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The subject of scattering flexural wave in a thin plate with multiple circular inclusions

under the incident flexural wave is studied in this paper. A semi-analytical approach is

proposed to solve this problem which can be decomposed into several interior circular

inclusion problems and an exterior plate problem subject to the incident wave. The

integral formulation in conjunction with degenerate kernels, tensor transformation and

Fourier series. All dynamic kernels of plate in the direct formulation are expanded into

degenerate forms to avoid the integral singularity and further the rotated degenerate

kernels have been derived to consider the general case of multiple circular inclusions.

The proposed results for an infinite plate with one circular inclusion are compared with

the available analytical solutions to verify the validity of the proposed method. To

demonstrate the generality of the proposed method, the cases of multiple inclusions are

studied and their quasi-static results are verified by static data of FEM using ABAQUS.

Numerical results indicate that the DMCF of two inclusions is apparently larger than

that of one when two inclusions are close to each other. Fictitious frequency appearing

in the exterior problem can be suppressed by using the more number of Fourier series

terms. Numerical results show that the space between scatterers has the opposite effect

on the near-field DMCF in comparison with the far-field scattering pattern.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Plates with multiple circular inclusions are commonly observed in engineering structures. These inclusions, or
inhomogeneous materials, usually take place in terms of discontinuity such as thickness reduction due to corrosion, or
strength degradation resulted by delamination. Dynamic loadings under the circumstance always result in stress
concentration with ensuing loading capacity reduction and fatigue failure.

The deformation and corresponding stresses induced by dynamic loading are propagated throughout the structure by
means of wave. At the near field of inclusion (or scatterer), flexural wave scattered in all directions recursively interacts
with the incident wave. It turns out that the scattering of the stress wave results in dynamic stress concentration [1].
On the other hand, certain applications of the far-field scattering flexural response can be found in vibration analysis or
structural health-monitoring system such as the non-destructive inspection.

Nishimura and Jimbo [2] are two pioneer investigators to analytically study dynamic stress concentration. They
calculated the stresses in the vicinity of a spherical inclusion in the elastic solid under harmonic force. Pao [3] studied the
scattering of flexural waves and dynamic stress concentrations around a circular hole, and proposed an analytical solution.
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Since then, most research has focused on the scattering of elastic wave and dynamic stress concentration and has led to a
rapid development of analytical or numerical approach such as wave function expansion method, complex variable
method, boundary integral equation method (BIEM), boundary element method (BEM) [1] and the method of fundamental
solutions [4].

Leviatan et al. [5] presented a source-model technique for the scattering analysis of a time-harmonic flexural wave in a
thin elastic plate by a small patch made of material other than that of the plate. However, the fictitious sources are located
at a certain distance away from the boundary of the patch. By using the flux conservation relation and optical
theorem, Norris et al. [6] considered the scattering of flexural waves by a circular inclusion with different plate properties
and obtained numerical results. Squire et al. [7] applied the wave function expansion method to study the
scattering properties of a single coated cylindrical anomaly located in a thin plate on which flexural waves propagate.
Wang [8] presented a theoretical and experimental investigation of the scattering behavior of extensional and flexural
plate waves by a cylindrical inhomogeneity. Peng [9] investigated flexural wave scattering and dynamic stress
concentration in a heterogeneous plate with multiple cylindrical patches by using acoustical wave propagator technique.
The predicted result of the principal stress was compared with the exact analytical solution in a thin plate without patches.
Nevertheless, predicted results of dynamic stress concentration were not verified by any independent method. Recently,
one monograph is devoted to discussing the multiple scattering in acoustics, electromagnetism, seismology and
hydrodynamics [10].

From literature reviews stated previously, few papers except [9] have been published to date reporting the scattering of
flexural wave in plate with more than one inclusion. Recently, authors proposed a semi-analytical null-field integral
equation method for eigensolution of a circular plate with multiple circular holes [11]. The advantage of this approach is
employing the degenerate kernel to avoid calculating principal values, which is of great difficulties in the case of plate. The
introduction of degenerate kernel in companion with the Fourier series was proved to yield the exponential convergence
[12] instead of the linear algebraic convergence in BEM. Furthermore, Kobayashi and Nishimura [13] pointed out that the
integral equation method seems to be most effective to deal with two-dimensional steady-state flexural wave problems.

This paper extends the null-field integral approach to the exterior plate problem to solve flexural waves scattered by
multiple circular inclusions. A linear algebraic system can be constructed by uniformly collocating points on the boundary
and taking finite terms of Fourier series. The displacement and corresponding section force are calculated by using
boundary integral equations for the domain point after determining the Fourier coefficients of unknown boundary density.
For the multiply-connected plate problem, the slope (bending angle) and moment in the normal and tangential directions
are determined with care in the adaptive observer system. Therefore, the operator of transformation matrix for the slope
and moment is employed to deal with this problem. The results for an infinite plate with one circular inclusion are
compared with the analytical solutions [6,7] to verify the validity of the proposed method. For the cases of small wave
number, the quasi-static results of our propose method are confirmed by static data of finite element method (FEM) using
ABAQUS [14]. Finally the effect of central distance between inclusions on the near-field DMCF and the far-field scattering
pattern are also investigated.
2. Problem statement and boundary integral formulation

2.1. Problem statement

The governing equation of a uniform infinite thin plate with randomly distributed circular inclusions subject to a time-
harmonic flexural wave, as shown in Fig. 1, is

r4uðxÞ ¼ k4uðxÞ x 2 O (1)

where r4 is the biharmonic operator, O is the domain of the thin plate, u(x) is the out-of-plane elastic displacement, x is
the position vector of the field point in the domain, k4 ¼ o2r0h=D, k is the wave number of elastic wave, o is the circular
frequency, r0 is the volume density, D ¼ Eh3=12ð1� m2Þis the flexural rigidity, E denotes the Young’s modulus, m is the
Poisson’s ratio, and h is the plate thickness.
2.2. Boundary integral equation for the collocation point in the domain

The integral representation for the plate problem can be derived from the Rayleigh–Green identity [15] as follows:

uðxÞ ¼

Z
B

Uðs; xÞvðsÞdBðsÞ �

Z
B
Yðs; xÞmðsÞdBðsÞ þ

Z
B

Mðs; xÞyðsÞdBðsÞ �

Z
B

Vðs; xÞuðsÞdBðsÞ; x 2 O (2)

where B is the boundary of the domain O, uðsÞ, yðsÞ, m(s) and v(s) are displacement, normal bending slope, bending moment
and shear force of source point s along the boundary B, respectively. Uðs; xÞ, Yðs; xÞ, Mðs; xÞ and Vðs; xÞin Eq. (2) are kernel
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Fig. 1. Problem statement for an infinite thin plate containing multiple circular inclusions subject to an incident time-harmonic flexural wave.
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functions. The kernel function Uðs; xÞ in Eq. (2),

Uðs; xÞ ¼
1

8k2D
Y0ðkrÞ � iJ0ðkrÞ þ

2

p
K0ðkrÞ

� �
(3)

is the fundamental solution [15] which satisfies

r
4Uðs; xÞ � k4Uðs; xÞ ¼ dðs� xÞ (4)

where dðs� xÞ is the Dirac-delta function, Y0ðkrÞ andK0ðkrÞ are the zeroth-order of the second-kind Bessel and modified
Bessel functions, respectively, J0ðkrÞ is the zeroth-order of the first-kind Bessel function, r � js� xj and i2 ¼ �1. The other
three kernel functions, Yðs; xÞ, Mðs; xÞ and Vðs; xÞ, in Eq. (2) can be obtained by applying the following slope, moment and
effective shear operators defined by [17]

KY ¼
qð�Þ
qn

(5)

KM ¼ �D mr2
ð�Þ þ ð1� mÞ q

2
ð�Þ

qn2

" #
(6)

KV ¼ �D
q
qn
r2
ð�Þ þ ð1� mÞ q

qt

q
qn

q
qt
ð�Þ

� �� �� �
(7)

to the kernel Uðs; xÞ with respect to the source point, where q=qn and q=qt are the normal and tangential derivatives,
respectively, r2 means the Laplacian operator.
2.3. Null-field integral equations

The null-field integral equations of displacement can be derived from Eq. (2) and by collocating the field point outside
the domain, as follows:

0 ¼

Z
B

Uðs; xÞvðsÞdBðsÞ �

Z
B
Yðs; xÞmðsÞdBðsÞ þ

Z
B

Mðs; xÞyðsÞdBðsÞ �

Z
B

Vðs; xÞuðsÞdBðsÞ; x 2 OC
[ B (8)

Regarding the null-field integral equations of slope, it can be obtained by applying Eq. (5) to Eq. (8), as follow:

0 ¼

Z
B

Uyðs; xÞvðsÞdBðsÞ �

Z
B
Yyðs; xÞmðsÞdBðsÞ þ

Z
B

Myðs; xÞyðsÞdBðsÞ �

Z
B

Vyðs; xÞuðsÞdBðsÞ; x 2 OC
[ B (9)

where OC is the complementary domain of O. It is noted that once kernel functions are expressed in proper degenerate
forms, which will be described in the next subsection, the collocation points can be exactly located on the real boundary,
that is x 2 OC

[ B. The other two null-field integral equations can be derived by substituting Eq. (8) into Eq. (6) and Eq. (7),
respectively, and the explicit expressions can be seen in [11].
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2.4. Adaptive observer system, degenerate kernels and Fourier series for boundary densities

Since the direct boundary integral equations are frame indifferent (i.e. rule of objectivity), the origin of the observer
system can be adaptively located on the center of each circle under integration. In the adaptive polar coordinate, the field
point x and source point s can be expressed as ðr;fÞ and ðR; gÞ, respectively. By employing the addition theorem [16], the
kernel function Uðs; xÞ of Eq. (3) can be expanded in the series form as follows:

U :

UIðs; xÞ ¼
1

8k2D

X1
m¼0

em JmðlrÞ½YmðkRÞ � iJmðkRÞ� þ
2

p
ImðkrÞKmðkRÞ

� �
cosðmðg� fÞÞ; roR

UEðs; xÞ ¼
1

8k2D

X1
m¼0

em JmðlRÞ½YmðkrÞ � iJmðkrÞ� þ
2

p
ImðkRÞKmðkrÞ

� �
cosðmðg�fÞÞ; rZR

8>>>><
>>>>:

(10)

where em is the Neumann factor (em ¼ 1, m=0; em ¼ 2, m=1,2,y,N) and the superscripts ‘‘I’’ and ‘‘E’’ denote the interior and
exterior cases for Uðs; xÞ degenerate kernels to distinguish roR and r4R, respectively, as shown in Fig. 2. By comparing
Eq. (10) with Eq. (3), it is noted that the variable of r, the distance between the field point and the source point, is
replaced with two variables of R and r. By this way, the singularity does not occur when r equals to zero, i.e.
the source point coincides with the field point. The advantage of using degenerate kernels in integral equations is
free of calculating the principal values through a bump contour by locating the null-field point exactly on the
real boundary. The degenerate kernels Yðs; xÞ, Mðs; xÞ and Vðs; xÞ in the null-field boundary integral equations
can be obtained by applying the operators of Eqs. (5)–(7) to the degenerate kernel Uðs; xÞ with respect to the source
point s.

In order to fully utilize the geometry of circular boundary, the displacement uðsÞ, slope yðsÞ, moment mðsÞ and shear
force vðsÞ along the circular boundaries in the null-field integral equations can be expanded in terms of Fourier series,
respectively, as shown below:

uðsÞ ¼ uc0 þ
XM
n¼1

ðucn cos ngþ usn sin ngÞ; s 2 B (11)

yðsÞ ¼ yc0 þ
XM
n¼1

ðycn cos ngþ ysn sin ngÞ; s 2 B (12)

mðsÞ ¼ mc0 þ
XM
n¼1

ðmcn cos ngþmsn sin ngÞ; s 2 B (13)

vðsÞ ¼ vc0 þ
XM
n¼1

ðvcn cos ngþ vsn sin ngÞ; s 2 B (14)

where uc0, ucn, usn, yc0, ycn, ysn, mc0, mcn, msn, vc0, vcn and vsn are the Fourier coefficients and M is the truncated number of
Fourier series terms.

Fig. 3 shows the circular boundary integration in the adaptive observer system. The dummy variable in the circular
contour integration is the angle (g) instead of radial coordinate (R). By using the orthogonal property between
degenerate kernels and Fourier series, all the improper boundary integrals in Eqs. (8)–(9) can be transformed
to series sum and then be determined analytically free of principal value sense. By comparing Eq. (10) with Eq. (3),
jc

( )eU s,x

( )iU s,xR
ρ

Interior Exterior 

γ

x

x s

φ

Fig. 2. Degenerate kernel for U(s,x).
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Fig. 3. Collocation point and boundary contour integration in the boundary integral equation for the plate by using the adaptive observer system.
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it is noted that the variable r, |x�s|, is replaced with the variables, R and r. Consequently, the singularity will not
occur when the collocation points are exactly located on the real boundary and the source point coincides with the field
point, i.e. r=0.
3. Transformation of tensor components

For the case of multiple inclusions, it is inevitable that the source and field points locate on different circular
boundaries. The calculated boundary data such as the slope, moment and effective shear force should be transformed to
the direction where the specified boundary conditions are given. As shown in Fig. 4, fi is the angle of the collocation
point xi with respect to oi, which is center of the circle under integration, fc is that with respect to oj, which is center
of the circle on which collocation point is located. According to the transformation law for the components of tensor, we
have

ð�Þn

ð�Þt

" #
¼

cosðdÞ sinðdÞ
�sinðdÞ cosðdÞ

" #
ð�Þr

ð�Þf

" #
(15)

ð�Þnn

ð�Þtt

ð�Þnt

2
64

3
75 ¼

cos2ðdÞ sin2
ðdÞ 2 sinðdÞ cosðdÞ

sin2
ðdÞ cos2ðdÞ �2 sinðdÞ cosðdÞ

�sinðdÞ cosðdÞ sinðdÞ cosðdÞ cos2ðdÞ � sin2
ðdÞ

2
664

3
775
ð�Þrr

ð�Þff

ð�Þrf

2
64

3
75 (16)
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Based on Eqs. (15) and (16), the general rotated slope and tangential bending moment kernels can be obtained by
following operators:

KR
Y ¼ cosðdÞ

qð�Þ
qn
þ sinðdÞ

qð�Þ
qt

(17)

KR
T ¼ �D ½mþ ð1� mÞ cos2ðdÞ�r2

ð�Þ þ cosð2dÞðm� 1Þ
q2
ð�Þ

qn2
� sinð2dÞð1� mÞ q

qn

qð�Þ
qt

� �( )
(18)

where d ¼ fc �fi. When fc equals to fi or the angle difference d equals to zero, Eq. (17) is simplified to Eq. (5). The
expressions of rotated degenerate kernels, Uyðs; xÞ, Yyðs; xÞ, Myðs; xÞ, Utðs; xÞ, Ytðs; xÞ, Mtðs; xÞ and Vtðs; xÞ, can be obtained by
applying the operators of Eqs. (17) and (18) to the degenerate kernel Uðs; xÞ, Yðs; xÞ, Mðs; xÞ and Vðs; xÞ with respect to the
field point x.

4. Linear algebraic systems

Consider an infinite plate containing H non-overlapping circular inclusions shown in Fig. 3, where x is the collocation
point, oj (j=1,2,y,H) is the position vector of each center of circular inclusions, Rj and Bj denote the radius and the boundary
of the jth circular inclusion, respectively. Since the four null field integral equations [11] in the plate formulation are
provided, there are 6 ðC4

2 Þ options of choosing any two equations to solve the problems. For the purpose of computational
efficiency, Eqs. (8) and (9) are used to analyze the plate problem. By uniformly collocating N (=2Mþ1) points on each
circular boundary in Eqs. (8) and (9), we have

0 ¼
XH

j¼1

Z
Bj

Z
Bj

fUðs; xÞvðsÞ �Yðs; xÞmðsÞ þMðs; xÞyðsÞ � Vðs; xÞuðsÞgdBjðsÞ; x 2 OC
[ B (19)

0 ¼
XH

j¼1

Z
Bj

fUyðs; xÞvðsÞ �Yyðs; xÞmðsÞ þMyðs; xÞyðsÞ � Vyðs; xÞuðsÞgdBjðsÞ; x 2 OC
[ B (20)

In the Bj integration, the origin of the observer system is adaptively located at the center oj from which the degenerate
kernels and Fourier series are described. The selection of interior or exterior degenerate kernel depends on roR or r4R,
respectively, according to the observer system. By using orthogonal property, a linear algebraic system can be written as
follows:

U11 �Y11 U12 �Y12
� � � U1H �Y1H

U11
y �Y11

y U12
y �Y12

y � � � U1H
y �Y1H

y

U21 �Y21 U22 �Y22
� � � U2H �Y2H

U21
y �Y21

y U22
y �Y22

y � � � U2H
y �Y2H

y

^ ^ ^ ^ & ^ ^

UH1 �YH1 UH2
y �YH2

� � � UHH �YHH

UH1
y �YH1

y UH2
y �YH2

y � � � UHH
y �YHH

y

2
66666666666664

3
77777777777775

v1

m1

v2

m2

^

vH

mH

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

¼

�M11 V11 �M12 V12 � � � �M1H V1H

�M11
y V11

y �M12
y V12

y � � � �M1H
y V1H

y

�M21 V21 �M22 V22 � � � �M2H V2H

�M21
y V21

y �M22
y V22

y � � � �M2H
y V2H

y

^ ^ ^ ^ & ^ ^

�MH1 VH1 �MH2
y VH2 � � � �MHH VHH

�MH1
y VH1

y �MH2
y VH2

y � � � �MHH
y VHH

y

2
6666666666664

3
7777777777775

y1

u1

y2

u2

^

yH

uH

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

(21)

For brevity, a unified form [Uij] (i ¼ 1;2;3; . . . ;H and j ¼ 1;2;3; . . . ;H) denote the response of Uðs; xÞ kernel at the ith
circle point due to the source at the jth circle. Otherwise, the same definition is for [Yij], [Mij], [Vij], ½Uij

y �, ½Y
ij
y�, ½M

ij
y � and ½Vij

y �

kernels. The explicit expressions for sub-vectors [ui], [yi], [mi] and [vi] can be described as follows:

ui ¼

ui
c0

ui
c1

ui
s1

^

ui
cM

ui
sM

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
; yi

¼

yi
c0

yi
c1

yi
s1

^

yi
cM

yi
sM

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

; mi ¼

mi
c0

mi
c1

mi
s1

^

mi
cM

mi
sM

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
; vi ¼

vi
c0

vi
c1

vi
s1

^

vi
cM

vi
sM

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

(22)
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The explicit expressions for the sub-matrices of [Uij], [Yij], [Mij], [Vij], ½Uij
y �, ½Y

ij
y�, ½M

ij
y � and ½Vij

y � can be written as shown
below:

Kij ¼

Kij
0Cðr1;f1Þ Kij

1Cðr1;f1Þ Kij
1Sðr1;f1Þ � � � Kij

MSðr1;f1Þ

Kij
0Cðr2;f2Þ Kij

1Cðr2;f2Þ Kij
1Sðr2;f2Þ � � � Kij

MSðr2;f2Þ

^

^

^

^

^

^

^

^

Kij
0CðrN ;fNÞ Kij

1CðrN ;fNÞ Kij
1SðrN ;fNÞ � � � Kij

MSðrN ;fNÞ

2
6666666664

3
7777777775

N�N

(23)

where K can be either one of Uðs; xÞ, Yðs; xÞ, Mðs; xÞ, Vðs; xÞ, Uyðs; xÞ, Yyðs; xÞ, Myðs; xÞ and Vyðs; xÞ. The notations fk and rk

ðk ¼ 1;2;3; . . . ;NÞ shown in Fig. 3 are the angle and radius of the k-th collocation point on the i-th circular boundary with
respect to the center of the j-th circular boundary (the origin of the observer system) and the element of the sub-matrices
can be determined by

Kij
nCðrk;fkÞ ¼

Z 2p

0
KðRj; gj;rk;fkÞ cosðngjÞðRjdgjÞ; n ¼ 0;1;2; . . . ;M (24)

Kij
nSðrk;fkÞ ¼

Z 2p

0
KðRj; gj;rk;fkÞ sinðngjÞðRjdgjÞ; n ¼ 1;2; . . . ;M (25)

5. Techniques for solving scattering problems of inclusions

For an infinite thin plate with H circular inclusions subject to an incident flexural wave, the systems for surrounding
plate, or matrix, and inclusions can be represented, respectively, as follows:

UM11 �YM11 � � � UM1H �YM1H

UM11

y �YM11

y � � � UM1H

y �YM1H

y

^ ^ & ^ ^

UMH1 �YMH1 � � � UMHH �YMHH

UMH1

y �YMH1

y � � � UMHH

y �YMHH

y

2
66666664

3
77777775

vsc
1

msc
1

^

vsc
H

msc
H

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
þ

MM11 �VM11 � � � MM1H �VM1H

MM11

y �VM11

y � � � MM1H

y �VM1H

y

^ ^ & ^ ^

MMH1 �VMH1 � � � MMHH �VMHH

MMH1

y �VMH1

y � � � MMHH

y �VMHH

y

2
66666664

3
77777775

ysc
1

usc
1

^

ysc
H

usc
H

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
¼ 0 (26)

UIj �YIj

U
Ij

y �YIj

y

" #
vj

mj

( )
þ

MIj �VIj

M
Ij

y �V
Ij

y

" #
yj

uj

( )
¼ 0; j ¼ 1; . . . ;H (27)

where the subscript j denotes the jth circular inclusion, the superscript M and I denote the matrix and inclusion,
respectively, the superscript sc denotes the scattered field from the boundary between plate and inclusion. The
displacement uj, slope yj, moment mj and shear force vj are unknown variables along each circular boundary Bj (j=1,y,H).
For the scattering plate problem with an uncoated circular inclusion, it can be further decomposed into three parts (a) an
interior circular inclusion problem, (b) an exterior scattering plate problem and (c) the incident wave field, as shown in
Fig. 5. For satisfying the continuity conditions of displacement, slope, normal bending moment and effective shear on the
each circular boundary, the scattering boundary conditions in part (b) are

usc
j ¼ uj � ui

j; j ¼ 1; . . . ;H (28)

ysc
j ¼ yj � yi

j; j ¼ 1; . . . ;H (29)

msc
j ¼ mj �mi

j; j ¼ 1; . . . ;H (30)

vsc
j ¼ vj � vi

j; j ¼ 1; . . . ;H (31)

where the subscript i denotes the incident wave. By substituting Eqs. (28)–(31) into Eq. (26) and then combining
with Eq. (27), the system for an infinite plate containing two uncoated circular inclusions, for instance, can be
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represented as
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f v
1

f m
1

0

0

f v
2

f m
2

0

0

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

(32)

where

f v
1 ¼ UM11 vi

1 �YM11 mi
1 þMM11yi

1 � VM11 ui
1 þ UM12 vi

2 �YM12 mi
2 þMM12yi

2 � VM12 ui
2 (33)

f m
1 ¼ UM11

y vi
1 �YM11

y mi
1 þMM11

y yi
1 � VM11

y ui
1 þ UM12

y vi
2 �YM12

y mi
2 þMM12

y yi
2 � VM12

y ui
2 (34)

f v
2 ¼ UM21 vi

1 �YM21 mi
1 þMM21yi

1 � VM21 ui
1 þ UM22 vi

2 �YM22 mi
2 þMM22yi

2 � VM22 ui
2 (35)

f m
2 ¼ UM21

y vi
1 �YM21

y mi
1 þMM21

y yi
1 � VM21

y ui
1 þ UM22

y vi
2 �YM22

y mi
2 þMM22

y yi
2 � VM22

y ui
2 (36)
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For the coated inclusion shown in Fig. 6, i.e. the inclusion being coated some material other than the surrounding plate,
the system for an infinite plate containing two coated circular inclusions, for instance, can be represented by
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Fig. 6. Decompositon of scattering plate problem with a coated inclusion into (a) an interior annular inclusion problem, (b) an interior circular inclusion

problem, (c) an exterior scattering plate problem and (d) incident wave field.
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where

f v
1 ¼ UM11 vi

1 �YM11 mi
1 þMM11yi

1 � VM11 ui
1 þ UM13 vi

3 �YM13 mi
3 þMM13yi

3 � VM13 ui
3 (38)

f m
1 ¼ UM11

y vi
1 �YM11

y mi
1 þMM11

y yi
1 � VM11

y ui
1 þ UM13

y vi
3 �YM13

y mi
3 þMM13

y yi
3 � VM13

y ui
3 (39)

f v
3 ¼ UM31 vi

1 �YM31 mi
1 þMM31yi

1 � VM31 ui
1 þ UM33 vi

3 �YM33 mi
3 þMM33yi

3 � VM33 ui
3 (40)

f m
3 ¼ UM31

y vi
1 �YM31

y mi
1 þMM31

y yi
1 � VM31

y ui
1 þ UM33

y vi
3 �YM33

y mi
3 þMM33

y yi
3 � VM33

y ui
3 (41)

After calculating the displacement, slope, moment and effective shear force along the boundary, the scattered field can
be solved by employing the boundary integral equation for the domain point. The total field is determined by
superimposing the scattered field and the incident field as follow:

u ¼ usc þ ui (42)

The tangential bending moment MtðxÞ can be determined by applying the operator of Eq. (19) to the total field with
respective to the field point.

5.1. Dynamic moment concentration factor

An incident flexural wave is represented by

ui ¼ ui
0eikðx cosðf0Þþy sinðf0ÞÞ (43)
a
o

0
i ikxu e

ρ

φ

x

s

Fig. 7. An infinite plate containing an uncoated inclusion subject to an incident flexural wave.
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where ui
0 is the amplitude of incident wave, k is the wave number and f0 is the incident angle. Under the polar coordinate,

the bending moment and effective shear force induced by the incident wave can be determined by substituting Eq. (43)
into Eqs. (6) and (7). By setting the amplitude of incident wave ui

0 ¼ 1, the amplitude of moment produced by the incident
wave is

M0 ¼ Dk2 (44)

The dynamic moment concentration factor (DMCF) at any field point x can be determined as

DMCFðxÞ ¼ MtðxÞ=M0 (45)

5.2. Scattered far-field amplitude

For the most part of scattering applications, it is interesting to measure the scattered field far away from the scatter. On
the other hand, the asymptotic behavior or uniqueness of fundamental solutions is an important issue for the numerical
computation. Therefore, we examine the behavior of the scattered response in the far field. The scattered far-field
amplitude f(y) [5] in our approach is defined as

f ðyÞ ¼ lim
r-1

ffiffiffiffiffiffi
2r

p
� uscðrÞ (46)

where uscðrÞ is the out-of-plane elastic displacement of scattered field, r is the radius of the field point.
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6. Numerical results and discussions

The following numerical simulation utilizes the proposed method for finding dynamic moment concentration factor
(DMCF) around circular inclusions as well as the scattered far-field amplitude. For the cases of small wave number, the
same plate problem is independently solved by using FEM (the ABAQUS software) for comparison. In all cases, the
thickness of plate is 0.002 m unless otherwise specified. The general-purpose triangular shell element, S3, of ABAQUS was
used to model the plate element. According to theoretical manual of ABAQUS [14], these elements do not suffer from
transverse shear locking even though the thickness of the plate is merely 0.002 m.

6.1. Case 1: An infinite plate with uncoated circular inclusions [6]

An infinite plate with one uncoated circular inclusion of radius a, as shown in Fig. 7, subject to incident flexural wave
with f0 ¼ 0 was firstly considered. Fig. 8 shows the DMCF on the circular boundary, at p/2, versus the dimensionless wave
number by using different number of terms of Fourier series. It indicates that the required number of terms to convergence
increases as the incident wave number becomes larger.

In the limit of zero wave number [1] like ka=0.005, the excitation of incident wave is equivalent to the static loading
with moment Mxx ¼ M0 and Myy ¼ vM0 at the four sides. For comparison, a 16 m�16 m plate containing one uncoated
inclusion with radius 1m subject to static bending moments, Mxx ¼ 1:0 and Myy ¼ 0:3 at the four sides was considered in
the FEM model where 32138 triangle elements was generated. Figs. 9(a) and (b) show the polar plot of dynamic moment
concentration factors on the circular boundary of the matrix and inclusion, respectively, by using the present method and
FEM. Good agreements can be observed.

Fig. 10 shows the far-field scattering patterns for a flexible inclusion with h1=h/2 at different dimensionless wave
numbers ka=0.1, 1.0, 3.0 and 5.0. As ka increases, the scattering pattern inclines toward forward scattering and the
associated scattering amplitude also get increasing. Fig. 11 shows the far-field backscattering amplitude versus the
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Fig. 17. Far-field scattering pattern for two flexible inclusions with h1=h/2 and L/a=10.0 at dimensionless wave numbers ka=0.1, 1.0, 3.0 and 5.0.
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dimensionless wave number by using (a) the present method and (b) the method of Norris et al. [6], where the surrounding
plate is steel of thickness 0.025 m, solid line for the hole, dashed line for the rigid inclusion and dash-dot line for the
inclusion with thickness 0.0125 m. The rigid inclusion means the clamped boundary condition around the circular
boundary. It is observed that the proposed results match well with those reported in [6]. It can be found that the amplitude
for the scattering response in the far field is O ðr�1=2Þ to satisfy the radiation condition.

To demonstrate the flexural wave scattered by multiple inclusions, two identical uncoated inclusions were considered
in Fig. 12, where L is the central distance. In the following simulation, the dimensionless central distance L/a will be used.
For L/a=2.1, Fig. 13 shows the DMCF on the upper circular boundary of inclusion, at �p/2, versus the dimensionless wave
number by using different number of Fourier series terms. The results using fewer Fourier series terms such as M=4, 6 show
some peaks at ka=3.2, 4.6. They are found to be identical to the true eigenvalues, 3.196, 4.610 [17], of the clamped circular
plate with radius equaling to that of the inclusion. Actually they are the so-called fictitious frequencies of the exterior
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problem. It demonstrates that the increasing number of Fourier series terms can suppress the appearance of fictitious
frequencies.

For the dimensionless central distance L/a=2.1, Fig. 14 shows the distribution of DMCF on the upper circular boundary,
including plate and inclusion, by using both the present method and FEM. It indicates that the maximum DMCF is larger
than that of one, as shown in Fig. 9, due to the narrow space between two inclusions. When the space between two
inclusions increases such as L/a=4.0, the maximum DMCF decreases as shown in Fig. 15. Figs. 16 and 17 show the far-field
scattering patterns for two flexible inclusions with h1=h/2 and L/a=2.1, 10.0, respectively, at ka=0.1, 1.0, 3.0 and 5.0. After
comparing with the results of one inclusion presented in Fig. 10, the far-field scattering amplitude of two inclusions is
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Fig. 21. An infinite plate with two coated inclusions subject to an incident flexural wave.
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more or less twice as large as that of one. In addition, the associated fluctuation along the angular direction of two
inclusions is more evident than that of only one. Moreover, this trend becomes obvious as the dimensionless central
distance increases.
6.2. Case 2: An infinite plate with coated inclusions [7]

An infinite plate containing one coated inclusion with inner and outer radius of a and b, respectively, subject to the
incident flexural wave with f0 ¼ 0 was considered in Fig. 18. Comparing with uncoated inclusion, convergence study
indicates that the rate of convergence decreases and the required number of terms to convergence increases due to the
complicated configuration of the coated inclusion. However, the proposed quasi-static results still agree well with static
data by using FEM.

An infinite plate with (1) an unstepped and stepped indentation, and (2) an unstepped and stepped protrusion, subject
to the incident flexural wave with f0 ¼ 0 was considered in [7]. Figs. 19 and 20 show the far-field backscattering
amplitude versus the dimensionless wave number for indentation and protrusion by using (a) the present method and
(b) the method of Norris et al. [6] and Squire et al. [7], respectively. It is indicated that the proposed results match well with
those of Norris and Vemula [6] for uncoated inclusion and agree with those of Squire [7] for the coated inclusion except at
larger wave number. It shows that, for unstepped cases, the far-field backscattering amplitude of indentation increases
with the wave number increasing but that of protrusion decreases. For stepped cases, the far-field backscattering
amplitudes are more complicated and the number of troughs increases.

In the end, we consider two coated inclusions subject to the incident flexural wave with f0 ¼ 0 as shown in Fig. 21. For
L/a=4.1, Fig. 22 shows the convergence analysis for the upper circular boundary of annular inclusion, at �p/2 and some
peaks appear at ka=1.6, 2.3 due to using fewer Fourier series terms. They are found to be equal to the true eigenvalues,
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Fig. 24. Far-field scattering pattern for two flexible inclusions with L/a=20.0, h1=h/2, surrounded by a coating of twice the radius with h2=3h/4 at
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1.5980, 2.3060 [17], of the clamped circular plate with radius equaling to the outer radius of coated inclusion. Figs. 23
and 24 show the far-field scattering pattern for two flexible inclusions with h1=h/2 and L/a=4.1, 20.0, respectively,
surrounded by a coating of twice the radius with h2=3h/4 at different dimensionless wave numbers ka=0.1, 1.0, 3.0 and 5.0.
After comparing with the uncoated case shown in Figs. 16 and 17, the fluctuation of far-field scattering along the angular
direction is more evident, especially at high wave number.

In summary, the space between scatterers has the different effect on the near-field DMCF and the far-field scattering
pattern, respectively. Specifically, the near-field DMCF increases as L/a decreases, as shown in Figs. 14 and 15, but the
fluctuation of the far-field scattering along the angular direction becomes evident when L/a increases, as shown in Figs. 16,
17, 23 and 24. It implies that the multiple scattering can be simplified by using the single-scattering approximation in
studying the near field problem when the spacing between scatterers is large enough, but the far field study cannot follow
this rule.

Our semi-analytical method has advantages over both analytical method and the conventional BEM. First, it is clearly
convinced that the null-field integral equation approach is applicable to problems with multiple canonical inclusions
which the analytical solution is not available. Second, the Fourier series is employed to represent the boundary density and
it can be considered as natural coordinates. Consequently, our semi-analytical method has better accuracy over the
conventional BEM. In summary, our proposed method has several advantages of (1) free of principal value (2) fast
convergence and high accuracy (3) well-posed model. The only disadvantage is that the application to other shape is
limited to the degenerate kernel if it is not provided.

7. Concluding remarks

A semi-analytical approach to solve the problem of flexural wave scattered by multiple circular inclusions in an infinite
thin plate was presented. The proposed semi-analytical method has advantages over both the analytical methods and the
numerical methods, such as the conventional BEM. On one hand, it is clearly convinced that the null-field integral equation
approach is applicable to problems with multiple canonical inclusions which cannot be solved easily by analytical
methods. On the other hand, it is supposed that this semi-analytical method should have advantages, such as the better
accuracy over the conventional BEM. Our studies focus on the issues of DMCF around the circular inclusion and the far-field
scattering pattern. For an infinite plate with one circular inclusion, good agreement between the present method and
analytical solution is observed. For the cases of multiple inclusions, the quasi-static results match well with the static
results from FEM using ABAQUS. Numerical results indicate that DMCF of two inclusions is apparently larger than that of
one. Moreover it indicates that the space between two inclusions has different effects on the near-field DMCF and the far-
field scattering pattern. It is helpful for further study on the multiple scattering. As seen from the numerical results, the
proposed method provides a semi-analytical solution for the problem of scattering flexural wave by multiple circular
inclusions in an infinite thin plate subject to the incident wave, since its analytical solution is not yet available to date.
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