···+Nm−1+2) M(sO2 , xON1+···+Nm−1+2) · · · M(sON1
, xON1+···+Nm−1+2)

.

.

.
.
.
.

. . .
.
.
.

M(sO1 , xON ) M(sO2 , xON ) · · · M(sON1
, xON )

⎤
⎥⎥⎥⎥⎥⎦

Nm×N1

(42)

[MO
NN ]

=

⎡
⎢⎢⎢⎢⎢⎣

−
[

N∑
j=N1+···+Nm−1+1

M(sIj , x
I
N1+···+Nm−1+1)−M(sON1+···+Nm−1+1, x

O
N1+···+Nm−1+1)

]
· · · M(sON1+···+Nm−1+1, x

O
N )

.

.

.
.
.
.

.

.

.

M(sON , xON1+···+Nm−1+1) · · · −
[

N∑
j=N1+···+Nm−1+1

M(sIj , x
I
N )−M(sON , xON )

]

⎤
⎥⎥⎥⎥⎥⎦
Nm×Nm

(43)
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Start 

Decompose problem

Exterior problem: Matrix Interior problem: Inclusion 

Matrix with no hole:

field

subject to far - displacement

Matrix with hole: 

subject to interface 

condition 

Establish the linear 

algebraic equation of 

(Eqs. (20) and (23)) 

Establish the linear  

algebraic equation of 

(Eqs. (14) and (17)) 

Find the stress concentration 

(Eq. (3)) 

Combination of Eqs. (24), (25), (34) and (35) by matching continuity  

conditions of Eqs. (6) and (7) yields 

[  ] [  ]
[   ] [   ]

{ }
{  } =

MM

TT

m

i

OI
m

i

OI

α
α

Solve { and 

End

Figure 5. Flowchart of solution procedures.

2.2.4. Construction of influence matrices for antiplane shear problems. Substituting Equations
(24), (25), (34) and (35) into Equations (6) and (7), the linear algebraic system for the antiplane
shear problem can be obtained as follows:⎡

⎢⎣ −[T I] [TO]
�i

�m
[M I] [MO]

⎤
⎥⎦

{
{�i}
{�m}

}
=

⎧⎪⎨
⎪⎩

−{w∞}

−
{

�w

�n

∞}⎫⎪⎬
⎪⎭ (44)

where w∞ denotes the out-of-plane elastic displacement. After Equation (44) is solved by using
the linear algebraic solver, the unknown densities ({�i} and {�m}) can be obtained and thereby the
field solution can be obtained by using Equation (8). To provide a simple illustration of how the
proposed meshless method works, the solution procedures are listed in Figure 5.
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3. NUMERICAL EXAMPLES

In order to show the accuracy and validity of the proposed method, the antiplane shear problems with
multiple inclusions subjected to the remote shear are considered. Numerical examples containing
two and three inclusions under the antiplane shear, respectively, are considered. The numerical
results are compared with analytical solutions [7] and those of the Laurent series expansion method
[5], respectively.

Case 1: Two-inclusion problem. The antiplane problem with matrix-imbedded two inclusions
is sketched in Figure 6. The smaller inclusion is centered at the origin of radius r1 and the larger
inclusion of radius r2 = 2r1 is centered on the y-axis at r1 + r2 + D (D = 0.1r1). The material
parameters are �0 = 1.0, �1 = 2

3�0, �2 = 13
7 �0 and �= 1.0Nm−2. For sensitivity analysis of the

conventional MFS on the distance between the fictitious boundary and the physical boundary,
the offset distance and the condition number are chosen as the labels of the x-axis and y-axis,
respectively, where the condition number denotes �max/�min, in which �max and �min are maximum
and minimum singular values of influence matrices, respectively. The sensitivity analysis on the
distance between fictitious and physical boundaries is shown in Figure 7. The influence matrices
are more and more ill-posed when the condition number becomes larger. The convergence analysis
of stress concentrations is shown in Figure 8(a) and (b). We can obtain a convergence result after
distributing 200 points by using the proposed method. Stress concentrations along the boundaries of
both the matrix and the smaller inclusion are plotted in Figure 9(a)–(d), respectively, by using 720
nodes. The results are compared well with analytical solutions [7]. Figure 9(a) and (b) shows the
equilibrium traction along the interface between the matrix and the smaller inclusion. Comparing
with Figure 9(c) and (d), it is seen that the maximum stress concentration appears when � = 0◦ as
expected. The absolute error of stress concentration along the interface of the smaller inclusion is
plotted in Figure 10(a) and (b).

y

x

τ

2r

1r

1µ

0µ

2µ

D

Figure 6. Problem sketch of double inclusions under antiplane shear.
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Figure 7. Sensitivity analysis on the distance between fictitious and physical boundaries by using MFS.
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Figure 8. Convergence analysis of stress concentration in � = �/2: (a) inclusion and (b) matrix.

Case 2: Three-inclusion problem. A matrix imbedded three inclusions under antiplane
shear is considered as shown in Figure 11. The geometry location is D = 2r1. The results of
convergence analysis are shown in Figure 12(a) and (b) and convergence test can be observed
when the distributed boundary points are more than 250 points. The stress concentration �mz� in
the matrix around the interface of the left inclusion is evaluated as shown in Figure 13(a)–(d),
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Figure 9. Stress concentration along the boundaries of both the matrix and the smaller
inclusion: (a) �mzr/�; (b) �izr/�; (c) �mz�/�; and (d) �iz�/�.
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Figure 10. The absolute error of stress concentration along the boundaries of both the matrix and the
smaller inclusion: (a) �mzr/� and �izr/� and (b) �mz�/� and �iz�/�.
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Figure 11. Problem sketch of three inclusions under antiplane shear.

respectively, by using 1080 nodes. From Figure 13(a), it is observed that the limiting case of holes
(�1/�0 = �2/�0 = �3/�0 = 0.0) leads to the maximum stress concentration at � = 0◦. Due to the
interaction effects, it is larger than two of the single hole [7]. The stress component �z� vanishes
in the case of more rigid inclusions (�1/�0 = �2/�0 = �3/�0 = 5.0), which can be explained by

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 73:1251–1273
DOI: 10.1002/nme



1270 K. H. CHEN, J. T. CHEN AND J. H. KAO

0 200 400 600 800 1000 1200
Nodes

-0.8

-0.4

0

0.4

0.8

1.2

S
tr

es
s 

co
nc

en
tr

at
io

n

µ1/µ0=µ2/µ0=µ3/µ0=0.5

σizr /τ (θ=π/2)

σizθ /τ (θ=π/2)

0 200 400 600 800 1000 1200

Nodes

-0.8

-0.4

0

0.4

0.8

1.2

S
tr

es
s 

co
nc

en
tr

at
io

n

µ1/µ0=µ2/µ0=µ3/µ0=0.5

σizr /τ (θ=π/2)

σizθ /τ (θ=π/2)

(a) (b)

Figure 12. Convergence analysis of stress concentration in �= �/2: (a) inclusion and (b) matrix.
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Figure 13. Stress concentration factor �mz�/� along the boundaries of both the left inclusion and matrix
for various shear modulus ratios: (a) �1/�0 = �2/�0 = �2/�0 = 0.0; (b) �1/�0 = �2/�0 = �2/�0 = 0.5;

(c) �1/�0 = �2/�0 = �2/�0 = 2.0; and (d) �1/�0 = �2/�0 = �2/�0 = 5.0.
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Figure 14. The absolute error result of stress concentration along the boundaries of both the matrix
and the left inclusion for various shear modulus ratios: (a) �1/�0 = �2/�0 = �2/�0 = 0.0 and
�1/�0 = �2/�0 = �2/�0 = 0.5 and (b) �1/�0 = �2/�0 = �2/�0 = 2.0 and �1/�0 = �2/�0 = �2/�0 = 5.0.

a general analogy between solutions for traction-free holes and those involving rigid inclusions [8].
The results are well compared with those of the Laurent series expansion method [15]. The absolute
errors of stress concentration along the interface of the left inclusion for various shear modulus
ratios are shown in Figure 14(a) and (b).

4. CONCLUSIONS

In this study, we extended the RMM approach to solve antiplane shear problems with multiple
inclusions. Only boundary nodes on the real boundary are required. The major difficulty in the
coincidence of the source and collocation points in the conventional MFS is then circumvented.
Furthermore, the controversy of the fictitious boundary outside the physical domain by using the
conventional MFS no longer exists. Although it results in the singularity and hypersingularity
due to the use of double-layer potentials, the finite values of the diagonal terms for the influence
matrices have been extracted out by employing the regularization technique. The numerical results
by applying the developed program agreed very well with the analytical solution and those of the
Laurent series expansion method.
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