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ABSTRACT 

In this paper, a regularized meshless method (RMM) 
is developed to solve the two-dimension Laplace 
problem with multiply-connected domain. The 
solution is represented by using the double layer 
potential. The source points can be located on the real 
boundary by using the proposed regularized technique 
to regularize the singularity and hypersingularity of 
the kernel functions. The difficulty of the coincidence 
of the source and collocation points is avoided and 
thereby the diagonal terms of influence matrices are 
easily determined. The numerical results demonstrate 
the accuracy of the solutions after comparing with 
those of exact solution and BEM for the Dirichlet, 
Neumann and mixed-type problems with multiple 
holes. Good agreements are observed. 

 

Keywords: regularized meshless method, 
hypersingularity, multiple holes, double layer 
potential. 

1. INTRODUCTION 

In recent years, science and engineering 
communities have paid much attention to the 
meshless method in which the element is free. 
Because of neither domain nor boundary meshing 
required for the meshless method, it is very attractive 
for engineers in model creation. Therefore, the 
meshless method becomes promising in solving 
engineering problems. 

The method of fundamental solutions (MFS) is one 
of the meshless methods and belongs to a boundary 
method of boundary value problems, which can be 
viewed as a discrete type of indirect boundary element 
method. The MFS was attributed to Kupradze in 1964 
[10], and had been applied to potential [9], Helmholtz 
[5], diffusion [4], biharmonic [11] and elasticity 
problems [3]. In the MFS, the solution is 
approximated by a set of fundamental solutions of the 
governing equations which are expressed in terms of 
sources located outside the physical domain. The 
unknown coefficients in the linear combination of the 

fundamental solutions are determined by matching the 
boundary condition. The method is relatively easy to 
implement. It is adaptive in the sense that it can take 
into account sharp changes in the solution and in the 
geometry of the domain and can easily incorporate 
complex boundary conditions [11]. A survey of the 
MFS and related method over the last thirty years can 
be found in Ref. [9]. However, the MFS is still not a 
popular method because of the debatable artificial 
boundary (off-set boundary) distance for source 
location in numerical implementation especially for a 
complicated geometry. The diagonal coefficients of 
influence matrices are divergent in conventional case 
when the off-set boundary approaches the real 
boundary. In spite of its gain of singularity free, the 
influence matrices become ill-posed when the off-set 
boundary is far away from the real boundary. It results 
in an ill-posed problem since the condition number for 
the influence matrix becomes very large. 

Recently, Young et al. [13] developed a modified 
MFS, namely regularized meshless method (RMM), 
to overcome the drawback of MFS for solving the 
Laplace equation. The method eliminates the 
well-known drawback of equivocal artificial boundary. 
The subtracting and adding-back technique [13] can 
regularize the singularity and hypersingularity of the 
kernel functions. This method can simultaneously 
distribute the observation and source points on the 
real boundary even using the singular kernels instead 
of non-singular kernels [8]. The diagonal terms of the 
influence matrices can be extracted out by using the 
proposed technique. However, the problem solved in 
[13] is limited for simply-connected problems. For the 
Laplace problem with multiply-connected domain, the 
solutions can be obtained by using the finite 
difference method (FDM) [12] and the boundary 
element method (BEM) [1,6]. The conventional MFS 
has also been employed to solve the Laplace problem 
with multiple circular holes [7].  

Following the sources of [13] for simply-connected 
problems, we extend to the multiply-connected 
problems by using the RMM in this paper. A 
general-purpose program is developed to solve the 
multiply-connected Laplace problems. The results 
will be compared with those of the BEM and 
analytical solutions. Furthermore, the sensitivity and 



中華民國力學學會第廿九屆全國力學會議   新竹市 國立清華大學 動力機械工程學系   94 年 12 月 16-17 日 
The 29th National Conference on Theoretical and Applied Mechanics, December 16-17, 2005, NTHU, Hsinchu, Taiwan, R.O.C. 
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

 G020-2 

convergent test will be studied through several 
examples to show the validity of our method. 

2. FORMULATION 

2.1 Governing equation and boundary conditions  

Consider a boundary value problem with a potential 
)(xu , which satisfies the Laplace equation as 

follows: 
,,0)(2 Dxxu ∈=∇  (1)

subject to boundary conditions, 

uxu =)( , u
pBx∈ , mp ,,3,2,1 L= (2)

txt =)( , t
qBx∈ , mp ,,3,2,1 L=  (3)

where 2∇  is Laplacian operator, D is the domain of 

the problem, 
u(x)

t(x) =
nx

∂

∂
, m is the total number of 

boundaries including m-1 numbers of inner 
boundaries and one outer boundary (the mth 
boundary), u

pB  is the essential boundary (Dirichlet 
boundary) of the pth boundary in which the potential 

is prescribed by u  and tBq  is the natural boundary 

(Neumann boundary) of the qth boundary in which 

the flux is prescribed by t . Both uBp  and tBq  

construct the whole boundary of the domain D as 
shown in Figure 1. 

2.2 Conventional method of fundamental solutions 

By employing the RBF technique [2], the 
representation of the solution for multiply-connected 
problem as shown in Figure 1 can be approximated in 
terms of the jα  strengths of the singularities at s j  

as 
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where ix  and js  represent ith observation point 

and jth source point, respectively, jα  are the jth 
unknown coefficients (strength of the singularity), 

121 ,,, −mNNN L  are the numbers of source points 

on 1−m  numbers of inner boundaries, respectively, 

mN  is the number of source points on the outer 
boundary, while N is the total numbers of source 
points )( 21 mNNNN +++= L  and 

ix

ij
ij n

xsT
xsM

∂
∂

=
),(

),( . The coefficients { }N
jj 1=

α  are 

determined so that BCs are satisfied at the boundary 
points. The distributions of source points and 
observation points are shown in Figure 2 (a) for the 
MFS. The chosen bases are the double layer potentials 
[3,4,5] as 

(( ), )
( , ) 2

x s ni j jT s xj i
rij

−
= , (6)

2(( ), )(( ), ) ( , )
( , ) 4 2

x s n x s n n ni j j i j i j iM s xj i r rij ij

− −
= − , (7)

where (,) is the inner product of two vectors, rij  is 

ij xs − , jn  is the normal vector at js  and in  

is the normal vector at ix . 
It is noted that the double layer potentials have both 

singularity and hypersingularity when source and filed 
points coincide, which lead to difficulty in the 
conventional MFS. The off-set distance between the 
off-set (auxiliary) boundary ( B′ ) and the real 
boundary ( B ), defined by d , shown in Figure 2 (a) 
needs to be chosen deliberately. To overcome the 
abovementioned shortcoming, js  is distributed on 
the real boundary as shown in Figure 2 (b), by using 
the proposed regularized technique as written in 
section 2.3. The rationale for choosing double layer 
potential instead of the single layer potential as used 
in the RMM for the form of RBFs is to take the 
advantage of the regularization of the subtracting and 
adding-back technique, so that no off-set distance is 
needed when evaluating the diagonal coefficients of 
influence matrices which will be explained in Section 
2.4. The single layer potential can not be chosen 
because the following Eqs. (9), (12), (15) and (18) in 
Section 2.3 are not satisfied. If the single layer 
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potential is used, the regularization of subtracting and 
adding-back technique fails. 

2.3 Regularized meshless method 

When the collocation point ix  approaches the 

source point js , the potentials in Eqs. (4) and (5) 
become singular. Eqs. (4) and (5) for the 
multiply-connected problems need to be regularized 
by using the regularization of subtracting and 
adding-back technique [13] as follows: 
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where 
i

Ix  is located on the inner boundary 

( 1,,3,2,1 −= mp L ) and the superscript I  
and O  denote the inward and outward normal 
vectors, respectively, and 
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Therefore, we can obtain 
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When the observation point O
ix  locates on the outer 

boundary (p=m), Eq. (8) becomes 
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Hence, we obtain 
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Similarly, the boundary flux is obtained as 
11
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Therefore, we can obtain 
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When the observation point locates on the outer 
boundary (p=m), Eq. (14) yields 

1 1 2

1

1 1

1 2 1 1

1 1

1 1

1 1

1

( ) ( , ) ( , )

           ( , ) ( , )

            ( , ) ,   ,

m

m m

m

N N N
O I O I O
i j i j j i j

j j N

N N N
I O O O
j i j j i j

j N N j N N

N
I I O and I
j i i i p

j N N

t x M s x M s x

M s x M s x

M s x x B p m

α α

α α

α

−

− −

−

+

= = +

+ +

= + + + = + + +

= + + +

= + +

+ +

− ∈ =

∑ ∑

∑ ∑

∑

L

L L

L

L  

(17)

where 
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Hence, we obtain 
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The detailed derivations of Eqs. (9), (12), (15) and (18) 
are given in the reference [13]. According to the 
dependence of the normal vectors for inner and outer 
boundaries [13], their relationships are 
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where the left hand side and right hand side of the 
equal sign in Eqs.(20) and (21) denote the kernels for 
observation and source point with the inward and 
outward normal vectors, respectively. 

By using the proposed technique, the singular terms 
in Eqs. (4) and (5) have been transformed into regular 
terms (
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the subtracting terms in the two brackets for 
reqularization. After using the abovementional 
method of regularization of subtracting and 
adding-back technique [13], we are able to remove the 
singularity and hypersingularity of the kernel 
functions. 

2.4 Derivation of influence matrices for arbitrary 

domain problems 

By collocating N observation points to match with 
the BCs from Eqs. (10) and (13) for the Dirichlet 
problem, and the linear algebraic equation is obtained 
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For the Neumann problem, Eqs. (16) and (19) yield 
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(31) 

For the mixed-type problem, a linear combination of 
Eqs. (22) and (27) is required to satisfy the 
mixed-type BCs. After the unknown density ({ }N

jj 1=
α ) 

are obtained by solving  the linear algebraic 
equations, the field solution can be solved by using 
Eqs. (4) and (5). 

3. NUMERICAL EXAMPLES 

Case 1: Dirichlet problem 

The multiply-connected Dirichlet problem is shown 
in Figure 3, and an analytical solution is 

1( , ) cos( )u r
r

θ θ= , (32)

The exact field solution is plotted in Figure 4 . The 
field solutions by using the RMM (360 points) are 
shown in Figure 5. 

Case 2: Numann problem 

The multiply-connected Neumann problem is 
shown in Figure 6, and an analytical solution is 
available as follows: 

)sin()2cos(2 θθ rru += , (33)
The field potential in Eq. (33) is shown in Figure 7. 
The norm error is defind as 

∫ =−=
π

θθθ
2

0

2),6.1(),6.1( druruexact (34)

The norm error of the RMM versus the total number 
N of source points are shown in Figure 8. By selecting 
the 100 points to distribute, we can obtain the 
convergent result. From Figure 8, the field solutions 
by using the RMM (200 points) and the BEM (200 
elements) are plotted in Figures 9 (a) and Figure 9 (b), 
respectively. Comparing Figure 9 (a) with Figure 9 (b) 
and Figure 7 , the RMM result agrees with the exact 
solution and the BEM result. 

Case 3: Mixed-type problem 

The mixed-type problem for multiply-connected 
domain is shown in Figure 10, and an analytical 
solution is available as follows: 

)3cos(3 θru = , (34)
The exact field solution is plotted in Figure 11. The 
defined norm error is 

∫ =−=
π

θθθ
2

0

2),5.0(),5.0( druruexact  (35)

The norm error of the RMM versus the total number 
N of source points is shown in Figure 12 and the 
convergent result is found after distributing 200 points. 
The field solutions by using the RMM (400 points) 
and the BEM (400 elements) are shown in Figures 13 
(a) and (b), respectively. After comparing Figure 13 (a) 
with Figure 13 (b) and Figure 11, the RMM result 
agrees with the exact solution and the BEM result. 

4. CONCLUSIONS 

In this study, we used the RMM to solve the 
Laplace problems with multiply-connected domain 
subject to the Dirichlet, Neumann and mixed-type 
BCs. Only the boundary nodes on the real boundary 
are required. The major difficulty of the coincidence 
of the source and collocation points in the 
conventional MFS is then circumvented. Furthermore, 
the controversy of the off-set boundary outside the 
physical domain by using the conventional MFS no 
longer exists. Although it results in the singularity and 
hypersingularity due to the use of double layer 
potential, the finite values of the diagonal terms for 
the influence matrices have been extracted out by 
employing the regularization technique. The 
numerical results were obtained by applying the 
developed program to three examples with different 
BCs and shapes of domain. Numerical results agreed 
very well with the analytical solutions and the BEM. 
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Figure 1 Laplace problem with holes 
 

Figure 2 (a) Conventional MFS 
 

Figure 2 (b) RMM 
 

Figure 3 Problem sketch 
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Figure 4 Exact solution for the case 1 
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Figure 5 RMM for the case 1 

 

Figure 6 problem sketch 
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Figure 7 Exact solution for the case 2 
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Figure 8 The norm error along radius 1.6r =  

versus total number of nodes 
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Figure 9 (a) RMM for the case 2 
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Figure 9 (b) BEM for the case 2 

 

Figure 10 Problem sketch 
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Figure 11 Exact solution for the case 3 
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Figure 12 The norm error along radius 0.5r =  

versus total number of nodes 
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Figure 13 (a) RMM for the case 3 
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Figure 13 (b) BEM for the case 3 

正規化無網格法求解含多洞

拉普拉斯問題 

 

高政宏
1
 陳桂鴻

2
 陳正宗

1
  

1國立台灣海洋大學河海工程學系 
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摘  要 

 
在本論文中，使用正規化無網格法求解二

維多連通拉普拉斯問題，利用勢能理論的

雙層勢能法疊加出場解。藉由本研究所提

出的去奇異技術可將核函數的奇異性與超

強奇異性正規化，使得場點與源點可以同

時分佈在相同的邊界上，因此可解得影響

係數矩陣的主對角線項上的有限值。在本

文中舉了Dirichlt、Numann及mixed-type

三種邊界條件的多洞問題來測試，由本法

所獲得之結果將與解析解及邊界元素法結

果做比較，可獲得令人滿意的結果。 

 
關鍵字：正規化無網格法，基本解法，超

奇異性，多洞，雙層勢能。 
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