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Abstract 
In this paper, a new meshless method for solving the eigenfrequencies of plates using the radial basis 

function (RBF) is proposed. By employing the imaginary-part fundamental solution as the RBF, the 

coefficients of influence matrices are easily determined. True eigen solutions in conjunction with spurious 

eigen solution are obtained for plate vibration. It is found that spurious eigen solution for the 

simply-supported plate using the present method is the same as the true eigensolution of the clamped case 

in the numerical experiments. To verify this finding, the circulant is adopted to analytically derive the true 

and spurious eigenequation in the discrete system of a circular plate. In order to obtain the eigenvalues 

and boundary modes at the same time, the singular value decomposition (SVD) technique is utilized. Two 

examples are demonstrated analytically and numerically to see the validity of the present method. 
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Introduction 
Mesh generation of a complicated geometry is always time consuming in the stage of model creation 

for engineers in dealing with engineering problems by employing numerical methods, e.g., the finite 

difference method (FDM), finite element method (FEM) and boundary element method (BEM). In the 

last decade, researchers have paid attention to the meshless method without employing the concept of 

element. Several meshless methods have also been reported in the literature, for example, the 

domain-based methods including the element-free Galerkin method [1], the reproducing kernel method 

[2], and boundary-based methods including the boundary node method [3], the meshless local 

Petrov-Galerkin approach [4], the local boundary integral equation method [5] and the RBF approach [6]. 

Integral equations and BEM have been utilized to solve the boundary value problems for a long time. 

Several approaches, e.g., the complex-valued BEM, the method of fundamental solution, the dual 
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reciprocity method (DRM), the particular integral method [7], multiple reciprocity method (MRM), the 

real-part BEM and imaginary-part BEM [8], have been developed for eigenproblems. To solve the 

problem by using the complex-valued BEM, the influence coefficient matrix would be complex 

arithematics [9]. Therefore, Tai and Shaw [10] employed only the real-part kernel to solve the eigenvalue 

problems and to avoid the complex-valued computation in sacrifice of appearance of spurious eigenvalues. 

To avoid the singular and hypersingular integrals, De Mey [11] used imaginary-part fundamental solution 

to solve the eigenproblems and also encountered the problem of eigen solution. Kang et al. proposed the 

NDIF (Non-dimensional Dynamic Influence Function) method to solve eigenproblems of membranes 

[12], acoustic cavities [13] , and plates [14]. Later, Chen et al. commented that the NDIF method is a 

special case of imaginary-part BEM after lumping the distribution of density function for membrane 

vibrations [15] and acoustics [16], and plate [17,18]. Nevertheless, spurious eigensolutions are inherent in 

the imaginary-part BEM, the real-part BEM and the MRM. Numerically speaking, the spurious 

eigensolutions result from the rank deficiency of the influence coefficient matrix. This implies the fewer 

number of constraint equations making the solution space larger. Mathematically speaking, the spurious 

eigensolutions for interior problems arise from the same source of `̀  improper approximation of the null 

space of operator". Two sources of rank deficiency in the influence matrices can be classified, one is 

spurious solution due to incompleteness and the other is due to the nontrivial eigensolution. 

In this paper, we will employ the imaginary-part fundamental solution as RBF to solve the plate 

vibration problems. The main difference between the present formulation and the method of fundamental 

solution is that we adopt only the imaginary-part fundamental solution instead of employing the 

complex-valued singular kernel. In solving the problem numerically, elements are not required and only  

boundary nodes are necessary.  Both the boundary and source points are distributed on the boundary only.  

The difference between the present method and the NDIF method will be emphasized in selecting the 

interpolation bases. The occurrence of spurious eigenvalues will be discussed. For the case of circular 

plate, the eigensolutions will be analytically derived in the discrete system by using circulants. In addition, 

the true eigenvalues and eigen modes for a circular plate will be derived exactly by using degenerate 

kernel and Fourier series expansion. Two examples, circular plates subject to the clamped and 

simply-supported boundary conditions, will be demonstrated to see the validity of the present 

formulation. 

 

Meshless formulation using radial basis function of the imaginary-part fundamental 
solution 

The governing equation for a free flexural vibration of a uniform thin plate is written as follows: 

,),()( 44 Ω∈=∇ xxwxw λ  (1) 

where w is the lateral displacement, 
D

hρω
λ

2
4 = , λ is the frequency parameter, ω is the circular 
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frequency, ρ is the surface density, D is the flexural rigidity expressed as 
)1(12

3

ν−
=

Eh
D  in terms of 

Young's modulus E, the Poisson ratio ν and the plate thickness h, and O is the domain of the thin plate. 

The radial basis function is defined by 
|)(|),( xssxG −= ϕ  (2) 

where x and s are the collocation and source points, respectively. The Euclidean norm || xs −  is 

referred to as the radial distance between the collocation and source points. The two-point function 

( |)(| xs −ϕ ) is called the RBF since it depends on the radial distance between x and s. By considering 

the imaginary-part fundamental solution ( ))}()((
8

Im{),( )1(
0

)2(
02

riHrH
i

xsW λλ
λ

+= ) [19] for the plate 

vibration, the six kernels in the dual formulation are 
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in which || xsr −≡  is the distance between the source and collocation points; ni is the ith component 

of the outnormal vector at s; in is the ith component of the outnormal vector at x, mJ and mI  denote 

the first kind of the mth order Bessel and modified Bessel functions, respectively, and || iii xsy −≡ ,  

i= 1, 2, are the differences of the ith components of s and x, respectively.  Based on the six kernels, the 

displacement, slope and moment can be represented by 
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where, ),(),(),( xsWxsWxsW jnjnnjm ρ
ν

+=  and ),(),(),( xsxsxs jnjnnjm Θ+Θ=Θ
ρ
ν

, p(sj) and 

q(sj) are the generalized unknowns at sj, 2N is the number of collocation points. The main difference 

between the present formulation and the NDIF method proposed by Kang and Lee [14] is the choice of 

RBF. The NDIF method chose )(),( 0 rJxsW λ=  and )(),( 0 rIxs λ=Θ . A comparison between the 

Kang method and our approach is shown in Table 1. After collocating the point x on the boundary, the 

boundary conditions of the clamped plate are 

{ } [ ]{ } [ ]{ } ,0)(,0 =Θ+= xwqpW  (12) 

{ } [ ]{ } [ ]{ } ,0)(,0 =Θ+= xqpW nn θ  (13) 

where { }p  and { }q  are the vectors of undetermined coefficients. By assembling Eqs.(12) and (13) 

together, we have 

[ ] { }0=








q
p

SM , (14) 

where 
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NNnnW

W
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Θ
Θ

= , (15) 

the determinant of the matrix versus eigenvalue must become zero to obtain the nontrivial solution, i.e., 

[ ] 0det =SM . (16) 

By plotting the determinant versus the frequency parameter, the curve drops at the positions of 

eigenvalues. Similarly, the simply-supported case can be obtained. 

 

Analytical study for the eigensolution of a circular plate using circulants in the discrete 
system 

For the circular plate, we can express ),( φρ=x and ),( θRs =  in terms of polar coordinate. The 

W kernels can be expressed in terms of degenerate kernels as shown below: 
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 (17) 

where the superscripts “I ” and “E ” denote the interior (R > ?) and exterior domains (R < ?), respectively.  

Since the rotation symmetry is preserved for a circular boundary, the six influence matrices in Eqs.(9)-(11) 

are denoted by [W], [T ], [Wn], [T n], [Wm] and [T m] of the circulants with the elements, 

),;,( ijji KK φρθρ= , (18) 

where the kernel K can be W, Θ, Wn ,Θn, , Wm or Θm, iφ  and jθ  are the angles of observation and 

boundary points, respectively.  By superimposing 2N lumped strength along the boundary, we have the 

influence matrices, 
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where the elements of the first row can be obtained by  

),( ijij xsKa =− . (20) 

The matrix [K] in Eq.(19) is found to be a circulant [20] since the rotational symmetry for the influence 

coefficients is considered. By using the degenerate kernel and the orthogonal property, the eigenvalue of 

the matrices [W], [T ], [Wn], [T n], [Wm] and [T m] can be respectively obtained as follows: 
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where NN ),1(,,2,1,0 −±±±= Ll . Since the matrix [W] is a symmetric circulant, it can be 

expressed by 
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Similarly, [T ], [Wn], [T n], [Wm] and [T m] can be decomposed. Equation (15) can be reduced to 
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Eq.(29) can be reformulated into 
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Since F  is orthogonal, the determinant of [SM]4N×4N is 
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for the clamped case. After using the differential property of Bessel function, Equation (32) can be 

reduced to 
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According to Eq.(33), the eigensolution is found to match the exact solution well since the denominator is 

never zero. The true eigen equation is 
0)()()()( 11 =+ ++ λρλρλρλρ llll JIIJ  (34) 

Similarly, the eigen equation of simply-supported plate can be obtained as follows: 
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It is interesting to find that the eigensolution of the clamped case is embedded in the Eq.(35) for the 

simply-supported case. After comparing with the exact solution, the present method results in spurious 

eigensolution 0)]()()()([ 11 =+ ++ λρλρλρλρ llll JIIJ  at the same time when we obtain the true eigen 

equation  
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for the simply-supported case. 

Derivation of interior modes for the circular plate using degenerate kernel and Fourier 
series in the continuous system 

Derivation of the eigenequation 
For the purpose of analytical study, we use the continuous system to obtain the eigenequation. 

The unknowns densities p(s) and q(s), can be expanded into Fourier series by 

,),)sin()cos(()(
1

0 Bsnbnaasp
n

nn ∈++= ∑
∞

=

θθ  (37) 

,),)sin()cos(()(
1

0 Bsndnccsq
n

nn ∈++= ∑
∞

=

θθ  (38) 



 
THE 26th NATIONAL CONFERENCE ON THEORETICAL AND APPLIED MECHANICS 

Hu-Wei, Taiwan, R. O. C. , 20-21 December 2002 

 
 

7 

where an, bn, cn and dn are the undetermined Fourier coefficients. The field representations of Eqs.(9)-(11) 

are written as 
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For the clamped case, we have 
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By substituting the degenerate kernels and employing the orthogonality condition of the Fourier series, 

the Fourier coefficients an, bn, cn and dn satisfy 
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From Eq. (43) we similarly have 
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To seek nontrivial data for the generalized coefficients of an, bn,, cn and dn, we obtain the eigenequations 
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for the clamped case. Similarly, we can obtain the eigenequation 
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for the simply-supported case. The eigenequation in Eq.(49) is the same with Eq.(35) obtained by using 

circulants in the discrete system. 

 

Derivation of the eigenmode 
By substituting the degenerate kernels for the interior point (0 < r < ?) and the relationships of 

Eqs.(44) and (45) between the generalized coefficients of p(s) and q(s) into Eq.(9) for the clamped case, 

we have 
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(50) 
Similar, we can obtain the eigenmode of the simply-supported case. It is interesting to find that the eigen 

mode of the clamped and simply-supported cases are very similar. However, the numerical results in the 

contour plots are different since different eigenvalues are used. 

 

Numerical results and discussions  
A circular plate with a radius (? = 1) subjected to the clamped (w(x) = 0 and ?(x) = 0) and 

simply-supported (w(x) = 0 and m(x) = 0) boundary conditions are considered, respectively.  In the first 

case, analytical solutions of eigenequation and eigenmode are shown in Eqs.(34) and (50). To compare 

with the Kang and Lee's results [14], Fig.1 shows the determinant of [SM] versus ? using the present 

method of continuous and discrete formulations. The eigenvalues agree well with the analytical solution.  

In order to verify our finding, Fig.2 is shows the determinant of [SM] versus ? using the present method 

for both clamped and simply-supported plates. The eigensolution of simply-supported plate is 

contaminated by the true eigensolution of clamped case. The numerical results match well with our 

prediction using continuous and discrete formulation. The former six interior modes obtained are shown 

in Fig.3. 

 

Conclusions  
We have developed a meshless method for the vibration problem of clamped and simply-supported 

plates by using the imaginary-part kernel, which was chosen as the RBF to approximate the solution.  

Neither boundary elements nor singularities are required. It is interesting to find that spurious 

eigensolution of simply-supported case appears to be the true eigensolution of the clamped case. In 

addition, the eigenfunction of clamped and simply-supported are of the same form but different 

eigenvalues. For a circular plate, the eigenvalue, boundary mode and interior mode were derived 

analytically by using the degenerate kernel, Fourier series and circulants. Circular plates subject to the 

clamped and simply-supported boundary conditions, were demonstrated analytically and numerically to 

check the validity of the meshless formulation. 
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Table 1. Comparisons of the NDIF method and present method. 
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Fig.1 

Logarithm curve for det[SMN] versus frequency 
parameter of the circular clamped plate using the 

different methods. 

Fig.2 
Logarithm curve for det[SMN] versus frequency 

parameter of the circular clamped and 
simply-supported plate using the present methods. 
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Fig.3 The former six modes for the simply-supported circular plate using the present method. 
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無網格法配合徑向基底函數於任意外形板振動之分析 
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摘要 

本文是使用無網格法配合徑向基底函數來求解固定及簡支承邊界板之特徵頻率，其中

影響係數矩陣可輕易的由徑向基底函數求得。利用虛部基本解當徑向基底函數求解發現假

根常常會伴隨著真根產生，更有趣的是我們從中發現到固定邊界板振動問題之真根竟然是

簡支承板振動問題之假根。為了同時求得特徵值及邊界模態，我們在計算的過程中運用了

奇異值分解法來求解，文中我們以圓形板為例來論證我們的發現。 

關鍵詞：無網格法、徑向基底函數、板振動、固定邊界、簡支承邊界 


