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In this paper, a meshless method for the acoustic eigenfrequencies using radial basis
function (RBF) is proposed. The coefficients of influence matrices are easily determined by
the two-point functions. In determining the diagonal elements of the influence matrices,
two techniques, limiting approach and invariant method, are employed. Based on the RBF
in the imaginary-part kernel, the method results in spurious eigenvalues which can be
separated by using the singular value decomposition (SVD) technique in conjunction with
the Fredholm alternative theorem. To understand why the spurious eigenvalues occur,
analytical study in the discrete system by discretizing the circular boundary is conducted by
using circulants. By using the SVD updating terms and documents, the true and spurious
eigensolutions can be extracted out respectively. Several examples are demonstrated to see
the validity of the present method.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The mesh generation of a complicated geometry is time consuming in the stage of model
creation for engineers in dealing with the engineering problems by using the numerical
methods, such as the finite difference method (FDM), finite element method (FEM) and
boundary element method (BEM). In the recent years, researchers have paid attention to
the meshless method which the element is free. The initial idea of meshless method dates
back to the smooth particle hydrodynamics (SPH) method for modelling astrophysical
phenomena [1]. Several meshless methods have also been reported in the literature, for
example, the element-free Galerkin method [2] and the reproducing kernel method [3].

For acoustics, the integral equations have been utilized to solve the interior and exterior
problems for a long time. Several approaches, e.g., complex-valued boundary element
method [4], multiple reciprocity method (MRM) [5–7], and the real-part boundary element
method [5, 8] have been developed for acoustic problems. To solve acoustic problems by
using the complex-valued BEM, the influence coefficient matrix would be complex
arithematics [9, 10]. Therefore, Tai and Shaw [11] employed only the real-part kernel to
solve the eigenvalue problems and to avoid the complex-valued computation. The
computation of the real-part kernel method or the MRM [11, 12] has some advantages,
but it still faces both the singular and hypersingular integrals. To avoid the singular and
hypersingular integrals, De Mey [13] used imaginary-part kernel to solve the eigenvalue
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problems. At the same time, De Mey also found the spurious eigensolutions but he did not
discuss them analytically. Kang et al. [14–16] proposed the non-dimensional dynamic
influence function (NDIF) method to solve the eigenproblem of an acoustic cavity. Later,
Chen et al. [17] commented that the NDIF method is a special case of imaginary-part
BEM. Nevertheless, spurious eigensolutions are inherent in the imaginary-part BEM, real-
part BEM and MRM. Numerically speaking, the spurious eigensolutions result from the
rank deficiency of the coefficient matrix which is less than 2N; where 2N is the number of
boundary unknowns. This implies the fewer number of constraint equations making the
solution space larger. Mathematically speaking, the spurious eigensolutions for interior
acoustics and fictitious solutions for exterior acoustics arise from an ‘‘improper
approximation of the null space of operator’’.

In this paper, we will employ the imaginary-part kernel to solve the acoustic
eigenproblems. In solving the problem numerically, elements are not required and only
boundary nodes are necessary. Both the collocation and source points are distributed on
the boundary only. Besides, the kernel function is composed of two-point function which
is a kind of radial basis function. To examine the reason why spurious eigenvalues occur in
the above methods, we will employ the SVD updating technique in conjunction with the
Fredholm alternative theorem to overcome this difficulty by assembling the dual equations
[18–20]. The SVD updating terms and updating documents will be employed to extract out
the true and spurious eigenvalues for two-dimensional cavities respectively. For a special
case of circular cavity, the spurious eigensolutions will be analytically predicted in the
discrete system of circulants. Finally, the true eigenvalues for a circular cavity will be
derived analytically by approaching the discrete system to the continuous system using the
analytical properties of circulants [21].

2. MESHLESS FORMULATION USING RADIAL BASIS FUNCTION OF THE
IMAGINARY-PART KERNEL

The governing equation for an interior acoustic problem is the Helmholtz equation as
follows:

ðr2 þ k2Þuðx1; x2Þ ¼ 0; ðx1;x2Þ 2 D; ð1Þ

where r2 is the Laplacian operator, D is the domain of the cavity and k is the wave
number which is angular frequency over the speed of sound. The boundary conditions can
be either the Neumann or Dirichlet type.

The radial basis function is expressed by

Gðxi; sjÞ ¼ jðjsj � xijÞ; ð2Þ

where xi and sj are the ith collocation and jth source points, respectively. The Euclidean
norm jsj � xij is referred to as the radial distance between the collocation and source
points. The two-point function (jðjsj � xijÞ) is called radial basis function since it depends
on the radial distance between xi and sj: By considering the imaginary-part kernel of
fundamental solution for the Helmholtz equation (Uðs; xÞ ¼ ImfiHð1Þ

0 ðkrÞg) with globally
supported radial basis function, we can choose the four kernels in the dual formulation
[5, 22],

Uðs; xÞ ¼ J0ðkjs � xjÞ ¼ J0ðkrÞ; ð3Þ

Tðs; xÞ ¼ @Uðs; xÞ
@ns

¼ �k
J1ðkrÞyini

r
; ð4Þ
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Lðs; xÞ ¼ @Uðs; xÞ
@nx

¼ k
J1ðkrÞyj %nnj

r
; ð5Þ

Mðs;xÞ ¼ @2Uðs; xÞ
@ns@nx

¼ k
�kJ2ðkrÞyiyjni %nnj

r2
þ J1ðkrÞni %nni

r

� �
; ð6Þ

where r � js � xj is the distance between the source and collocation points; ni is the ith
component of the outnormal vector at s; %nni is the ith component of the outnormal vector at
x; Jn denotes the first-kind Bessel function of the nth order, and yi � si � xi; i ¼ 1; 2: Based
on the dual formulation [23] for the indirect method, we can represent the acoustic field
solution by

Single-layer potential approach:

uðxiÞ ¼
X

j

Uðsj; xiÞfj !
matrix form

fuig ¼ ½Uij �ffjg; ð7Þ

tðxiÞ ¼
X

j

@Uðsj; xiÞ
@nx

fj !
matrix form

ftig ¼ ½Lij�ffjg: ð8Þ

Double-layer potential approach:

uðxiÞ ¼
X

j

Tðsj; xiÞcj !
matrix form

fuig ¼ ½Tij�fcjg; ð9Þ

tðxiÞ ¼
X

j

@Tðsj; xiÞ
@nx

cj !
matrix form

ftig ¼ ½Mij�fcjg; ð10Þ

where ffjg and fcjg are the generalized unknowns by using the single- and double-layer
potential approaches respectively. By adopting the two bases, JmðkxÞ and its derivative
J0mðkxÞ; we can decompose the imaginary-part kernel functions into the separate forms,

Uðs; xÞ ¼
UI ðy; 0Þ ¼

P1
m¼�1 JmðkRÞJmðkrÞcosðmyÞ; R > r;

UEðy; 0Þ ¼
P1

m¼�1 JmðkrÞJmðkRÞcosðmyÞ; R5r;

(
ð11Þ

Tðs; xÞ ¼
TIðy; 0Þ ¼

P1
m¼�1 kJ0mðkRÞJmðkrÞcosðmyÞ; R > r;

TEðy; 0Þ ¼
P1

m¼�1 kJ0mðkrÞJmðkRÞcosðmyÞ; R5r;

(
ð12Þ

Lðs; xÞ ¼
LI ðy; 0Þ ¼

P1
m¼�1 kJmðkRÞJ0mðkrÞcosðmyÞ; R > r;

LEðy; 0Þ ¼
P1

m¼�1 kJmðkrÞJ0mðkRÞcosðmyÞ; R5r;

(
ð13Þ

Mðs; xÞ ¼
MIðy; 0Þ ¼

P1
m¼�1 k2J0mðkRÞJ0mðkrÞcosðmyÞ; R > r;

MEðy; 0Þ ¼
P1

m¼�1 k2J0mðkrÞJ0mðkRÞcosðmyÞ; R5r;

(
ð14Þ

where the superscripts ‘‘I ’’ and ‘‘E’’ denote the interior and exterior domains, x ¼ ðr; 0Þ
and s ¼ ðR; yÞ in polar coordinate. By superimposing 2N lumped density along the
boundary, we have the four influence matrices

½Uij � ¼

a1;1 a1;2 a1;3 � � � a1;2N�1 a1;2N

a2;1 a2;2 a2;3 � � � a2;2N�1 a2;2N

a3;1 a3;2 a3;3 � � � a3;2N�1 a3;2N

..

. ..
. ..

. . .
. ..

. ..
.

a2N;1 a2N;2 a2N;3 � � � a2N;2N�1 a2N;2N

2
66666664

3
77777775
; ð15Þ
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½Tij � ¼

b1;1 b1;2 b1;3 � � � b1;2N�1 b1;2N

b2;1 b2;2 b2;3 � � � b2;2N�1 b2;2N

b3;1 b3;2 b3;3 � � � b3;2N�1 b3;2N

..

. ..
. ..

. . .
. ..

. ..
.

b2N;1 b2N;2 b2N;3 � � � b2N;2N�1 b2N;2N

2
66666664

3
77777775
; ð16Þ

½Lij� ¼

c1;1 c1;2 c1;3 � � � c1;2N�1 c1;2N

c2;1 c2;2 c2;3 � � � c2;2N�1 c2;2N

c3;1 c3;2 c3;3 � � � c3;2N�1 c3;2N

..

. ..
. ..

. . .
. ..

. ..
.

c2N;1 c2N;2 c2N;3 � � � c2N;2N�1 c2N;2N

2
66666664

3
77777775
; ð17Þ

½Mij � ¼

d1;1 d1;2 d1;3 � � � d1;2N�1 d1;2N

d2;1 d2;2 d2;3 � � � d2;2N�1 d2;2N

d3;1 d3;2 d3;3 � � � d3;2N�1 d3;2N

..

. ..
. ..

. . .
. ..

. ..
.

d2N;1 d2N;2 d2N;3 � � � d2N;2N�1 d2N;2N

2
66666664

3
77777775
; ð18Þ

where the elements can be obtained by

ai;j ¼ Uðsj ; xiÞ; bi;j ¼ Tðsj; xiÞ; ð19; 20Þ

ci;j ¼ Lðsj; xiÞ; di;j ¼ Mðsj; xiÞ: ð21; 22Þ

Then, we can determine ffjg and fcjg by satisfying the boundary conditions.

3. CALCULATION FOR THE DIAGONAL ELEMENTS IN THE FOUR INFLUENCE
MATRICES USING THE L’H #OOPITAL’S RULE AND INVARIANT METHOD

The diagonal elements in the influence matrices where the radial distance is zero (r ¼ 0
when i ¼ j) can be solved by using the L’H #oopital’s rule. Considering the asymptotic
behavior and the recurrence relations of Bessel functions, we can obtain the diagonal
elements as follows:

lim
s!x

Uðs; xÞ ¼ lim
r!0

J0ðkrÞ ¼ 1; ð23Þ

lim
s!x

Tðs; xÞ ¼ lim
r!0

� k
J1ðkrÞyini

r

¼ lim
s1!x1

s2!x2

�k2 ðJ0ðkrÞ � J2ðkrÞÞyini

2
¼ 0; ð24Þ

lim
s!x

Lðs; xÞ ¼ lim
r!0

k
J1ðkrÞyj %nnj

r

¼ lim
s1!x1

s2!x2

k2ðJ0ðkrÞ � J2ðkrÞÞyj %nnj

2
¼ 0; ð25Þ
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lim
s!x

Mðs; xÞ ¼ lim
r!0

k
�kJ2ðkrÞyiyjni %nnj

r2
þ J1ðkrÞni %nni

r

� �

¼ lim
s1!x1

s2!x2

0 þ k2 ðJ0ðkrÞ � J2ðkrÞÞni %nni

2
¼ k2

2
; ð26Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs1 � x1Þ2 þ ðs2 � x2Þ2

q
:

For a circular case, the eigenvalues for the influence matrices in equations (15)–(18) can
be obtained by

l‘ ¼
1

r4 y

Z p

�p
cosð‘yÞ

X1
m¼�1

JmðkRÞJmðkrÞcosðmyÞr dy

¼ 2NJ‘ðkrÞJ‘ðkrÞ; ‘ ¼ 0;�1; . . . ;�ðN � 1Þ;N; ð27Þ

m‘ ¼ 1

r4 y

Z p

�p
cosð‘yÞ

X1
m¼�1

J0mðkRÞJmðkrÞcosðmyÞr dy

¼ 2NðkÞJ0‘ðkrÞJ‘ðkrÞ; ‘ ¼ 0;�1; . . . ;�ðN � 1Þ;N; ð28Þ

n‘ ¼
1

r4 y

Z p

�p
cosð‘yÞ

X1
m¼�1

JmðkRÞJ0mðkrÞcosðmyÞr dy

¼ 2NðkÞJ‘ðkrÞJ0‘ðkrÞ; ‘ ¼ 0;�1; . . . ;�ðN � 1Þ;N; ð29Þ

k‘ ¼
1

r4 y

Z p

�p
cosð‘yÞ

X1
m¼�1

J0mðkRÞJ0mðkrÞcosðmyÞr dy

¼ 2Nðk2ÞJ0‘ðkrÞJ0‘ðkrÞ; ‘ ¼ 0;�1; . . . ;�ðN � 1Þ;N; ð30Þ

where 4y ¼ 2p=2N: According to the addition theorem for the Bessel function and
putting the same position for the two points, we have

1 ¼ J2
0ðkrÞ þ 2

X1
m¼1

J2
mðkrÞ: ð31Þ

By taking derivative with respect to r; we have

0 ¼ J0ðkrÞJ00ðkrÞ þ 2
X1
m¼1

JmðkrÞJ0mðkrÞ: ð32Þ

Using the invariant property for the influence matrices, the first invariant is the sum of all
the eigenvalues

2Na0 ¼ l�ðN�1Þ þ � � � þ l�1 þ l0 þ l1 þ � � � þ lN

¼ 2N
X1
‘¼�1

J‘ðkrÞJ‘ðkrÞ; ð33Þ

2Nb0 ¼ m�ðN�1Þ þ � � � þ m�1 þ m0 þ m1 þ � � � þ mN

¼ 2Nk
X1
‘¼�1

J0‘ðkrÞJ‘ðkrÞ; ð34Þ
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2Nc0 ¼ n�ðN�1Þ þ � � � þ n�1 þ n0 þ n1 þ � � � þ nN

¼ 2Nk
X1
‘¼�1

J‘ðkrÞJ0‘ðkrÞ; ð35Þ

2Nd0 ¼ k�ðN�1Þ þ � � � þ k�1 þ k0 þ k1 þ � � � þ kN

¼ 2Nk2
X1
‘¼�1

J0‘ðkrÞJ0‘ðkrÞ: ð36Þ

By substituting equations (31) and (32) into equations (33)–(36), we obtain a0 ¼ 1; b0 ¼ 0;
c0 ¼ 0; and d0 ¼ k2=2 if the imaginary-part kernel was considered. Hence, the
indeterminate forms of diagonal elements are easily determined from the first invariant
as well as the values obtained by using the L’H #oopital’s rule.

4. THE RELATIONS OF KERNELS AND MATRICES BETWEEN THE DIRECT AND
INDIRECT METHODS

In solving the boundary-value problem using BEM, two methods, direct method and
indirect method are employed. The direct method is derived by using the Green identity in
terms of the unknowns which are the actual physical quantities on the boundary. In the
direct method, we have

0 ¼
Z

B

TEðs; xÞuðsÞ dBðsÞ �
Z

B

UEðs; xÞtðsÞ dBðsÞ; ð37Þ

0 ¼
Z

B

MEðs; xÞuðsÞ dBðsÞ �
Z

B

LEðs; xÞtðsÞ dBðsÞ; ð38Þ

where uðsÞ and tðsÞ are the potential and its normal derivative on the boundary and x is
outside the domain.

A key point of the indirect method is to represent a solution which satisfies the
governing equation. The unknown densities are determined by matching the boundary
conditions. Based on the superposition principle for the potentials, we have

Single-layer potential approach:

uðxÞ ¼
Z

B

UIðs; xÞfðsÞ dBðsÞ; ð39Þ

tðxÞ ¼
Z

B

LIðs; xÞfðsÞ dBðsÞ: ð40Þ

Double-layer potential approach:

uðxÞ ¼
Z

B

TI ðs; xÞcðsÞ dBðsÞ; ð41Þ

tðxÞ ¼
Z

B

MI ðs; xÞcðsÞ dBðsÞ; ð42Þ

where fðsÞ and cðsÞ are the single- and double-layer unknown densities, respectively. By
discretizing equations (37) and (38), we have the linear algebraic equations for the direct
method

½TE
ij �fujg ¼ ½UE

ij �ftjg; ð43Þ



Table 1

The distributed and concentrated-type of imaginary-part method for the single- and

double-layer potential approaches

Distributed-type Concentrated-typey

Single-layer potential
approach

Dirichlet problem: Dirichlet problem:
uðxÞ ¼

R
B

UI ðs; xÞfðsÞ dBðsÞ uðxiÞ ¼
P

j UI ðsj ; xiÞAj ¼ ðSMÞijAj

Neumann problem: Neumann problem:
tðxÞ ¼

R
B

LI ðs; xÞfðsÞ dBðsÞ tðxiÞ ¼
P

j LI ðsj ; xiÞAj ¼ ðSMxÞijAj

Double-layer
potential approach

Dirichlet problem: Dirichlet problem:
uðxÞ ¼

R
B

TI ðs; xÞcðsÞ dBðsÞ uðxiÞ ¼
P

j TI ðsj ; xiÞBj ¼ ðSMsÞijBj

Neumann problem: Neumann problem:
tðxÞ ¼

R
B

MI ðs; xÞcðsÞ dBðsÞ tðxiÞ ¼
P

j MI ðsj ; xiÞBj ¼ ðSMsxÞijBj

y NDIF method by Kang et al. [14–16] is the special case.
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½ME
ij �fujg ¼ ½LE

ij �ftjg; ð44Þ

where fujg and ftjg are the potential and its normal derivative on the boundary B: By
discretizing equations (39)–(42), we have the linear algebraic equations for the indirect
method.

Single-layer potential approach:

uðxiÞ ¼ ½UI
ij �ffjg; ð45Þ

tðxiÞ ¼ ½LI
ij �ffjg: ð46Þ

Double-layer potential approach:

uðxiÞ ¼ ½TI
ij �fcjg; ð47Þ

tðxiÞ ¼ ½MI
ij�fcjg; ð48Þ

where ffjg and fcjg are the single- and double-layer unknown densities, respectively.
The distributed-type and concentrated-type of imaginary-part method for the single- and
double-layer potential approaches are shown in Table 1. By considering the degenerate
kernels equations (11)–(14) and comparing with equations (43)–(48), we can find
the following relations between the interior and exterior kernels from equations
(11)–(14), i.e.,

UE
ij ¼ UI

ij or UEðs; xÞ ¼ UI ðx; sÞ; ð49Þ

TE
ij ¼ LI

ij or TEðs; xÞ ¼ LI ðx; sÞ; ð50Þ

LE
ij ¼ TI

ij or LEðs; xÞ ¼ TIðx; sÞ; ð51Þ

ME
ij ¼ MI

ij or MEðs; xÞ ¼ MI ðx; sÞ: ð52Þ



Table 2

SVD updating technique for the true and spurious eigensolutions for a circular cavity using the direct and indirect methods

Boundary-value
problem

Eigensolutions Density function True and spurious eigenvalues

Single-layer
potential approach

Double-layer
potential approach

Direct method Indirect method

Dirichlet
problem

True eigensolution JmðkrÞ ¼ 0 JmðkrÞ ¼ 0 SVD updating
term

UE

LE

� �
SVD updating

term
UI

TI

� �

(Figure 1(a)) (Figure 1(b)) (Figure 1(c))

Spurious eigensolution JmðkrÞ ¼ 0 J0mðkrÞ ¼ 0 SVD updating
document

LE ME
� �

SVD updating
document

TI MI
� �

(Figure 1(a)) (Figure 1(b)) (Figure 1(d))

Neumann
problem

True eigensolution J0mðkrÞ ¼ 0 J0mðkrÞ ¼ 0 SVD updating
term

TE

ME

� �
SVD updating

term
LI

MI

� �

(Figure 2(a)) (Figure 2(b)) (Figure 2(c))

Spurious eigensolution JmðkrÞ ¼ 0 J0mðkrÞ ¼ 0 SVD updating
document

UE TE
� �

SVD updating
document

UI LI
� �

(Figure 2(a)) (Figure 2(b)) (Figure 2(d))

Note: UI ¼ UE ; LI ¼ TE ; TI ¼ LE and MI ¼ ME :

J.
T
.
C
H

E
N

E
T

A
L

.
6
7
4
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5. DERIVATION OF TRUE AND SPURIOUS EIGENSOLUTIONS FOR THE CICULAR
CAVITY USING THE DEGENERATE KERNELS

In the circular cavity, we have the degenerate kernel functions in equations (11)–(14).
We assume the single- and double-layer density functions on the boundary as

fðsÞ ¼
X1

n¼�1
ðAn cosðnyÞ þ Bn sinðnyÞÞ; ð53Þ

cðsÞ ¼
X1

n¼�1
ðCn cosðnyÞ þ Dn sinðnyÞÞ; ð54Þ

where An; Bn; Cn and Dn are coefficients. For the Dirichlet problem, equation (39) reduced to

0 ¼
Z

B

UI ðs; xÞfðsÞ dBðsÞ

¼
Z 2p

0

X1
m¼�1

JmðkRÞJmðkrÞ cosðmyÞ
X1

n¼�1
ðAn cosðnyÞ þ Bn sinðnyÞÞ r dy; ð55Þ

by using equation (53). By considering the orthogonality of trigonometric function, we
have Z 2p

0

cosðmyÞ cosðnyÞ dy ¼
p; m ¼ n;

0; m=n;

(
ð56Þ

Z 2p

0

cosðmyÞ sinðnyÞdy ¼ 0: ð57Þ

According to equation (56) and equation (57), equation (55) simplifies to

0 ¼
Z 2p

0

X1
m¼�1

JmðkRÞJmðkrÞcosðmyÞ
X1

n¼�1
ðAn cosðnyÞ þ Bn sinðnyÞÞ r dy;

¼ p
X1

m¼�1
AmJmðkRÞJmðkrÞ: ð58Þ
Table 3

Zeros of the Bessel functions and its derivative, JnðkÞ and J0nðkÞ
Problem Eigenvalues 1 2 3 4 5

Dirichlet problem JnðkÞ 2�4042 5�5201 8�6537 11�7915 14�9309
J1ðkÞ 3�8317 7�0156 10�1735 13�3237 16�4706
J2ðkÞ 5�1356 8�4172 11�6198 14�7959 17�9598
JnðkÞ 6�3802 9�7610 13�0152 16�2234 19�4094
J4ðkÞ 7�5883 11�0647 14�3725 17�6160 20�8269
J5ðkÞ 8�7715 12�3386 15�7002 18�9801 22�2178

Neumann problem J00ðkÞ 0 3�8317 7�0156 10�1735 13�3237
J01ðkÞ 1�8412 5�3314 8�5363 11�7060 14�8636
J02ðkÞ 3�0542 6�7071 9�9695 13�1703 16�3475
J03ðkÞ 4�2012 8�0152 11�3459 14�5858 17�7887
J04ðkÞ 5�3175 9�2824 12�6819 15�9641 19�1960
J05ðkÞ 6�4156 10�5199 13�9872 17�3128 20�5755
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Thus, we obtain the eigenequation JmðkRÞJmðkrÞ ¼ 0 by using the single-layer potential
methods for the interior Dirichlet problem.

Similarly, we also obtain

0 ¼
Z

B

TI ðs;xÞcðsÞ dBðsÞ

¼
Z 2p

0

X1
m¼�1

kJ0mðkRÞJmðkrÞcosðmyÞ
X1

n¼�1
ðCn cosðnyÞ þ Dn sinðnyÞÞ r dy ð59Þ

by using the double-layer potential approach. By considering equation (59) and the
orthogonality of trigonometric function, we have

0 ¼
Z 2p

0

X1
m¼�1

kJ0mðkRÞJmðkrÞcosðmyÞ
X1

n¼�1
ðCn cosðnyÞ þ Dn sinðnyÞÞ r dy

¼ pk
X1

m¼�1
CmJ0mðkRÞJmðkrÞ: ð60Þ

Thus, we obtain the eigenequation J0mðkRÞJmðkrÞ ¼ 0 by using the double-layer potential
method for the interior Dirichlet problem.

In the Neumann problem, we have

0 ¼
Z

B

LI ðs; xÞfðsÞ dBðsÞ

¼
Z 2p

0

X1
m¼�1

kJmðkRÞJ0mðkrÞcosðmyÞ
X1

n¼�1
ðAn cosðnyÞ þ Bn sinðnyÞÞ r dy ð61Þ

by substituting equations (13) and (53) into equation (40). By considering the
orthogonality of trigonometric function, equation (61) simplifies to

0 ¼
Z 2p

0

X1
m¼�1

kJmðkRÞJ0mðkrÞcosðmyÞ
X1

n¼�1
ðAn cosðnyÞ þ Bn sinðnyÞÞ r dy

¼ pk
X1

m¼�1
AmJmðkRÞJ0mðkrÞ: ð62Þ

Therefore, we obtain the eigenequation JmðkRÞJ0mðkrÞ ¼ 0 by using the single-layer
potential method for the interior Neumann problem.

Similarly, we use the double-layer density functions to obtain

0 ¼
Z

B

MIðs; xÞcðsÞ dBðsÞ

¼
Z 2p

0

X1
k2J0mðkRÞJ0mðkrÞcosðmyÞ

X1
ðCn cosðnyÞ þ Dn sinðnyÞÞ r dy: ð63Þ
m¼�1 n¼�1

Figure 1. (a) The minimum singular value for different wave numbers by using the single-layer potential
approach for the Dirichlet problem. (b) The minimum singular value for different wave numbers by using the
double-layer potential approach for the Dirichlet problem. (c) The minimum singular value for different wave
numbers using the SVD updating term U T

� �
for the Dirichlet problem. (d) The minimum singular value for

different wave numbers using the SVD updating document T M
� �

for the Dirichlet problem. (e) The former
three interior modes by using the single-layer potential approach for the Dirichlet problem. (f) The former three
interior modes matrix by using the double-layer potential approach for the Dirichlet problem. (g) The former
three analytical interior modes for the Dirichlet problem.
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By considering equation (63) and the orthogonality of trigonometric function, we have

0 ¼
Z 2p

0

X1
m¼�1

k2J0mðkRÞJ0mðkrÞcosðmyÞ
X1

n¼�1
ðCn cosðnyÞ þ Dn sinðnyÞÞ r dy

¼ pk2
X1

m¼�1
CmJ0mðkRÞJ0mðkrÞ: ð64Þ

Therefore, we obtain the eigenequation J0nðkRÞJ0nðkrÞ ¼ 0 by using the double-layer
potential method for the interior Neumann problem. All the relations of true and spurious
eigenvalues by using the single- and double-layer potential approaches are summarized in
Table 2.

6. METHOD TO EXTRACT OUT THE TRUE EIGENSOLUTIONS

The SVD technique is an important tool in linear algebra. A matrix A with dimension
M � N can be decomposed into a product of an orthogonal matrix C (N � N), a diagonal
matrix S (M � N) with positive or zero elements, and an orthogonal matrix F (M � M),

½A�M�N ¼ ½F�M�M ½S�M�N ½C�TN�N ; ð65Þ
where the superscript ‘‘T’’ is the transpose, F and C are both orthogonal in the sense that
their column vectors are orthogonal,

fi�fj ¼ dij ; ð66Þ

ci�cj ¼ dij ; ð67Þ

where FTF ¼ CTC ¼ I and dij is the Kronecker delta symbol. Besides, we solve a
homogeneous equation and obtain a non-trivial solution from a column vector fcig of C
such that the singular value (si) is zero. For the direct method in the discrete system,
equations (43) and (44) are represented by

Singular equation:

ðUT methodÞ ½TE �fug ¼ ½UE �ftg ¼ 0; ð68Þ
Hypersingular equation:

ðLM methodÞ ½ME �fug ¼ ½LE �ftg ¼ 0: ð69Þ
Table 4

True and spurious eigensolutions for the Dirichlet and Neumann problems using the present

formulation

Indirect formulation Dirichlet problem Neumann problem

Single-layer potential approach
True mode �pJnðkaÞJnðkrÞcosðnfÞy �pkJ0nðkaÞJnðkrÞcosðnfÞ
Spurious mode �pJnðkaÞJnðkrÞcosðnfÞy �pkJ0nðkaÞJnðkrÞcosðnfÞy

Double-layer potential approach
True mode �pJnðkaÞJ0nðkrÞcosðnfÞ �pk2J0nðkaÞJ0nðkrÞcosðnfÞ

y
Spurious mode �pJnðkaÞJ0nðkrÞcosðnfÞ

y �pk2J0nðkaÞJ0nðkrÞcosðnfÞ
y

Note: 05a5r; 05f52p:
yDenotes a near-zero solution.
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For the Dirichlet problem, equations (68) and (69) are combined to

½UE �
½LE �

" #
ftg ¼ f0g: ð70Þ

By using the SVD technique, the two matrices in equation (70) are decomposed into

½UE � ¼ ½FU �½SU �½CU �T or ½UE
j � ¼

X
j

sU
j ff

U
j gfc

U
j g

T;

½LE � ¼ ½FL�½SL�½CL�T or ½LE
j � ¼

X
j

sL
j ff

L
j gfc

L
j g

T: ð71Þ

For the linear algebraic system, t is one column vector fcig in the ½C� matrix
corresponding to the zero singular value (si ¼ 0). By viewing t as a fcig vector in the
right unitary matrix ½C�; equation (70) reduces to

UE
� �

fcig ¼f0g;

LE
� �

fcig ¼f0g; ð72Þ
since X

j

sU
j ff

U
j gfc

U
j g

T fcig ¼f0g !
cU

j �cj¼dij

sU
i ff

U
i g ¼ f0g ði no sumÞ;

X
j

sL
j ff

L
j gfc

L
j g

T fcig ¼f0g !
cL

j �cj¼dij

sL
i ff

L
i g ¼ f0g; ði no sumÞ; ð73Þ

where ffig and fcig are the orthonormal bases, sU
j and sL

j are the singular values of ½UE �
and ½LE � matrices, respectively. We can easily extract out the true eigensolutions
(sU

i ¼ sL
i ¼ 0) since there exists the same eigensolution (t ¼ fcig) in the Dirichlet problem

using equations (70)–(73) together. In a similar way, equations (68) and (69) are combined
to

½TE �
½ME �

" #
fug ¼ f0g ð74Þ

for the Neumann problem. We can easily extract the true eigensolutions;X
j

sT
j ffjgfcjg

Tfcig ¼f0g !
ci �cj¼dij

sT
i ffig ¼ f0g ði no sumÞ;

X
j

sM
j ffjgfcjg

T fcig ¼f0g !
ci �cj¼dij

sM
i ffig ¼ f0g ði no sumÞ; ð75Þ

since there exists the same solution (u ¼ fcig) corresponding to the zero singular values
(sT

i ¼ sM
i ¼ 0) by using equations (74) and (75).

According to the relations between the direct method and indirect method (equations
(49)–(52)), we can extend to extract out the true solutions in the indirect method. For the
Dirichlet problem, equation (70) changes to

½UE �
½LE �

" #
ftg ¼ f0gUE¼UI

LE¼TI

½UI �
½TI �

" #
ftg ¼ f0g; ð76Þ

after using equations (49)–(51). By using the SVD technique and equation (76), we haveX
sU

j ffjgfcjg
T fcig ¼f0g !

c �c ¼d
sU

i ffig ¼ f0g ði no sumÞ;

j i j ij
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 X
j

sT
j ffjgfcjg

T fcig ¼ f0g !
ci �cj¼dij

sT
i ffig ¼ f0g ði no sumÞ; ð77Þ

where fcig is an orthonormal basis; sU
j and sT

j are the singular values of ½UI � and ½TI �
matrices, respectively. We can easily extract the true solutions in the Dirichlet problem by
using equation (77) for the zero singular values of sU

i ¼ sT
i ¼ 0:

In a similar way, equation (74) changes to

½TE �
½ME �

" #
ftg ¼ f0g TE¼LI

ME¼MI

½LI �
½MI �

" #
ftg ¼ f0g; ð78Þ

after using equations (50)–(52). By using the SVD technique and equation (78), we haveX
j

sL
j ffjgfcjg

T fcig ¼f0g !
ci�cj¼dij

sL
i ffig ¼ f0g ði no sumÞ;

X
j

sM
j ffjgfcjg

T fcig ¼f0g !
ci�cj¼dij

sM
i ffig ¼ f0g ði no sumÞ; ð79Þ

where fcig is an orthonormal basis, sL
j and sM

j are the singular values of ½LI � and ½MI �
matrices, respectively. We can easily extract out the true eigensolutions in the Neumann
problem by using equation (79) for the zero singular values of sL

i ¼ sM
i ¼ 0:

6.1. EXTRACTING OUT THE TRUE EIGENSOLUTIONS BY USING THE SVD UPDATING TERM

FORACIRCULARCASE

For a circular cavity subject to the Dirichlet boundary condition, we obtain the two
eigenequations

Single-layer approach : JiðkrÞJiðkrÞ ¼ 0 ði no sumÞ; ð80Þ

Double-layer approach : JiðkrÞJ0iðkrÞ ¼ 0 ði no sumÞ: ð81Þ

The true eigensolution JiðkrÞ ¼ 0 satisfies both equations and the spurious eigensolutions
J0iðkrÞ ¼ 0 satisfies only one of the equations by using the double-layer potential approach
for the Dirichlet problem.

To obtain an overdetermined system for the Dirchlet problem, we can combine ½UI � and
½TI � matrices by using the updating terms,

½C� ¼
½UI �
½TI �

" #
4N�2N:

ð82Þ

Since the eigensolution is non-trivial, the rank of ½C� must be smaller than 2N: Therefore,
the 2N singular values for ½C� matrix must have at least one zero value. Based on the
equivalence between the SVD technique and the least-squares method in the mathematical
Figure 2. (a) The minimum singular value for different wave numbers by using the single-layer potential
approach for the Neumann problem. (b) The minimum singular value for different wave numbers by using the
double-layer potential approach for the Neumann problem. (c) The minimum singular value for different wave
numbers by using the SVD updating term L M

� �
for the Neumann problem. (d) The minimum singular value

for different wave numbers by using the SVD updating document U L
� �

for the Neumann problem. (e) The
former three interior modes by using the single-layer potential approach for the Neumann problem. (f) The
former three interior modes by using the double-layer potential approach for the Neumann problem. (g) The
former three analytical interior modes for the Neumann problem.
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essence, we have

½UI �T ½TI �T
h i ½UI �

½TI �

" #
¼ ½UI �2 þ ½TI �2: ð83Þ

For the special case of a circular cavity in the Dirchlet problem, we can decompose ½UI �
and ½TI � into

½UI � ¼ ½F�

. .
.

l‘

. .
.

2
6664

3
7775½F�T; ð84Þ

½TI � ¼ ½F�

. .
.

m‘

. .
.

2
6664

3
7775½F�T ð85Þ

where ½F� is a modal matrix which can be chosen as either one of the following two
matrices;

U1¼
1ffiffiffiffiffiffiffi
2N

p

1 ðei
2p
2NÞ0 ðe�i

2p
2NÞ0 � � � � � � ðe�i

2ðN�1Þp
2N Þ0 ðei

2Np
2N Þ0

1 ðei
2p
2NÞ1 ðe�i

2p
2NÞ1 ..

. ..
.

ðe�i
2ðN�1Þp

2N Þ1 ðei
2Np
2N Þ1

1 ðei
2p
2NÞ2 ðe�i

2p
2NÞ2 ..

. ..
.

ðe�i
2ðN�1Þp

2N Þ2 ðei
2Np
2N Þ2

..

. ..
. ..

. ..
. ..

. ..
. ..

.

1 ðei
2p
2NÞ2N�2 ðe�i

2p
2NÞ2N�2 ..

. ..
.

ðe�i
2ðN�1Þp

2N Þ2N�2 ðei
2Np
2N Þ2N�2

1 ðei
2p
2NÞ2N�1 ðe�i

2p
2NÞ2N�1 � � � � � � ðe�i

2ðN�1Þp
2N Þ2N�1 ðei

2Np
2N Þ2N�1

2
66666666666666664

3
77777777777777775

2N�2N

;ð86Þ

U2 ¼

1ffiffiffiffiffiffiffi
2N

p

1 1 0 � � � � � � 0 1

1 cosð2p
2N
Þ sinð2p

2N
Þ ..

. ..
.

sinð2pðN�1Þ
2N

Þ cosð2pN
2N

Þ

1 cosð4p
2N
Þ sinð4p

2N
Þ ..

. ..
.

sinð4pðN�1Þ
2N

Þ cosð4pN
2N

Þ

..

. ..
. ..

. ..
. ..

. ..
. ..

.

1 cosð2pð2N�2Þ
2N

Þ sinð2pð2N�2Þ
2N

Þ ..
. ..

.
sinðpð4N�4ÞðN�1Þ

2N
Þ cosðpð4N�4ÞðNÞ

2N
Þ

1 cosð2pð2N�1Þ
2N

Þ sinð2pð2N�1Þ
2N

Þ � � � � � � sinðpð4N�2ÞðN�1Þ
2N

Þ cosðpð4N�2ÞðNÞ
2N

Þ

2
666666666666664

3
777777777777775

2N�2N

ð87Þ
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By substituting equations (84) and (85) into (83), we obtain

½C�T½C� ¼ ½F�

. .
.

ðl2
‘ þ m2

‘ Þ

. .
.

2
66664

3
77775½F�T: ð88Þ

Therefore, we have the singular values of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
‘ þ m2

‘

q
; ‘ ¼ 0;�1; . . . ;�ðN � 1Þ;N: Only the

true eigenvalues (l‘ ¼ m‘ ¼ 0) have dips in the figure of s1 versus k; i.e., the zeros of
eigensolutions (J‘ðkrÞ ¼ 0) are obtained for the Dirichlet problem.

For a circular cavity subject to the Neumann problem, we obtain the two
eigenequations

Single-layer approach : JiðkrÞJ0iðkrÞ ¼ 0 ði no sumÞ;

Double-layer approach : J0iðkrÞJ0iðkrÞ ¼ 0 ði no sumÞ: ð89Þ

The true eigensolution J0iðkrÞ ¼ 0 satisfies both equations and the spurious eigensolutions
JiðkrÞ ¼ 0 satisfies only one of equations in the single-layer potential approach for the
Neumann problem. We can combine ½LI � and ½MI � matrices by using the updating terms
to obtain an overdetermined system:

½C� ¼
LI

MI

" #
4N�2N

ð90Þ

for the Neumann problem. Since the eigensolution is non-trivial and the rank of ½C� must
be smaller than 2N: Therefore, the 2N singular values for ½C� matrix must have at least one
zero value. Based on the equivalence between the SVD technique and the least-squares
method in the mathematical essence, we have

½LI �T ½MI �T
h i ½LI �

½MI �

" #
¼ ½LI �2 þ ½MI �2: ð91Þ

For the special case of a circular cavity of the Neumann problem, we can decompose ½LI �
and ½MI � into

½LI � ¼ ½F�

. .
.

n‘

. .
.

2
6664

3
7775½F�T; ð92Þ
Table 5

The former five exact eigenvalues for a two-dimensional square cavity subject to the Dirichlet

and Neumann boundary conditions

Problem Eigenvalues 1 2 3 4 5

Dirichlet problem kmn ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
4�4429 7�0248 8�8858 9�9346 11�3271

ðm; n ¼ 1; 2; 3; . . .Þ
Neumannproblem kmn ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
3�1416 4�4429 6�2831 7�0248 8�8858

ðm; n ¼ 0; 1; 2; 3; . . .Þ
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½MI � ¼ ½F�

. .
.

k‘

. .
.

2
6664

3
7775½F�T: ð93Þ

By substituting equations (92) and (91) into equation (91), we obtain

½C�T½C� ¼ ½F�

. .
.

ðn2‘ þ k2
‘Þ

. .
.

2
6664

3
7775½F�T: ð94Þ

Therefore, we have the singular values of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2‘ þ k2

‘

q
; ‘ ¼ 0;�1; . . . ;�ðN � 1Þ;N: Only the

true eigenvalues (n‘ ¼ k‘ ¼ 0) have dips in the figure of s1 versus k; i.e., the zeros of
eigensolutions (J0‘ðkrÞ ¼ 0) are obtained for the Neumann problem.

7. METHOD TO FILTER OUT THE SPURIOUS EIGENSOLUTIONS

Fredholm’s Alternative Theorem

(1) Nonsingular system: The equation ½H�fgg ¼ fpg has a unique solution fgg ¼ ½H��1fpg
when the determinant of H is not zero. Besides, the equation has a trivial solution

fgg ¼ f0g if and only if the only continuous solution to the homogeneous equation

½H�fgg ¼ f0g: ð95Þ

(2) Singular system: Alternatively, the equation has at least one solution if the homogeneous

adjoint equation has at least one solution {fi} such that

½H�yffig ¼ f0g; ð96Þ
where ½H�y is the transpose conjugate matrix of [H] [24]. If the matrix H is real, the

transpose conjugate is equal to transpose only, i.e., ½H�y ¼ ½H�T : Moreover, a necessary

and sufficient solvability condition [25] is that the constraint ðfpgyffig ¼ 0Þ must be

satisfied. Then, the general solution can be written as

fgg ¼ f %ggg þ
XNr

i¼1

ci ffig; ð97Þ

where { %gg} is a particular solution and Nr is the rank of matrix [H]. The ci are arbitrary

constants and {fi} are bases. Moreover, the particular solution is zero for the interior

eigenproblems. The result implies that spurious eigenvalues are imbedded for both the

Neumann and Dirichlet problems once the numerical method is chosen.
Figure 3. (a) The minimum singular value for different wave numbers by using the single-layer potential
approach for the Dirichlet problem. (b) The minimum singular value for different wave numbers by using the
double-layer potential approach for the Dirichlet problem. (c) The minimum singular value for different wave
numbers by using the SVD updating term U T

� �
for the Dirichlet problem. (d) The minimum singular value for

different wave numbers by using the SVD updating document T M
� �

for the Dirichlet problem. (e) The former
three interior modes by using the single-layer potential approach for the Dirichlet problem. (f) The former three
interior modes by using the double-layer potential approach for the Dirichlet problem. (g) The former three
analytical interior modes for the Dirichlet problem.
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By employing the LM formulation in the direct method, we have

LM formulation: ½ME � fug ¼ ½LE � ftg ¼ fpg: ð98Þ
Hence the eigensolution for t is non-trivial, we have fi and ½LE �Tfi ¼ f0g such that
equation (98) reduces to

fuTg½ME �Tffig ¼ 0: ð99Þ
Since u is arbitrary for boundary excitation, we have

½ME �Tffig ¼ f0g: ð100Þ
According to Fredholm’s alternative theorem in the real-matrix system, we have the

homogeneous solutions in the linear algebraic equation if there exists a vector ffig which
satisfies

½LE �T

½ME �T

" #
ffig ¼ f0g or ffig

T ½LE � ½ME �
� �

¼ f0g: ð101Þ

It indicates that the two matrices have the same spurious mode ffig corresponding to the
zero singular value. By using the SVD technique, the two matrices in equation (101) are
decomposed into

½LE �T ¼ ½CL�½SL�½FL�T or fLE
j g ¼

X
j

sL
j fc

L
j gff

L
j g

T; ð102Þ

½ME �T ¼ ½CM �½SM �½FM �T or fME
j g ¼

X
j

sM
j fcM

j gffM
j gT: ð103Þ

By substituting equation (103) into equation (101), we haveX
j

sL
j fcjgffjg

T ffig ¼f0g !
fi �fj¼dij

sL
i fcig ¼ f0g ði no sumÞ;

X
j

sM
j fcjgffjg

T ffig ¼f0g !
fi �fj¼dij

sM
i fcig ¼ f0g ði no sumÞ; ð104Þ

where ffig and fcig are the orthonormal bases, sL
i and sM

i are the zero singular values of
½LE � and ½ME � matrices respectively. We can easily extract out the eigensolutions since
there exists the same spurious boundary mode ffig corresponding to the zero singular
values (sL

i ¼ sM
i ¼ 0).

Similarly, we can employ the UT formulation in the direct method,

UT formulation: ½UE � ftg ¼ ½TE � fug ¼ fqg: ð105Þ
Since the eigensolution for u is non-trivial, we have ffig and ½TE �Tffig ¼ f0g such that
equation (105) reduces to

ftTg½UE �Tffig ¼ 0: ð106Þ
Figure 4. (a) The minimum singular value for different wave numbers by using the single-layer potential
approach for the Neumann problem. (b) The minimum singular value for different wave numbers by using the
double-layer potential approach for the Neumann problem. (c) The minimum singular value for different wave
numbers using the SVD updating term L M

� �
for the Neumann problem. (d) The minimum singular value for

different wave numbers using the SVD updating document U L
� �

for the Neumann problem. (e) The former
three interior modes by using the single-layer potential approach for the Neumann problem. (f) The former three
interior modes by using the double-layer potential approach for the Neumann problem. (g) The former three
analytical interior modes for the Neumann problem.
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Since {t} is arbitrary for boundary excitation, we have

½UE �Tffig ¼ f0g: ð107Þ

According to Fredholm’s alternative theorem, we have the homogeneous solutions in
the linear algebraic equation if there exists a vector ffig which satisfies

½UE �T

½TE �T

" #
ffig ¼ f0g or ffig

T ½UE � ½TE �
� �

¼ f0g: ð108Þ

It indicates that the two matrices have the same spurious boundary mode ffig
corresponding to the zero singular value. By using the SVD technique, equation (108) is
expressed as

½UE �T ¼ ½C�½SU �½F�T; ð109Þ

½TE �T ¼ ½C�½ST�½F�T: ð110Þ

By substituting equation (110) into equation (108), we haveX
j

sU
j fcjgffjg

T ffig ¼f0g !
fi�fj¼dij

sU
i fcig ¼ f0g ði no sumÞ;

X
j

sT
j fcjgffjg

T ffig ¼f0g !
fi�fj¼dij

sT
i fcig ¼ f0g ði no sumÞ; ð111Þ

where ffig and fcig are the orthonormal bases, sU
i and sT

i are the zero singular values of
½UE � and ½TE � matrices, respectively. We can easily extract out the eigensolutions since
there exists the same spurious boundary mode ffig corresponding to the zero singular
values (sU

i ¼ sT
i ¼ 0).

According to the relations of the matrices between the direct method and indirect
method (equations (49)–(52)), we can filter out the spurious eigensolutions in the indirect
method by using

½LE �T

½ME �T

" #
ffig ¼ f0g LE¼TI

ME¼MI

½TI �T

½MI �T

" #
ffig ¼ f0g: ð112Þ

By employing the SVD technique, we obtainX
j

sT
j fcjgffjg

T ffig ¼f0g !
fi �fj¼dij

sT
i fcig ¼ f0g ði no sumÞ;

X
j

sM
j fcjgffjg

T ffig ¼f0g !
fi �fj¼dij

sM
i fcig ¼ f0g ði no sumÞ; ð113Þ

where ffig and fcig are the orthonormal bases, sT
i and sM

i are the zero singular values of
½TI � and ½MI � matrices, respectively. We can easily extract out the eigensolutions since
there exists the same spurious boundary mode ffig corresponding to the zero singular
values (sT

i ¼ sM
i ¼ 0).

In a similar way, we have the influence matrices by using the indirect method and
equation (108) is transformed to

½UE �T

½TE �T

" #
ffig ¼ f0gUE¼UI

TE¼LI

½UI �T

½LI �T

" #
ffig ¼ f0g: ð114Þ
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By using the SVD technique, we obtainX
j

sU
j fcjgffjg

T ffig ¼f0g !
fi �fj¼dij

sU
i fcig ¼ f0g ði no sumÞ;

X
j

sL
j fcjgffjg

T ffig ¼f0g !
fi �fj¼dij

sL
i fcig ¼ f0g ði no sumÞ; ð115Þ

where ffig and fcig are the orthonormal bases, sU
i and sL

i are the singular values of ½UI �
and ½LI � matrices, respectively. We can easily extract out the eigensolutions since there
exists the same spurious boundary mode ffig corresponding to the zero singular values
(sU

i ¼ sL
i ¼ 0).

7.1. FILTERING OUT THE SPURIOUS EIGENSOLUTIONS BY USING SVDUPDATING

DOCUMENT FORACIRCULARCASE

In solving a circular cavity problem using the double-layer potential approach, we
obtain the eigenequations

Dirichlet problem : JiðkrÞJ0iðkrÞ ¼ 0 ði no sumÞ; ð116Þ

Neumann problem : J0iðkrÞJ0iðkrÞ ¼ 0 ði no sumÞ: ð117Þ

The spurious eigensolution J0iðkrÞ are embedded in both the Dirichlet and the Neumann
problems.

Based on the dual formulation, the ½TI � and ½MI � matrices have the same spurious
eigenvalues. In order to extract the spurious eigenvalues, we can combine the ½TI � and
½MI � matrices by using the updating documents,

½D� ¼ ½TI � ½MI �
� �

2N�4N:
ð118Þ

Similarly, we have

½TI � ½MI �
� � ½TI �T

½MI �T

" #
¼ ½TI �2 þ ½MI �2: ð119Þ

For the circular cavity, the spurious eigenvalues are both embedded in the transposes
of ½TI � and ½MI � matrices according to equations (11)–(14). The singular values for ½D�
must have at least one zero singular value. To determine the singular values for ½D�; we
have

½D�½D�T ¼ ½F�

. .
.

ðm2
‘ þ k2

‘ Þ

. .
.

2
6664

3
7775½F�T: ð120Þ

By plotting the minimum singular values of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2
‘ þ k2

‘

q
; ‘ ¼ 0;�1; . . . ;�ðN � 1Þ;N versus

k; we can filter out the spurious eigenvalues (n‘ ¼ k‘ ¼ 0) where dips occur, i.e., the zeros

of eigensolutions (J0‘ðkrÞ ¼ 0) are obtained by using the double-layer potential approach.

In solving a circular cavity by using the single-layer potential approach, we obtain

Dirichlet problem: JiðkrÞJiðkrÞ ¼ 0 ði no sumÞ; ð121Þ

Neumann problem: JiðkrÞJ0iðkrÞ ¼ 0 ði no sumÞ: ð122Þ
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The spurious eigensolution JiðkrÞ are embedded in both the Dirichlet and the Neumann
problems.

In a similar way, we can combine the ½UI � and ½LI � matrices by using the updating
documents,

½D� ¼ ½UI � ½LI �
� �

2N�4N:
ð123Þ

Similarly, we have

½UI � ½LI �
� �

½UI � ½LI �
� �T¼ ½UI �2 þ ½LI �2: ð124Þ

For the special case of a circular cavity, the spurious eigenvalues are embedded in the
transpose of ½UI � and ½LI � matrices according to equations (11)–(14). The singular values
for ½D� must have at least one zero singular value. To determine the singular values for ½D�;
we have

½D�½D�T ¼ ½F�

. .
.

ðl2
‘ þ n2‘Þ

. .
.

2
66664

3
77775½F�T: ð125Þ

By plotting the minimum singular values of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
‘ þ n2‘

q
; ‘ ¼ 0;�1; . . . ;�ðN � 1Þ;N versus

k; we can filter out the spurious eigenvalues (l‘ ¼ n‘ ¼ 0) where dips occur, i.e., the zeros
of eigensolutions (J‘ðkrÞ ¼ 0) are obtained.

All the relations between the direct and indirect methods are shown in Table 2. We can
easily extract out the true and spurious eigenvalues in the indirect method or the direct
method by using the SVD updating terms and documents.

8. NUMERICAL RESULTS AND DISCUSSIONS

Case 1: Circular cavity (Dirichlet case). A circular cavity with a radius ðr ¼ 1 mÞ
subjected to the Dirichlet boundary condition ðu ¼ 0Þ is considered. In this case, an
analytical solution is available as follows:

Eigenequation:

JmðknrÞ ¼ 0; m; n ¼ 0; 1; 2; 3 . . . :

Eigenmode:

uða; yÞ ¼ JmðknaÞeimy; 04a4r; 04y42p; m; n ¼ 0; 1; 2; 3; . . . :

By collocating 10 nodes on the circular boundary, two results by using the single- and
double-layer potential approaches are obtained. The exact eigenvalues of a circular cavity
subject to the Dirichlet boundary condition are shown in Table 3. Figure 1(a) shows the
minimum singular value versus k using the single-layer potential approach. The former
four true eigenvalues are obtained as shown in Figure 1(a) by considering the near zero
minimum singular values if only the single-layer potential method is chosen. Figure 1(b)
shows the minimum singular value versus k using the double-layer potential approach.
The true eigenvalues occur at the positions of zeros for JmðknrÞ while the spurious
eigenvalues occur at the positions of zeros for J0mðknrÞ if the double-layer approach is
chosen. In order to extract out the true eigenvalues, we can combine the ½UI � and ½TI � by
using the SVD updating term. The minimum singular value versus k is shown in Figure
1(c), it is found that dips occur only at the positions of true eigenvalues. In a similar way,
we can combine the ½TI � and ½MI � by using the SVD updating document in order to filter
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out the spurious eigenvalues. The minimum singular value versus k is shown in Figure
1(d), it is found that the dips occur only at the positions of spurious eigenvalues. The first
three interior modes obtained by using the single- and double-layer potential approaches
are shown in Figures 1(e) and 1(f), and are compared well with the analytical modes in
Figure 1(g). It is observed that the nodal line can rotate in case of the eigenvalue of
multiplicity more than one. There are two independent eigenmodes with respect to the
same eigenvalue. The two modes can be linearly combined by any constants and can differ
by the phase lag. This is the reason why the one mode can be rotated to another mode. A
similar explanation can also be found in Reference [26]. It is also found that the result of
case 1 in Figure 1(e) does not match the analytical solution very well. The reason is that
the amplitudes of the modes are very small since they are multiplied by a near-zero value.
However, the nodal line can be identified. To demonstrate this point, the exact solutions
for the mode using the present method are shown to have the near-zero solutions in
Table 4. The near-zero solutions are present if the single-layer approach was applied to
solve the Dirichlet problem.

Case 2: Circular cavity (Neumann case). A circular cavity with a radius ðr ¼ 1 mÞ
subjected to the Neumann boundary condition ðt ¼ 0Þ is considered. In this case, an
analytical solution is available as follows:

Eigenequation:

J0mðknrÞ ¼ 0; m; n ¼ 0; 1; 2; 3; . . . :

Eigenmode:

uða; yÞ ¼ JmðknaÞeimy; 04a4r; 04y42p; m; n ¼ 0; 1; 2; 3; . . . :

By collocating 10 nodes on the circular boundary, two results by using the single- and
double-layer potential approaches are obtained. The exact eigenvalues of a circular cavity
subject to the Neumann boundary condition are shown in Table 3. Figure 2(a) shows the
minimum singular value versus k using the single-layer potential approach. The former
four true eigenvalues are obtained as shown in Figrue 2(a) by considering the near-zero
minimum singular values if only the single-layer potential method is chosen. Figure 2(b)
shows the minimum singular value versus k using the double-layer potential approach.
The true eigenvalues occur at the positions of zeros for J0mðknrÞ while the spurious
eigenvalues occur at the positions of zeros for JmðknrÞ if the double-layer approach is
chosen. In order to extract out the true eigenvalues, we combine the ½LI � and ½MI � by using
the SVD updating term. The minimum singular value versus k is shown in Figure 2(c), it is
found that the dips occur only at the positions of true eigenvalues. In a similar way, we
combine the ½UI � and ½LI � by using the SVD updating document in order to filter out the
spurious eigenvalues. The minimum singular value versus k is shown in Figure 2(d), it is
found that the dips occur only at the positions of spurious eigenvalues. The first three
interior modes obtained by using the single- and double-layer potential approaches are
shown in Figure 2(e) and Figure 2(f), and are compared well with the analytical modes in
Figrue 2(g) for the nodal lines. It is found that the nodal line can rotate in case of the
eigenvalue of multiplicity more than one. There are two independent eigenmodes with
respect to the same eigenvalue. The two modes can be linearly combined by any constants
and can differ by the phase lag. This is the reason why the one mode can be rotated to
another mode. A similar explanation can also be found in Reference [26]. It is also found
that the result of case 2 in Figure 2(f) does not match the analytical solution very well. The
reason is that the amplitudes of the modes are very small since they are multiplied by a
near-zero value. However, the nodal line can be identified. To demonstrate this point, the
exact solutions for the mode using the present method are shown to have the near-zero
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solutions in Table 4. The near-zero solutions are present if the double-layer approach was
applied to solve the Neumann problem.

Case 3: Square cavity (Dirichlet case). A square cavity with each side of a unit length
ðL ¼ 1Þ subjected to the Dirichlet boundary condition ðu ¼ 0Þ is considered. In this case,
an analytical solution is available as follows:

Eigenvalues:

kmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m

L

� �2

þ n

L

� �2
r

p; m; n ¼ 1; 2; 3; . . . :

Eigenmode:

sin
mpx

L

� �
sin

npx

L

� �
; m; n ¼ 1; 2; 3; . . . :

By collocating 12 nodes on the boundary, two results by using the single- and double-
layer potential approaches are obtained. The exact eigenvalues of a square cavity subject
to the Dirichlet boundary condition are shown in Table 5. Figure 3(a) shows the minimum
singular value versus k using the single-layer potential approach. The former four true
eigenvalues are obtained as shown in Figure 3(a) by considering the near-zero minimum
singular values if only the single-layer potential method is chosen. Figure 3(b) shows the
minimum singular value versus k using the double-layer potential approach. The true

eigenvalues occur at the positions of kmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm=LÞ2 þ ðn=LÞ2

q
while the spurious

eigenvalues occur if the double-layer approach is chosen. In order to extract out the

true eigenvalues, we combine the ½UI � and ½TI � by using the SVD updating term. The
minimum singular value versus k is shown in Figure 3(c), it is found that the dips occur

only at the positions of true eigenvalues. In a similar way, we combine the ½TI � and ½MI � by
using the SVD updating document in order to filter out the spurious eigenvalues. The
minimum singular value versus k is shown in Figure 3(d), it is found that the dips occur
only at the positions of spurious eigenvalues. The first three interior modes using the
single- and double-layer approaches are shown in Figure 3(e) and Figure 3(f) and are
compared with analytical modes in Figure 3(g). For the eigenvalue of multiplicity more
than one, some discrepancy for the nodal line is found since the eigensolution can be
superimposed by two independent eigensolutions of the same eigenvalue.

Case 4: Square cavity (Neumann case). A square cavity with each side of a unit length
ðL ¼ 1Þ subjected to the Neumann boundary condition ðt ¼ 0Þ is considered. In this case,
an analytical solution is available as follows:

Eigenvalues:

kmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m

L

� �2

þ n

L

� �2
r

p; m; n ¼ 0; 1; 2; 3; . . . :

Eigenmode:

cos
mpx

L

� �
cos

npx

L

� �
; m; n ¼ 0; 1; 2; 3; . . . :

By collocating 12 nodes on the boundary, two results by using the single- and double-
layer approaches are obtained. The exact eigenvalues of a square cavity subject to the
Neumann boundary condition are shown in Table 5. Figure 4(a) shows the minimum
singular value versus k using the single-layer potential approach. The former four true
eigenvalues are obtained as shown in Figure 4(a) by considering the near-zero minimum
singular values if only the single-layer potential method is chosen. Figure 4(b) shows the
minimum singular value versus k using the double-layer potential approach. The true



Table 6

The true and spurious eigenvalues for circular and square cavities using the single- and double-layer potential approaches

Boundary-value problem Eigensolution Circular cavity Square cavity

Single-layer
potential
approach

Double-layer
potential
approach

Single-layer potential
approach

Double-layer potential
approach

Dirichlet problem True eigensolution JmðkrÞ ¼ 0 JmðkrÞ ¼ 0
kmn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

L

� �2

þ n

L

� �2
r

p kmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m

L

� �2

þ n

L

� �2
r

p

(Figure 1(a)) (Figure 1(b)) ðm; n ¼ 1; 2; 3; . . .Þ ðm; n ¼ 1; 2; 3; . . .Þ
(Figure 3(a)) (Figure 3(b))

Spurious eigensolution JmðkrÞ ¼ 0 J0mðkrÞ ¼ 0
kmn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

L

� �2

þ n

L

� �2
r

p kmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m

L

� �2

þ n

L

� �2
r

p

(Figure 1(a)) (Figure 1(b)) ðm; n ¼ 1; 2; 3; . . .Þ m; n ¼ 0; 1; 2; 3; . . .Þ
(Figure 3(a)) (Figure 3(b))

Neumann problem True eigensolution J0mðkrÞ ¼ 0 J0mðkrÞ ¼ 0
kmn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

L

� �2

þ n

L

� �2
r

p kmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m

L

� �2

þ n

L

� �2
r

p

(Figure 2(a)) (Figure 2(b)) ðm; n ¼ 0; 1; 2; 3; . . .Þ m; n ¼ 0; 1; 2; 3; . . .Þ
(Figure 4(a)) (Figure 4(b))

Spurious eigensolution JmðkrÞ ¼ 0 J0mðkrÞ ¼ 0
kmn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

L

� �2

þ n

L

� �2
r

p kmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m

L

� �2

þ n

L

� �2
r

p

(Figure 2(a)) (Figure 2(b)) ðm; n ¼ 1; 2; 3; . . .Þ ðm; n ¼ 0; 1; 2; 3; . . .Þ
(Figure 4(a)) (Figure 4(b))

T
H

E
B
O

U
N

D
A

R
Y

C
O

L
L
O

C
A

T
IO

N
M

E
T
H

O
D

7
0
9



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiqJ. T. CHEN ET AL.710
eigenvalues occur at the positions of kmn ¼ ðm=LÞ2 þ ðn=LÞ2 while the spurious

eigenvalues occur if the double-layer approach is chosen. In order to extract out the

true eigenvalues, we combine the ½LI � and ½MI � by using the SVD updating term. The
minimum singular value versus k is shown in Figure 4(c), it is found that the dips occur

only at the positions of true eigenvalues. In a similar way, we combine the ½UI � and ½LI � by
using the SVD updating document in order to filter out the spurious eigenvalues. The
minimum singular value versus k is shown in Figure 4(d), it is found that the dips occur
only at the positions of spurious eigenvalues. The former three interior modes for the
single- and double-layer potential approaches are shown in Figure 4(e) and Figure 4(f),
and are compared with the analytical modes in Figure 4(g). For the eigenvalue of
multiplicity more than one, some discrepancy for the nodal line is found since the
eigensolution can be superimposed by two independent eigensolutions of the same
eigenvalue.

9. CONCLUSIONS

We have developed a new meshless method by using the imaginary-part kernel. The
imaginary part in the complex-valued fundamental solution was chosen as a radial basis
function to approximate the solution. Although this method is very simple by using only
two-point function for the influence matrices, it results in spurious eigensolutions as shown
in Table 6. Two approaches, the SVD updating terms and updating documents in
conjunction with dual formulation, were proposed to extract out the true eigensolutions
and to filter out the spurious eigensolutions, respectively, as shown in Table 2. Both cases,
circular and square cavities, subject to the Dirichlet and the Neumann boundary
conditions, were demonstrated to check the validity of the meshless formulation.
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