On the Stokes' Transformation and Its Application to Support Motion Problems

$$
\rho(x, t)+\left(2 \alpha \rho-\beta G \frac{\partial^{2}}{\partial x^{2}}\right) \&(x, t)-G \frac{\partial^{2} u(x, t)}{\partial x^{2}}=0
$$

dynamic

response?

J. T. Chen, H.-K. Hong and C. S. Yeh National Taiwan University
The 17th National Conference on Theoretical and Applied Mechanics 10, Dec., 1993.
(MECH17.PPT)

The Series Representation Solutions of the Three Analytical Formulations

Methods of Solution for Multi-Support Motions

- Mode Superposition
- Large Mass Technique
- Large Stiffness Technique
- Cesaro sum
- Quasi-static Decomposition (Decompose the quasi-static part)
- Stokes’ Transformation
(Series Solution)
(Including Rigid Body Modes)
(Including High Frequency Modes)
(Regularize the infinite value to finite part)
(Legal way to differentiate series)

Methods of Solution for Multi-Support Motions

- Large Mass Technique
- Large Stiffness Technique
- Cesaro Sum
- Quasi-static Decomposition (1950)
- Stokes’ Transformation
$(1950) \longrightarrow$ Discrete System
$(1983) \longrightarrow$ Multi-support Motions(1992)
(1983) \longrightarrow Multi-support Motions(1992)
$(1890) \longrightarrow$ Base Shear Force
$(1880) \longrightarrow$ Base Shear Force(1992)

History of This Research

(1975, 1991) Quasi-static merging technique (Eringen and Suhubi) (Yeh and Liaw)
(1992) Divergent series (Yeh, Hong and Chen)
(1988)

Dual integral representation model (Hong and Chen)

Motivations of Quasi-static Decomposition and Stokes' Transformation

Quasi-static decomposition

$$
\begin{aligned}
u(x, t)= & \underline{\underline{U(x, t)}}+\sum_{n=0}^{\infty} q_{n}(t) u_{n}(x) \\
& \text { (Physical meaning) }
\end{aligned}
$$

Differentiation

$$
u^{\prime}(x, t)=U^{\prime}(x, t)+\sum_{n=0}^{\infty} q_{n}(t) u_{n}^{\prime}(x)
$$

Stokes' transformation

$$
\begin{aligned}
& u(x, t)=\sum_{n=0}^{\infty} \bar{q}_{n}(t) u_{n}(x) \longrightarrow \quad \begin{array}{c}
\text { Asymptotic } \\
\text { analysis }
\end{array} \\
& =U(x, t)+\sum_{n=0}^{\infty} c_{n}(t) u_{n}(x)+\sum_{n=0}^{\infty} \bar{q}_{n}(t) u_{n}(x) \\
& \text { Integration } \\
& u^{\prime}(x, t)=\sum_{n=0}^{\infty} \xrightarrow{\longrightarrow-\infty} \begin{array}{l}
\text { Integration } \\
b_{n}(t) u_{n}^{\prime}(x)
\end{array}+\sum_{n=0}^{\infty} \bar{q}_{n}(t) u_{n}^{\prime}(x) \\
& \text { (Mathematical way) }
\end{aligned}
$$

$\sum_{n=0}^{\infty} b_{n}(t) u_{n}^{\prime}(x)=\begin{aligned} & \text { Series representation } \\ & \text { for distribution on boundary }\end{aligned}$

Three Analytical Ways and Two Simulation Techniques to Introduce the Quasi-static Part

- By Solving Boundary Value Problem Directly

Quasi-static decomposition method (Mindlin and Goodman)

- By Integrating the Secondary Field Derived from Stokes’ Transformation

Boundary terms are available

- By Adding-and-Subtracting Technique Using Asymptotic Analysis

Series representation (Eringen and Suhubi, Yeh and Liaw)
Large Mass Technique (MSC/NASTRAN) --- Rigid Body Modes
Large Stiffness Technique (MSC/NASTRAN) --- High Frequency Modes

Cesaro Regularization Technique

- Series Solution(Partial Sum)

$$
\begin{aligned}
& s_{0}=a_{0} \\
& s_{1}=a_{0}+a_{1} \\
& s_{2}=a_{0}+a_{1}+a_{2} \\
& \text { MAM }
\end{aligned}
$$

$$
s_{N-1}=a_{0}+a_{1}+a_{2}+\mathrm{L}+a_{N-1}
$$

(partial sum) $s_{N}=a_{0}+a_{1}+a_{2}+\mathrm{L}+a_{N-1}+a_{N}$ (divergent, $N \rightarrow \infty$)
$\frac{s_{0}+s_{1}+\mathrm{L}+s_{N-1}+s_{N}}{N+1}=a_{0}+\frac{N}{N+1} a_{1}+\frac{N-1}{N+1} a_{2}+\mathrm{L}+\frac{2}{N+1} a_{N-1}+\frac{1}{N+1} a_{N} \quad($ convergent,$\quad N \rightarrow \infty)$
(Cesaro sum) $S_{N}=\frac{1}{N+1} \sum_{k=0}^{N}(N-k+1) a_{k}$ (moving average)

Stokes' Transformation

- Term by Term Differentiation Is Not Always Legal
- Boundary Term Is Present for Some Cases

$$
\begin{array}{ll}
\quad & f^{\prime}(x)=\frac{d}{d x}\{f(x)\}=\frac{d}{d x}\left\{\sum_{k=0}^{n} c_{k} u_{k}(x)\right\}=\sum_{k=0}^{n} c_{k} u_{k}^{\prime}(x)+\sum_{k=0}^{\sum_{k}^{n} b_{k} u_{k}^{\prime}(x)} \\
\text { if } \quad \sum_{k=0}^{n} b_{k} u_{k}^{\prime}(x) \neq 0 & \text { Boundary term }
\end{array}
$$

- Term by Term Differentiation Is Legal
if $\quad \sum_{k=0}^{n} b_{k} u_{k}^{\prime}(x)=0$

Why Cesaro sum can Extract the Finite Part of Divergent Series

$$
u^{\prime}(x, t)=\sum_{l=0}^{N} \bar{q}_{l}^{\prime}(t) u_{l}^{\prime}(x)=\sum_{l=0}^{N} \frac{1}{N_{l} \lambda_{l}}\left\{u(y, t) u_{l}^{\prime}(y)\right\}_{y=0}^{y==} u_{l}^{\prime}(x)+\sum_{l=0}^{N} \bar{q}_{l}(\mathrm{t}) u_{l}^{\prime}(x)
$$

(convergent)
(divergent)
(divergent)
$C(N, 2)$ operator

(Stokes' transformation)

- Single Fourier Series :

Oscillating waves (Stokes, 1880)
Stability of viscous fluid (Goldstein, 1936)
Free vibration
twisted beam (Budiansky and Diprima, 1960)
shell (Chung, 1981)
beam on viscoelastic foundation (Chuang and Wang, 1991)
Support motion (Chen, Hong and Yeh, 1993)
Heat conduction (Chen and Hong, 1993)

- Double Fourier Series:

Static analysis of doubly curved shells (Chaudhuri and Kabir, 1993)

Transient Responses at $t=1$ second

Displacement profile
Shear force profile

Random Responses of Mean Square Spectra

Displacement spectra
Shear force spectra

Random Responses of Mean Square Profile

Displacement Shear force

Conclusions

- New Method for Multi-support Motion --- Stokes’ Transformation Free from calculating quasi-static solution Accelerate convergence rate
- Why Cesaro sum can extract finite part is proved by Stokes' transformation
- The transient and random responses of multi-support motion problems have been solved.

