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Abstract

We provide a perspective on the degenerate problems, including degenerate scale, degenerate

boundary, spurious eigensolution and fictitious frequency, in the boundary integral formulation.

All the degenerate problems originate from the rank deficiency in the influence matrix. Both the

Fredholm alternative theorem and singular value decomposition (SVD) technique are employed

to study the degenerate problems. Updating terms and updating documents of the SVD technique

are utilized. The roles of right and left unitary vectors of the influence matrices in BEM and their

relations to true, spurious and fictitious modes are examined by using the Fredholm alternative

theorem. A unified method for dealing with the degenerate problem in BEM is proposed. For

the degenerate scale problem, three regularization techniques, hypersingular formulation, method

of adding a rigid body mode and CHEEF concept, are employed to deal with the rank-deficiency

problem. Instead of direct searching for the degenerate scale by trial and error, a more efficient

technique is proposed to directly obtain the singular case since only one normal scale needs to be

computed. The existence of degenerate scale is proved for the two-dimensional Laplace problem

using the integral formulation. The addition of a rigid body term,c, in the fundamental solution

can shift the original degenerate scale to a new degenerate scale by a factore−c. Instead of using

either the multi-domain BEM or the dual BEM for degenerate-boundary problems, the eigenso-

lutions for membranes with stringers are obtained in a single domain by using the conventional

BEM in conjunction with the SVD technique. The occuring mechanism of both the spurious and

fictitious eigensolutions are unified by using the Fredholm alternative theorem and SVD tech-

nique. The criterion to check the validity of CHIEF and CHEEF points is also addressed. Several

examples are demonstrated to check the validity of the proposed method.
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Chapter 1

Introduction

1.1 Degenerate problems in BEM

The boundary integral equation method (BIEM) and the boundary element method (BEM) have

received much attention since Rizzo [121] proposed a numerical treatment of the boundary inte-

gral equation for elastostatics. Most of the efforts have been focused on the singular boundary

integral equation for primary fields (e.g. potentialu or displacementu). For most problems, the

formulation of a singular boundary integral equation for the primary field provides sufficient con-

ditions to ensure a unique solution. In some cases,e.g., those with Hermite polynomial elements

[131], degenerate boundaries [66, 76, 77, 119], corners [33], the construction of a symmetric

matrix [4, 5, 88], the improvement of condition numbers [31], the construction of an image sys-

tem [31], the tangent flux or hoop stress calculation on the boundary [44], an error indicator in

the adaptive BEM [103], fictitious (irregular) frequencies in exterior acoustics [97, 98], spurious

eigenvalues in the real-part BEM [36, 100, 101], the imaginary-part BEM [39, 40] and the mul-

tiple reciprocity method (MRM) [48, 47, 136, 137], degenerate scale [41, 46, 57, 60, 72] and the

Tikhonov formulation for inverse problems, it is found that the integral representation for a pri-

mary field can not provide sufficient constraints. In another words, the influence matrices are rank

deficient. It is well known that the hypersingular equation plays an important role in the afore-

mentioned problems. Many researchers have paid attention to the hypersingular equation. One

can consult the review article on hypersingularity can be found in Chen and Hong [27]. The hy-

persingular formulation provides the theoretical bases for degenerate boundary problems. Totally

speaking, four degenerate problems in BEM, degenerate scale, degenerate boundary, spurious

eigenvalues and fictitious frequency, are encountered. In the following, the four rank-deficiency

sources are reviewed as follows.
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1.2 Degenerate scale for 2-D Laplace and Navier problems

It is well known that rigid body motion test or so called use of simple solution can be employed

to examine the singular matrices in BEM for the strongly singular and hypersingular kernels in

the problems without degenerate boundaries. Zero eigenvalues associated with rigid body modes

are imbedded in the corresponding influence matrices. In such a case, singular matrix occurs

physically and mathematically. The nonunique solution for a singular matrix is found to include

a rigid body term for the interior Neumann (traction) problem. However, for a certain geometry,

the influence matrix of the weakly singular kernel may be singular for the Dirichlet problem

[53]. In another words, the numerical results may be unstable when the used scale is changed or

the considered domain is expanded to a special size. The nonunique solution is not physically

realizable but results from the zero eigenvalue of the influence matrix in the BEM. The special

geometry dimension which results in a nonunique solution for a potential problem is called a

degenerate scale by He [72] and Chenet al. [46]. The term “scale” stems from the fact that

degenerate mechanism depends on the geometry size used in the BEM implementation. Some

mathematicians [55, 60] coined it a critical value (C.V.) since it is mathematically realizable. For

several specific boundary conditions, some studies for potential problems (Laplace equations)

[46], plate problems (biharmonic equations) [60] and plane elasticity problems [41, 72] have

been done. The difficulties due to nonuniqueness of solutions were overcome by the necessary and

sufficient boundary integral formulation [72] and boundary contour method [143]. The degenerate

scale problems in the BEM have been studied analytically by Kuhn [99] and Constanda [57] and

numerical experiments have been performed [46]. Degenerate kernels and circulant matrices were

employed to determine the eigenvalues for the influence matrices analytically in a discrete system

for circular and annular problems [46]. The singularity pattern distributed along a ring boundary

resulting in a null field can be obtained when the ring boundary is a degenerate scale. An annular

region has also been considered for the harmonic equation [76] and the biharmonic equation [111]

and the possible degenerate scales were investigated. Hypersingular formulation is an alternative

to study the degenerate scale problems for simply-connected problems [41], since eigenvalues are

never zero. Another simple approach is to superimpose a rigid body motion in the fundamental

solution so that the zero eigenvalue can be shifted to be nonzero. However, this treatment results
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in another degenerate scale. By employing the CHIEF concept [14], a CHEEF approach was

developed to obtain the independent constraint.

A unified method will be proposed to study the problem by using the Fredholm alternative

theorem and SVD updating technique. Both the spurious mode (mathematically realizable) and

rigid body mode (physically realizable) can be determined. The roles of left and right unitary

matrices in SVD for BEM will be examined. In addition, a direct treatment in the matrix operation

instead of adding a rigid body term in the fundamental solution can be derived.

1.3 Degenerate boundary in boundary value problems

For the problem with a degenerate boundary, the dual integral representation has been proposed

for crack problems in elasticity by Hong and Chen [76, 77], and boundary element researchers

[66, 67, 110, 119, 124, 133, 138] have increasingly paid attention to the second equation of the

dual representation. The second equation, which is derived for the secondary field (e.g., flux t or

tractiont), is very popular now and is termed the hypersingular boundary integral equation. Hong

and Chen [76] presented the theoretical bases of the dual integral equations in a general formu-

lation which incorporates the displacement and traction boundary integral equations. Huang and

So [80] extended the concept of the Hadamard principal value in the dual integral equations [76]

to determine the dynamic stress intensity factors of multiple cracks. Gray [66, 67] also indepen-

dently found the hypersingular integral representations for the Laplace equation and the Navier

equation although he did not coin the formulation “dual”. Martin, Rizzo and Gonsalves [109]

called the new kernel in the dual integral equations “hypersingular” while Kaya [92] earlier called

the kernel “superstrong singularity”. Since the formulation was derived for the secondary field,

by analogy with the term “natural boundary condition”, Feng and Yu [65, 139, 141] called the

method “natural BEM” or “canonical integral equations”. Balas, Sladek and Sladek in their book

[6] proposed a unified theory for crack problems by using the displacement boundary integral

equation and another integro-differential equation for the traction field. Based on the dual integral

representation for the degenerate boundary problems, Hong and Chen developed the dual BEM

programs for crack [76] and potential flow problems with a cutoff wall [35]. Besides, Chen and
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his coworkers extended the dual BEM program for the Laplace equation and the Navier equation

to three programs. One is for the Helmholtz equation by the dual MRM [37]. Another is for the

Helmholtz equation by the complex-valued formulation [135, 136]. The other is for the modified

Helmholtz equation [50]. A general purpose program, BEASY, was developed for crack problems

by the Wessex Institute of Technology (WIT) and termed the “dual boundary element method

(DBEM)” [119, 138]. This program has been extended to solve crack growth problems more

efficiently by using the benefit of the single-domain approach [101, 138]. Chen and Hong [27],

Mi and Aliabadi [110] extended two-dimensional cases to three-dimensional crack problems. A

program implemented by Lutzet al. [107] was also reported. In the mathematical literature, the

relationships between the boundary integral operators and various layer potentials are obtainable

through the so-called Calderon projector [31]. Four identities to relate the four kernels have been

constructed. The order of pseudo-differential operator for the integral equations on the circular

case in the dual formulation was discussed by Amini [2], Chen and Chiu [25]. Detailed discus-

sions can be found in [113, 115]. These mathematical problems were first studied by Hadamard

[70] and Mangler [108]. The hypersingular integral equation was derived by Hadamard in solv-

ing the cylindrical wave equation by employing the spherical means of descent. The improper

integral was then defined by Tuck [129] as the “Hadamard principal value”. Almost at the same

time of Hadamard’s work, Mangler derived the same mathematical form in solving a thin airfoil

problem. This is the reason why the improper integral of hypersingularity is called the “Mangler

principal value” in theoretical aerodynamics [3]. This nonintegrable integral of hypersingularity

[115] arises naturally in the dual boundary integral representations especially for problems with

degenerate boundaries,e.g., crack problems in elasticity [31, 76, 77], heat flow through a baffle

[29], Darcy flow around a cutoff wall [127], a cracked bar under torsion [23], screen impinging in

acoustics [21, 51, 48, 105, 127], antenna in electromagnetic wave [64], a thin breakwater [50] and

aerodynamic problems of a thin airfoil [130]. Applications of the hypersingular integral equation

in mechanics were discussed by Martinet al. [109] and by Chen and Hong [31]. Combining

the singular integral equation,e.g., Green’s identity (scalar field) or Somigliana’s identity (vector

field), with the hypersingular integral equation, we can construct the dual integral equations ac-

cording to the continuous and discontinuous properties of the potential as the field point moves
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across the boundary [35]. From the above point of view, the definition of thedual (boundary) in-

tegral equationsis quite different from that of thedual integral equationsgiven by Sneddon and

Lowangrub [125] and Buecker [10], which, indeed, come from the same equation but different

collocation points in crack problems of elastodynamics. The solution for the conventional dual

integral equations was first studied by Beltrami [56]. The dual boundary integral equations for the

primary and secondary fields defined and coined by Hong and Chen are generally independent of

each other, and only for very special cases are they dependent [18].

To deal with the degenerate boundary problems, the hypersingular formulation is a powerful

method in conjunction with the dual BEM. However, regularization for hypersingularity is re-

quired. To avoid hypersingularity, one alternative has been proposed by using the multi-domain

approach of singular equation in sacrifice of introducing artificial boundary where the continuity

and equilibrium conditions on the interface boundary are considered to condense the matrix. We

may wonder whether it is possible to solve the degenerate problems by using only the singular

equation in the single-domain approach. The SVD technique will be considered to achieve the

goal.

1.4 Spurious eigensolutions for interior eigenproblems

For interior problems, eigendata are very important informations in vibrations and acoustics. Ac-

cording to the complex-valued boundary element method [21, 22, 43], the eigenvalues and eigen-

modes can be determined. Nevertheless, complex arithmetic is required. To avoid complex arith-

metic, many approaches including the multiple reciprocity method (MRM) [117], the real-part

[100, 101, 37] and the imaginary-part BEMs [39, 63] have been proposed. For example, Tai and

Shaw [126] employed only real-part kernel in the integral formulation. A simplified method using

only the real-part or imaginary-part kernel was also presented by De Mey [63] and Hutchinson

[81]. Although De Mey found that the zeros for a real-part of the complex determinant may be

different from the determinant using the real-part kernel, the spurious eigensolutions were not

discovered analytically. Chen and Wong [47] and Yeihet al. [135, 136] found the spurious eigen-

solutions analytically in the MRM using simple examples of rod and beam, respectively. Later,
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Kamiyaet al. [86] and Yeihet al. [137] independently claimed that MRM is no more than the real-

part BEM. Kanget al. [91] employed the Nondimensional Dynamic Influence Function method

(NDIF) to solve the eigenproblem. Chenet al. [40] commented that the NDIF method is a special

case of imaginary-part BEM. Kang and Lee also found the spurious eigensolutions and filtered

out the spurious eigenvalues by using the net approach [89]. Later, they extended to solve plate

vibration problems [90]. Chenet al. [19] proposed a double-layer potential approach to filter out

the spurious eigenmodes. The reason why spurious eigenvalues occur in the real-part BEM is the

loss of the constraints, which was investigated by Yeihet al. [137]. The spurious eigensolutions

and fictitious frequencies arise from an improper approximation of the null space operator [123].

The fewer number of constraint equations makes the solution space larger. Spurious eigensolu-

tions were also found in the Maxwell equation [9]. The spurious eigensolutions can be filtered

out by using many alternatives,e.g., the complex-valued BEM [22], the domain partition tech-

nique [12], the dual formulation in conjunction with the SVD updating techniques [26, 36, 37]

and the CHEEF (Combined Helmholtz Exterior integral Equation Formulation) method [14]. Be-

sides, the spurious eigensolution for the multiply-connected problem was found even though the

complex-valued kernel was used [45].

A unified formulation to study the phenomenon will be proposed by using the Fredholm

alternative theorem and SVD technique. SVD updating techniques in conjunction with the dual

formulation will be employed to sort out the true and spurious eigenvalues. In addition, the

relation between the left unitary vector in SVD and the spurious mode will be discussed.

1.5 Fictitious frequency in exterior acoustics

For exterior acoustics, the solution to the boundary is perfectly unique for all wave numbers. This

is not the case for the numerical treatment of integral equation formulation, which breaks down at

certain frequency known as irregular frequency or fictitious frequency. This problem is completely

nonphysical because there are no discrete eigenvalues for the exterior problems. It was found that

the singular (UT) equation results in fictitious frequencies which are associated with the interior

eigenfrequency of the Dirichlet problems while the hypersingular (LM) equation produces ficti-

6



tious frequencies which are associated with the interior eigenfrequency of the Neumann problems

[18]. The general derivation was provided in a continuous system [18], and a discrete system was

analytically studied using the properties of circulant for a circular case [20, 38]. Schenck [122]

proposed a CHIEF (Combined Helmholtz Interior integral Equation Formulation) method, which

is easy to implement and is efficient but still has some drawbacks. Burton and Miller [11] pro-

posed an integral equation that was valid for all wave numbers by forming a linear combination of

the singular integral equation and its normal derivative through an imaginary constant. In case of

a fictitious frequency, the resulting coefficient matrix for the exterior acoustic problems becomes

ill-conditioned. This means that the boundary integral equations are not linearly independent and

the resulted matrix is rank deficient. In the fictitious-frequency case, the rank of the coefficient

matrix is less than the number of the boundary unknowns. The SVD updating technique can be

employed to detect the possible fictitious frequencies and modes by checking whether the first

minimum singular value,σ1, is zero or not [14].

By employing the Fredholm alternative theorem and SVD updating technique, the degener-

ate mechanism for the four numerical problems, degenerate boundary, degenerate scale, spurious

eigenvalues and fictitious frequencies, will be studied. A unified formulation will be constructed

to solve for rank-deficiency problems. Illustrative examples will be illustrated to check the valid-

ity of the proposed method.

1.6 Scope of the thesis

In this thesis, the degenerate problems, degenerate boundary, degenerate scale, spurious eigenval-

ues and fictitious frequencies, will be studied by using the BEM in conjunction with the Fredholm

alternative theorem and SVD updating technique. The emphasis of each chapter are summarized

below. In Chapter 2, a more efficient technique is proposed to directly obtain the singular case

since only one normal scale needs to be computed without direct searching for the degenerate

scale by trial and error. We will prove the existence of degenerate scale for the two-dimensional

Laplace problem using the integral formulation. Besides, it is found that the addition of a rigid

body term,c, in the fundamental solution can shift the original degenerate scale to a new degen-
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erate scale by a factore−c. To deal with the numerical instability due to the degenerate scale,

three approaches, method of adding a rigid body mode, hypersingular formulation and CHEEF

method, will be applied to remove the zero singular value. In Chapter 3, instead of using either

the multi-domain BEM or the dual BEM, the degenerate boundary eigenproblem will be solved

by using the conventional BEM in conjunction with the SVD technique. Chapter 4 will focus

on sorting out the true and spurious eigenvalues with the Fredholm alternative theorem and SVD

techniques in conjunction with the dual BEM. In addition, we also review the four methods, the

complex-valued formulation, the real-part, the imaginary-part BEMs and MRM. The possible oc-

curence of spurious eigensolutions in the four approaches will be addressed. In Chapter 5, we

obtain the ficitious modes in the singular vectors of SVD as well as the true eigenmodes for the

interior problems at the same time once the updating matrix was decomposed by using the SVD

technique. A criterion for checking the minimum number and validity of the CHIEF points will

be studied analytically in the discrete system.
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Chapter 2

Degenerate scale for torsion bar problems with arbitrary cross
sections using the dual BEM

Summary

In this thesis, torsion bar problems are solved by using the dual BEM. It is found that a degen-

erate scale problem occurs if the conventional BEM is used. In this case, the influence matrix

is rank deficient and numerical results become unstable. Both the circular and elliptical bars are

studied analytically in the continuous system. In the discrete system, the Fredholm alternative

theorem in conjunction with the SVD updating documents is employed to sort out the spurious

mode which causes the numerical instability. Three regularization techniques, method of adding

a rigid body mode, hypersingular formulation and CHEEF concept, are employed to deal with

the rank-deficiency problem. The existence of degenerate scale is proved for the two-dimensional

Laplace problem using the integral formulation. The addition of a rigid body term,c, in the fun-

damental solution can shift the original degenerate scale to a new degenerate scale by a factor

e−c. The torsion rigidities are obtained and compared with analytical solutions. Numerical ex-

amples including elliptical, square, triangular bars and circular bar with keyway under torsion,

were demonstrated to show the failure of conventional BEM in case of the degenerate scale. Af-

ter employing the three regularization techniques, the accuracy of the proposed approaches is

achieved.

2-1 Introduction

During the last three decades, boundary element method (BEM) has been recognized as an accept-

able tool for engineering analysis [8, 61]. However, there still exists some pitfalls imbedded in the

BEM, e.g., rank-deficiency problems. The well-known one is the fictitious (irregular) frequency in

the exterior acoustics. Burton and Miller [11] solved the problem by combining singular and hy-

persingular equations with an imaginary constant. Chenet al. [45] extended the Burton and Miller

9



method to filter out the spurious eigenvalues in the multiply-connected eigenproblem. Schenck

[122] proposed a Combined Helmholtz Interior integral Equation Formulation (CHIEF) method,

which is easy to implement by applying the integral equation on a number of points located out-

side the domain of interest. It is efficient to overcome the problem of nonunique solutions in case

of fictitious frequency, but it still has some drawbacks since the chosen point may fail. How to

determine the number of points and how to choose their positions were discussed by Chenet al.

[15]. In a similar way for the interior eigenproblem, the CHEEF technique [14] instead of the

CHIEF concept was applied to filter out spurious eigenvalues successfully by adding constraints

from the points outside the domain in the multiple reciprocity BEM [48], real-part BEM [100]

and imaginary-part BEM [39]. Rank-deficiency problems also occur when BEM is applied to deal

with crack or corner problems. Dual formulation in conjunction with the hypersingular equation

has recieved attention in the last decade. A review article can be found in [34].

In the BEM implementation, the rigid body motion or so called constant potential test is

always employed to examine the singular matrices of strongly singular kernels and hypersingular

kernels for the problems without degenerate boundaries. Lutzet al. [107] termed it a simple

solution. Based on this concept, diagonal terms of a singular influence matrix can be easily de-

termined. Singular matrix occurs physically and mathematically in the sense that the nonunique

solution for the singular matrix implies an arbitrary rigid body term for the interior Neumann

(traction) problem. However, the influence matrix of the weakly singular kernel may be singular

for the Dirichlet problem [53] when the geometry is special. The nonunique solution is not physi-

cally realizable but results from the zero singular value in the influence matrix by using the BEM.

From the point of view of linear algebra, the problem also originates from the rank deficiency in

the influence matrices. For example, the nonunique solution of a circle with a unit radius has been

noted by Petrosky [118] and by Jaswon and Symm [84]. The special geometry which results in a

nonunique solution for a potential problem is called “degenerate scale”. The term “scale” stems

from the fact that the numerical instability of a unit circle of radius 1 m (1 cm) disappears if the

radius of 100 cm (0.01 m) is used in the BEM implementation. Christiansen [54, 55] termed it a

critical value (C.V.) since it is mathematically realizable. In real implementation, we need to avoid

the number one for the circular radius using the normalized scale. The numerical difficulties due
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to nonuniqueness of solutions have been solved by using the necessary and sufficient boundary

integral equation (NSBIE) [71, 73, 74, 72] and boundary contour method [143]. Also, the degen-

erate scale of multiply-connected problems was discussed for the Laplace equation by Tomlinson

et al. [128]. The nonunique solution for the multiply-connected biharmonic problems was also

studied by Mitra and Das [111]. Chenet al. [46] studied the degenerate scale for the simply-

connected and multiply-connected problems by using the degenerate kernels and circulants in a

discrete system for circular and annular cases. Mathematically speaking, the singularity pattern

distributed along a ring boundary resulting in a null-field solution introduces a degenerate scale.

This concept was also extended to study the spurious eigenvalues for annular cavities by Chenet

al. [45]. The similar application to the two-dimensional elasticity was addressed in [41]. A rig-

orous study was proposed mathematically by Kuhn [99] and Constanda [57, 59] for the occurring

mechanism of the degenerate scale. SVD technique has been used to detect the nonunique solu-

tion in case of degenerate scale [55]. Three regularization techniques will be employed to avoid

the zero singular value. One alternative to treat the problem is to superimpose a rigid body term

in the fundamental solution for the BEM formulation. Although the degenerate scale problem can

be circumvented for the special geometry, the degenerate scale will be proved to move to another

size. Another alternative of hypersingular formulation is employed to shift the zero eigenvalue in

paying the price of determining the Hadamard principal value. By adopting the CHEEF concept

for obtaining an independent constraint, we can also deal with the degenerate scale problems free

of hypersingularity.

In this thesis, we will focus on the analytical investigation for the phenomenon of degener-

ate scales in the BEM for torsion problems in continuous and discrete systems. The degenerate

scale for the elliptical bar under torsion will be derived analytically in a continuous system by

using the elliptical coordinate. Circular domain is a special case for check. The degenerate kernel

and circulant are employed to derive the degenerate scale in the continuous and discrete systems,

respectively. Any simply-connected problem will be proven to have a degenerate scale. Also,

the rigid body termc will be proved to move the original degenerate scale to the new degenerate

scale by a factor ofe−c. In the discrete system, the Fredholm alternative theorem in conjunction

with SVD updating document will be employed to find the degenerate scale and the correspond-

11



ing spurious mode. The relation between the spurious mode and unitary vector in SVD will be

constructed. Also, we will propose three alternatives, method of adding a rigid body mode, hyper-

singular formulation and CHEEF technique, to overcome the nonunique solution in the numerical

implementation. Method of adding a rigid body mode in the fundamental solution can shift the

zero singular value in the conventional BEM. Instead of using the conventional BEM, the second

equation in the dual BEM, i.e., hypersingular formulation, can avoid the zero singular value. By

using the CHEEF technique, the addition of a constraint by collocating the points outside the do-

main can promote the rank of the singular matrix. The optimum number and appropriate positions

for the collocating points will be addressed. Numerical examples, torsion problems of elliptical,

square, triangular bars and circular bar with keyway, will be demonstrated to see the numeri-

cal instability for the degenerate scale problems. The treament for the suppression of numerical

instability will be done.

2-2 Dual boundary integral formulation and dual BEM for torsion problems

The torsion problem of a bar with an arbitrary cross section in Fig.2-1 can be formulated by the

Poisson equation as follows [23, 120]:

52u∗(x1, x2) = −2, (x1, x2) ∈ D, (2-1)

whereu∗ is the torsion (Prandtl) function,∇2 is the Laplacian operator andD is the domain. The

boundary condition is

u∗(x1, x2) = 0, (x1, x2) ∈ B, (2-2)

whereB is the boundary. Since Eq.(2-1) contains the body source term which results in a domain

integral by using the BEM, the problem can be reformulated to

52u(x1, x2) = 0, (x1, x2) ∈ D, (2-3)

and the boundary condition is changed to

u(x1, x2) =
(x2

1 + x2
2)

2
, (x1, x2) ∈ B, (2-4)
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where the torsion functionu∗ can be obtained fromu by superimposing̃u, u = u∗ + ũ and

ũ =
(x2

1+x2
2)

2
.

This new model for the torsion problem using Eq.(2-3) is the Laplace equation subject to the

Dirichlet data of Eq.(2-4), which is very easy to implement using the DBEM, e.g., the BEPO2D

program can be used in this study, [31]. The torque,Mz, can then be determined by

Mz =

∫∫
D

(x1τ23 − x2τ13) dx1 dx2, (2-5)

whereτ23 andτ13 are the shearing stresses determined byτ23 = −κG∂u∗

∂x1
andτ13 = κG∂u∗

∂x2
, G

is the shear modulus andκ denotes the twist angle per unit length.

By employing the Green’s second identity and Eq.(2-1), the area integral in Eq. (2-5) can be

transformed into a boundary integral and a domain integral as follows:

Mz =

∫∫
D

(x1τ23 − x2τ13) dx1 dx2

= −κG
∫∫

D

(x1
∂u∗

∂x1

+ x2
∂u∗

∂x2

) dx1 dx2

= −κG
∫∫

D

(∇ũ · ∇u∗) dx1 dx2

= −κG
∫∫

D

∇ · (ũ∇u∗) dx1 dx2 + κG

∫∫
D

ũ∇2u∗ dx1 dx2

= −κG
∮

B

ũ
∂u∗

∂n
dB − κG

∫∫
D

(x2
1 + x2

2) dx1 dx2. (2-6)

The induced area integral of the second term on the right hand side of the equal sign in Eq.(2-6)

can be reformulated into a boundary integral again by using the Gauss theorem as follows:

−κG
∫∫

D

(x2
1 + x2

2) dx1 dx2 =
−κG
16

∫∫
D

∇2{(x2
1 + x2

2)
2} dx1 dx2

=
−κG
16

∮
B

∂{(x2
1 + x2

2)
2}

∂n
dB. (2-7)

The torsion problem can be simulated by using the mathematical model of the Laplace equation as

shown in Eq.(2-3). Now, we will consider the boundary integral formulation for numerical anal-

ysis. Using the Green’s identity, the first equation of the dual boundary regular integral equations
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for the domain pointx can be derived as follows:

2πu(x) =

∫
B

T (s, x)u(s) dB(s)−
∫

B

U(s, x)
∂u(s)

∂ns

dB(s), (2-8)

where

U(s, x) ≡ ln(r), (2-9)

T (s, x) ≡ ∂U(s, x)

∂ns

, (2-10)

in which r is the distance between the field pointx and the source points, andns is the nor-

mal vector for the boundary points. After taking the normal derivative of Eq.(2-8), the second

equation of the dual boundary regular integral equations for the domain pointx can be derived:

2π
∂u(x)

∂nx

=

∫
B

M(s, x)u(s)dB(s)−
∫

B

L(s, x)
∂u(s)

∂ns

dB(s), (2-11)

where

L(s, x) ≡ ∂U(s, x)

∂nx

, (2-12)

M(s, x) ≡ ∂2U(s, x)

∂nx∂ns

, (2-13)

in which nx is the normal vector for the field pointx. Eqs.(2-8) and (2-11) are coined the dual

boundary regular integral equations for the domain pointx. The explicit forms of the kernel

functions can be found in [31]. By tracing the field pointx to the boundary, the dual boundary

singular integral equations for the boundary pointx can be derived:

πu(x) = C.P.V.

∫
B

T (s, x)u(s)dB(s)−R.P.V.

∫
B

U(s, x)
∂u(s)

∂ns

dB(s), (2-14)

π
∂u(x)

∂nx

= H.P.V.

∫
B

M(s, x)u(s)dB(s)− C.P.V.

∫
B

L(s, x)
∂u(s)

∂ns

dB(s), (2-15)

whereR.P.V., C.P.V. andH.P.V. denote the Riemann principal value, Cauchy principal value

and Hadamard or Mangler principal value, respectively. After discretizing the boundary into2N

boundary elements, Eqs.(2-14) and (2-15) reduce to

[U ]2N×2N {t}2N×1 = [T ]2N×2N {u}2N×1 , (2-16)

[L]2N×2N {t}2N×1 = [M ]2N×2N {u}2N×1 , (2-17)
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where[U ], [T ], [L] and[M ] are the four influence matrices which can be found in [31],{u} and

{t} are the boundary data for the primary and the secondary boundary variables, respectively.

To determine the torsion rigidity using Eq.(2-6), the following boundary integral can be

integrated numerically as follows:∮
B

ũ
∂u∗

∂n
dB =

∮
B

ũ
∂u

∂n
dB −

∮
B

ũ
∂ũ

∂n
dB =

2N∑
j=1

ũj[(
∂u

∂n
)j − (

∂ũ

∂n
)j] lj, (2-18)

where(∂u
∂n

)j is the normal derivative ofu for thejth boundary element,lj is the length of thejth

boundary element and another boundary integral in Eq.(2-7) can be discretized as follows:∮
B

∂{(x2
1 + x2

2)
2}

∂n
dB = 4

2N∑
j=1

(
∂ũ2

∂n
)j lj. (2-19)

2-3 Proof of the existence for the degenerate scale of the two-dimensional

Laplace problem using the integral formulation

Theorem 1: Existence theorem

[ Proof ] :

For any two-dimensional Laplace problem with a simply-connected domain, there exists a degen-

erate scale when we solve the problem by using the boundary integral formulation or BEM.

For two-dimensional potential problems, there exists a unique solution forψ1(s) satisfying

u(x) =

∫
B

U(s, x)ψ1(s) dB(s), x ∈ B, (2-20)

whereB is the normal boundary with the enclosing domainD. For simplicity, we can assume a

constant potential field since it is a “simple solution” for the Laplace equation. Eq.(2-20) reduces

to

1 =

∫
B

U(s, x)ψ1(s) dB(s), x ∈ B. (2-21)

When the degenerate scaleBd occurs, the nonunique solution of Eq.(2-21) implies that

0 =

∫
Bd

U(s, x)ψ1(s) dB(s), x ∈ Bd, (2-22)
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has a nontrivial solution forψ1(s), whereBd is the boundary of degenerate scale using the funda-

mental solutionU(s, x) = ln(r). By expressing the boundary contour in terms off(x1, x2) = 0,

we have a new closed boundary curve

f(
x1

d
,
x2

d
) = 0, (2-23)

whered is the expansion ratio. The two boundary curves,B andBd, are shown in Fig.2-2(a). By

mapping the nondegenerate (normal) boundary to the degenerate boundary, we have

(x1, x2) ⇒ (x1 d, x2 d) = (x1, x2) d,

dB(s) ⇒ dB(s d) = dB(s) d,

U(s, x) ⇒ U(s d, x d) = U(s, x) + ln (d),

ψ1(s) ⇒ ψ̄1(s d) = ψ1(s).

According to mapping properties, the homogeneous Eq.(2-22) yields

0 =

∫
Bd

U(s d, x d) ψ̄1(s d) dB(s d). (2-24)

In order to have a nontrivial solution for Eq.(2-24), we have

0 =

∫
B

d (U(s, x) + ln(d)) ψ1(s) dB(s)

= d+ d ln (d)

∫
B

ψ1(s) dB(s) = d+ d ln (d) Γ,

(2-25)

after using Eq.(2-21) and defining

Γ =

∫
B

ψ1(s)dB(s). (2-26)

According to Eq.(2-25), the degenerate scale occurs when the expansion ratio,d, satisfies

d = e−
1
Γ . (2-27)

For determing the degenerate scale systematically from one trial on a normal scale, we provided

a flowchart shown in Fig.2-2(b).

Here, a simple example of a circle with a radius,a, is demonstrated to verify Eq.(2-27).

According to Eq.(2-21), we have

ψ1(s) =
1

2 π a ln(a)
. (2-28)
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By using Eq.(2-26), we can determine

Γ =

∫
B

1

2 π a ln(a)
dB(s) =

1

ln(a)
. (2-29)

Substituting Eq.(2-29) to Eq.(2-27), the expansion ratio is

d = e− ln(a) =
1

a
. (2-30)

After expanding the radiusa by multiplying the expansion ratio,1
a
, the degenerate scale of radius

with a unit length is proved. The numerical results for the circle are shown to match well with the

analytical solutions in the second column of Table 2-1.

2-4 Proof of the expansion ratio ofe−c for the new degenerate scale after

adding a rigid body term c in the fundamental solution

Theorem 2:

The boundary ofg(x1, x2) = 0, which is a degenerate scale using the fundamental solution

(U(s, x) = ln(r)) is changed to a new degenerate scale ofg( x1

e−c ,
x2

e−c ) = 0 using the modified

fundamental solution(U∗(s, x) = ln(r) + c).

[ Proof ] :

If the degenerate scaleBd (g(x1, x2) = 0) occurs, the fundamental solutionU(s, x) can be modi-

fied toU(s, x) + c to avoid the singular case. In other words, there is a unique solutionψ1(s) for

the following equation,

1 =

∫
Bd

[U(s, x) + c]ψ1(s) dB(s). (2-31)

In a similar way, we expand the normal boundaryBd (U(s, x) = ln(r) + c) in Eq.(2-31) to the

“new degenerate scale”,Bd∗, by using the modified fundamental solution as shown in Fig.2-2(a).

The homogeneous Eq.(2-31) reduces to

0 =

∫
Bd∗

[U(s d∗, x d∗) + c]ψ1(s d
∗) dB(s d∗). (2-32)

In the new degenerate scale,Bd∗, for the case of modified fundamental solution(U(s, x) = ln(r)+

c), it means that Eq.(2-32) has a nontrivial solution. By using mapping properties,dB(s d∗) =
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d∗ dB(s) andU(s d∗, x d∗) = U(s, x) + ln d∗, Eq. (2-32) reduces to

0 = d∗
∫

Bd

[(U(s, x) + ln(d∗) + c]ψ1(s)dB(s)

= d∗ ln(d∗)

∫
Bd

ψ1(s)dB(s) + c d∗
∫

Bd

ψ1(s)dB(s) + d∗
∫

Bd

U(s, x)ψ1(s)dB(s).

(2-33)

Since
∫

Bd
U(s, x)ψ1(s) dB(s) = 0 in the original degenerate scale, Eq. (2-33) simplifies to

0 = d∗ ln(d∗)

∫
Bd

ψ1(s)dB(s) + cd∗
∫

Bd

ψ1(s)dB(s)

= (ln(d∗) + c)

∫
Bd

ψ1(s)dB(s).

(2-34)

The expansion ratio,d∗, satisfying

d∗ = e−c, (2-35)

results in a new degenerate scale in Eq.(2-35). To demonstrate the accuracy of Eq.(2-35), a special

case of circular bar will be disscussed in the following section in detail.

2-5 Mathematical analysis of the degenerate scale for an elliptical bar under

torsion

For an elliptical bar under torsion as shown in Fig.2-3(a), the governing equation is also

∇2u(x1, x2) = 0, (x1, x2) ∈ D. (2-36)

To study the degenerate scale for an elliptical bar [104], we consider an infinite domain and use

the elliptic coordinateξ andη defined by

z = k cosh ζ, ζ = ξ + iη. (2-37)

wherez is the complex plane(x1 + ix2), k is a constant and

x1 = k cosh ξ cos η, x2 = k sinh ξ sin η. (2-38)

The coordinateξ is a constant and is equal toξ0 on the ellipse of the semiaxesk cosh ξ0 and

k sinh ξ0 as shown in Fig.2-3(b). If the semiaxes are given asα andβ, k andξ0 can be determined

by

k =
√
α2 − β2, ξ0 = tanh−1

(
α

β

)
. (2-39)
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We assumeui andue, for the interior and exterior potentials as shown in Fig.2-3(b), respectively,

ui(ξ, η) = c1, (2-40)

ue(ξ, η) = c2 + c3ξ, (2-41)

where the subscripts “i” and “e” denote the interior or exterior point separated by the elliptical

boundaryξ = ξ0, respectively. Whenξ approaches infinity, we have the asymptotic form

r = |z| = |k cosh ζ| ' k

2
eξ, (2-42)

and

ξ ' ln(r)− ln(
k

2
). (2-43)

Whenξ approaches infinity, the exterior potential approachesln r and the coefficientc2 must be

chosen asc3 ln(k
2
). The potential in the exterior domain is

ue(ξ, η) = c3(ξ + ln(
k

2
)). (2-44)

On the other hand, whenξ approachesξ0 on the elliptical boundary, we have

ue(ξ, η) = c3(ξ0 + ln(
k

2
))

= c3(tanh−1

(
β

α

)
+

1

2
ln(α2 − β2)− ln(2)). (2-45)

after using Eq.(2-39). If we set

tanh(x) =

(
e2x − 1

e2x + 1

)
= χ, (2-46)

we have

x =
1

2
ln

(
1 + χ

1− χ

)
= tanh−1 χ. (2-47)

By settingχ to be(β
α
), we have

tanh−1

(
β

α

)
=

1

2
ln

(
α+ β

α− β

)
. (2-48)

The exterior potential in Eq.(2-45) becomes

ue(ξ, η) = c3(
1

2
ln

(
α+ β

α− β

)
+

1

2
ln(α2 − β2)− ln(2))

= c3 ln

(
α+ β

2

)
. (2-49)
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For the continuity of displacement across the boundary, the displacement by approaching from

the exterior domain must equal to the potential by approaching from the interior domain. We have

c1 = ln

(
α+ β

2

)
c3, (2-50)

and the potential can be written as

ui(ξ, η) = c3 ln

(
α+ β

2

)
, (2-51)

ue(ξ, η) = c3[ξ +
1

2
ln(α2 − β2)− ln(2)]. (2-52)

The degenerate scale occurs for the interior null field when the relationship betweenα andβ is

α+β = 2, i.e.,c1 = 0. In such a case, the strength of the singularity along the elliptical boundary

can not be determined in BEM implementation. This is the reason why a degenerate scale occurs.

The fields forui andue are shown in Fig.2-3(c) for contour and 3-D plots. It is found that the

null field is obtained in the ellipse. From Eqs.(2-38) and (2-39), the tangent vectort̃ and normal

vectorñ in Fig.2-3(d) can be derived as follows:

t̃ = (−k cosh ξ0 sin η, k sinh ξ0 cos η), (2-53)

ñ = (k sinh ξ0 cos η, k cosh ξ0 sin η). (2-54)

The exact solution for the normal flux on the boundary is

∂u(ξ0, η)

∂ñ
= ψ1(η) =

u(ξ0 +4ξ0, η)− u(ξ0, η)

r(ξ0, η; ξ0 + ∆ξ0, η)

=
1√

β2 cos2 η + α2 sin2 η
.

(2-55)

wherer(ξ0, η; ξ0 + ∆ξ0, η) is the distance between the two points(ξ0, η) and (ξ0 + ∆ξ0, η) in

the elliptical coordinate, as shown in Fig.3-3(d). Whenα approachesβ, the elliptical boundary

becomes a circle and the degenerate scale is found to beα = β = 1. The result is the same in

comparison with the degenerate scale in [84, 118]. Eq.(2-55) reduces toψ1(η) = 1 for the circle.

2-6 Special case - circular bar with radiusR

Whenα equals toβ in the elliptical case, it becomes a circular bar. The null field of Fig.2-3(c) is

simplified to Fig.2-4 whereue(ξ, η) = ln r can be obtained from Eq.(2-49) by settingα = β = r.
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The degenerate scale occurs at the radius of one. In this case,φ(η) = ψ(η) = 1. For the discrete

system of2N boundary elements, the influence matrix of[U ] is a symmetric circulant which can

be decomposed by using SVD technique as

[U ] = [Φ][Σ][Ψ]T , (2-56)

where the singular values in the[Σ] matrix are

σl =

 2π R ln(R), n = 0

−π R
|n| , n = ±1,±2, · · · ,±(N − 1), N,

(2-57)

After adding a rigid body term,c, in the fundamental solution, the influence matrix[U ] is modified

to

[U r] = [U ] + c∗{φ1}{ψ1}T , (2-58)

where uniform mesh results in

{φ1} = {ψ1} =
1√
2N



1

1
...

1

1


2N×1

. (2-59)

We can easily obtain

c∗ = 2cN l = 2π r∗c. (2-60)

In order to demonstrate that the rigid body termc can shift the degenerate scaleR = 1 to another

placeR = r∗, the minimum singular value of the influence matrix[U r] becomes zero,

2π r∗ ln (r∗) + c∗ = 0. (2-61)

Using Eq. (2-60), we have

2π r∗ ln (r∗) + c 2π r∗ = 0, (2-62)

Eq. (2-62) yields

r∗ = e−c. (2-63)

21



Eq.(2-35) is obtained again using the BEM. In the same way, we can prove Eq.(2-35) in the

continuous system. First, we define a boundary integral operatorU which maps one boundary

density functionp(s) to another boundary density functionq(x) as

U(p(s)) = λ q(x), (2-64)

where the boundary integral operator,U , is defined as

U(ψ(s)) =

∫
B

U(s, x)ψ(s) dB(s), x ∈ B. (2-65)

In this case, the associated eigenfunction for the zero eigenvalue isψ(s) = 1, i.e..

U(ψ(s)) = λψ(x) =

∫
B

U(s, x)ψ(s) dB(s) = 0, x ∈ B. (2-66)

When the degenerate scale occurs, the eigenvalue,λ, is zero. By using the degenerate kernel

function for the fundamental solution added by a rigid body term,c, [31], we have

U∗(s, x) = U∗(R, θ; ρ, φ) (2-67)

= lnR−
∞∑

m=1

1

m
(
ρ

R
)
m

cos(m(θ − φ)) + c, (2-68)

wherex = (ρ, φ) ands = (R, θ). For the circular case of radius one, the zero singular value

results in a degenerate scale. After adding a rigid body term,c, the minimum singular value shifts

to

σ∗1 = 2π R ln (R) + 2π R c. (2-69)

We can obtain the radius with a unit length (free of rigid body term) is shifted toe−c (after adding

a rigid body termc) for keeping the zero singular value, see Fig.2-5. In order to demonstrate that

the rigid body termc can shift the degenerate scale(R = ρ = 1) to another place(R = r∗). Eq.

(2-69) can be rewritten as

2π r∗ ln (r∗) + 2π r∗ c = 0, (2-70)

Eq. (2-70) yields

r∗ = e−c. (2-71)
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2-7 Detection of degenerate scales and determination of spurious modes by

using the SVD updating documents and the Fredholm alternative theorem

Fredholm alternative theorem:

The linear algebraic equation[K] {u} = {b̄} has a unique solution if and only if the only contin-

uous solution to the homogeneous equation

[K] {u} = {0} (2-72)

is {u} ≡ {0}. Alternatively, the homogeneous equation has at least one solution if the homoge-

neous adjoint equation

[K]H{φ} = {0} (2-73)

has a nontrivial solution{φ}, where[K]H is the transpose conjugate matrix of[K] and{b̄} must

satisfy the constraint({b̄}H{φ} = 0). If the matrix[K] is real, the transpose conjugate of a matrix

is equal to its transpose only [62], i.e.,[K]H = [K]T . By using the UT formulation, we have

[U ] {t} = [T ] {u} = {b̄}. (2-74)

According to the Fredholm alternative theorem, Eq. (2-74) has at least one solution for{t} if the

homogeneous adjoint equation

[U ]T {φ1} = {0}, (2-75)

has a nontrivial solution{φ1}, in which the constraint({b̄}T{φ1} = 0) must be satisfied. By

substitutinḡb = [T ]{u} in Eq. (2-74) into{b̄}T{φ1} = 0, we obtain

{u}T [T ]T {φ1} = 0. (2-76)

Since{u} is an arbitrary vector for the Dirichlet problem, we have

[T ]T {φ1} = {0}, (2-77)

where{φ1} is the spurious mode. Combining Eq. (2-75) and Eq. (2-77) together, we have [U ]T

[T ]T

 {φ1} = {0} or {φ1}T
[

[U ] [T ]
]

= {0}. (2-78)
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Eq.(2-78) indicates that the two matrices have the same spurious mode{φ1} corresponding to the

same zero singular value when a degenerate scale occurs. The former one in Eq.(2-78) is a form

of updating term and the latter one is a form of updating document. By using the SVD technique

for the[U ]T and[T ]T matrices, we have

[U ]T = [ΨU ] [ΣU ] [ΦU ]T ,

[T ]T = [ΨT ] [ΣT ] [ΦT ]T ,
(2-79)

where{φ1} is imbedded in both the matrices,[ΦU ] and[ΦT ], with the corresponding zero singular

value in the matrices,[ΣU ] and[ΣT ], respectively. Since{φ1} is one of the left unitary vector of

[ΦU ] matrix with respect to the zero singular value, we have

[U ]T{φ1} = 0 {ψ1}, (2-80)

where{φ1} and{ψ1} are the pair of nontrivial spurious modes which satisfy

[U ]{ψ1} = 0 {φ1}. (2-81)

The{ψ1} in Eq.(2-81) for the discrete system andψ(η) in Eq.(2-55) for the continuous system will

be examined in the following numerical examples. To sum up, rigid body mode{1, 1, · · · 1, 1}T and

spurious mode{ψ1} satisfy

[T ]



1

1
...

1

1


= [U ]



0

0
...

0

0


, (2-82)

[T ]



0

0
...

0

0


= [U ] {ψ1} , (2-83)

respectively.
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2-8 Three regularization techniques to deal with degenerate scale problems

in BEM

2-8-1 Method of adding a rigid body mode

Since the[U ] matrix is singular in case of the degenerate scale, the modified fundamental solution

can be added by a rigid body termc,

U∗(s, x) = U(s, x) + c. (2-84)

The influence matrix[U ] is modified to[U∗], where the component form for the element is

U∗
ij = Uij + c lj. (i, j = 1, · · · 2N) (2-85)

The zero singular value in[U ] moves to a nonzero value for[U∗]. To demonstrate the effective-

ness, the minimum singular value after the modified fundamental solution will be shown in the

numerical examples.

2-8-2 Hypersingular formulation

Instead of using the Eq.(2-16) in the conventional BEM, the second equation of Eq.(2-17) in the

dual BEM is used. To demonstrate the idea, the singular value for the[L] matrix will be shown to

be nonzero no matter what the expansion ratio is in the following numerical examples.

2-8-3 CHEEF method

Since the[U ] matrix is singular, the rank is deficient. In order to promote the rank, the independent

constraint is required. To resort to the null field equation by collocating the point outside the

domain, we have

< w > {t} =< v > {u}, (2-86)
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where< w > and< v > are the influence row vectors by collocating the exterior point in the

null-field equation. By combining Eqs.(2-16) with (2-86), we have [U ]2N×2N

< w >1×2N

{
t

}
2N×1

=

 [T ]2N×2N

< v >1×2N

{
u

}
2N×1

. (2-87)

According to the Eq.(2-87), we can obtain the reasonable solution by using either the least squares

method or the SVD technique.

2-9 Numerical examples

In this section, four cases including elliptical, square, triangular bars and circular bar with keyway

are considered.

2-9-1 Elliptical bar

For the elliptical bar with axesα m andβ m (α = 3β) under torsion, the analytical solution for

the conjugate warping function is [120]

u(x1, x2) =
α2(2β2 + x2

1 − x2
2) + β2(−x2

1 + x2
2)

2(α2 + β2)
, (x1, x2) ∈ D, (2-88)

and the boundary flux is
∂u

∂n
= −(α2 − β2)(−β2x2

1 + α2x2
2)

(α2 + β2)
√
β4x2

1 + α4x2
2

. (2-89)

The torsion rigidity,Tr, is

Tr = G
πα3β3

α2 + β2
. (2-90)

The nontrivial boundary mode{ψ1} obtained in Eq.(2-81) in the BEM and the analytical solution

ψ1(η) using Eq.(2-55) matched well in Fig.2-6. Good agreement for the numerical data of Eq.(2-

78) and the exact solution for the spurious mode is obtained in Fig.2-6. Table 2-2 shows the

torsional rigidity obtained by using different approaches. The conventional BEM can work well

for the normal case. However, the numerical instability results in a deteriorated BEM solution

when the degenerate scale(α + β = 2) occurs in the shadow area of Table 2-2. Good agreement
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was obtained in comparison with the analytical solutions after using the regularization techniques

as shown in Table 2-2.

By using the conventional BEM, the zero singular value occurs in case of degenerate scale.

After adding the rigid body term,c, in the fundamental solution, the zero singular value moves

to another place by a factore−c instead of the original one as shown in Fig.2-7(a). To investigate

how seriously the rank deficiency behaves, we plot the second minimum singular value versus the

expansion ratio in Fig.2-7(b). It indicates that the rank is deficient by one only. This supports

us that only one CHEEF point is sufficient. The zero singular value disappears in Fig.2-7(c) for

the [L] matrix in the hypersingular formulation. In order to avoid hypersingularity, the CHEEF

method by collocating one point outside the domain can promote the rank as shown in Fig.2-7(d).

Since no zero solution outside the domain also shown in Fig.2-3(c), the selected CHEEF points

are always valid.

2-9-2 Square bar

For the square bar with area4a2 m2 under torsion, the analytical solution for the conjugate warp-

ing function is [120]

u(x1, x2) = a2 +
1

2
(x2

1−x2
2)−

32a2

π3

∞∑
n=0

(−1)nλn cosh(λnx2) cos(λnx1)

(2n+ 1)3 cosh(λna)
, (x1, x2) ∈ D, (2-91)

where

λn = (2n+ 1)
π

2a
, n = 0, 1, 2... (2-92)

The boundary flux is
∂u

∂n
=

∂u

∂x1

nx1 +
∂u

∂x2

nx2 , (x1, x2) ∈ B, (2-93)

where

∂u

∂x1

= −x1 −
32a2

π3

∞∑
n=0

(−1)n+1λn cosh(λnx2) sin(λnx1)

(2n+ 1)3 cosh(λna)
, (2-94)

∂u

∂x2

= x2 −
32a2

π3

∞∑
n=0

(−1)nλn sinh(λnx2) cos(λnx1)

(2n+ 1)3 cosh(λna)
, (2-95)
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andnx1 andnx2 are the components of the normal vector on the boundary.

The torsional rigidity,Tr, of a square bar is

Tr = 16k1Ga
4 (2-96)

where

k1 =
1

3
(1− 192

π5
Σ∞

n=0

tanh(λna)

(2n+ 1)5
). (2-97)

Table 2-2 shows the torsional rigidity by using different approaches. In the same way, the conven-

tional BEM (UT formulation) can not obtain the acceptable results for the case of the degenerate

scale as shown in Table 2-2. Fig.2-8 shows the spurious modes of{φ1} and{ψ1}. In this case,

no analytical solution can be compared with. By using the conventional BEM, the zero singular

value occurs in case of the degenerate scale. After adding the rigid body term in the fundamen-

tal solution, the zero singular value moves to another degenerate scale instead of original one as

shown in Fig.2-9(a). To investigate how seriously the rank deficiency behaves, we plot the second

minimum singular value versus the expansion ratio in Fig.2-9(b). It indicates that rank is defi-

cient by one only. This supports us that only one CHEEF point is required. By employing the

hypersingular equation in the dual BEM, it is found that the singular value of[L] matrix for any

scale is nonzero as shown in Fig.2-9(c). In order to avoid hypersingularity, the CHEEF concept

by collocating one point outside the domain can promote the rank as shown in Fig.2-9(d).

2-9-3 Triangular bar

For the equilateral triangular bar with the heighth m under torsion, the analytical solution for the

conjugate warping function is [120]

u(x1, x2) = − 1

2h
(3x2x

2
1 − x3

2 + hx2
2 − hx2

1 + h2x2), (x1, x2) ∈ D, (2-98)

and the boundary flux is

∂u

∂n
=

∂u

∂x1

nx1 +
∂u

∂x2

nx2 , (x1, x2) ∈ B, (2-99)
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where

∂u

∂x1

= − 1

2h
(6x2x1 − 2hx1), (2-100)

∂u

∂x2

= − 1

2h
(3x2

1 − 3x2
2 + 2hx2 + h2), (2-101)

The torsion rigidity,Tr, is

Tr = G

√
3

45
h4. (2-102)

Table 2-3 shows the torsional rigidity by using different approaches. In the same way, the con-

ventional BEM (UT formulation) can not obtain the acceptable results for the case of degenerate

scale as shown in Table 2-3. Fig.2-10 shows the spurious modes of{φ1} and{ψ1}. In this case,

no analytical solution can be compared with. By using the conventional BEM, the zero singular

value occurs in case of the degenerate scale. After adding the rigid body term in the fundamen-

tal solution, the zero singular value moves to another degenerate scale instead of original one

as shown in Fig.2-11(a). To investigate how seriously the rank deficiency behaves, we plot the

second minimum singular value versus the expansion ratio in Fig.2-11(b). It indicates that rank

is deficient by one only. It is found that the singular value of[L] matrix in the hypersingular

equation for any scale is nonzero as shown in Fig.2-11(c). In order to avoid hypersingularity, the

CHEEF method by collocating one point outside the domain can promote the rank as shown in

Fig.2-11(d).

2-9-4 Circular bar with keyway

For the circular bar with keyway under torsion, the analytical solution for the conjugate warping

function is [120]

u(x1, x2) = ax1(1−
b2

x2
1 + x2

2

+
1

2
b2), (x1, x2) ∈ D, (2-103)

and the boundary flux is

∂u

∂n
=

∂u

∂x1

nx1 +
∂u

∂x2

nx2 , (x1, x2) ∈ B, (2-104)
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where

∂u

∂x1

= − 2ab2x2
1

(x2
1 + x2

2)
2
, (2-105)

∂u

∂x2

=
2abx1x2

(x2
1 + x2

2)
2
. (2-106)

The torsion rigidity,Tr, is

Tr = 2Ga4k2, (2-107)

where

k2 =
1

24
(sin 4γ + 8 sin 2γ + 12γ)− 1

2
(
b

a
)2(sin 2γ + 2γ) +

4

3
(
b

a
)3(sin γ) +

1

4
(
b

a
)4γ (2-108)

in which

2 cos γ =
b

a
. (2-109)

Table 2-3 shows the torsional rigidity by using different approaches. In the same way, the con-

ventional BEM (UT formulation) can not obtain the acceptable results for the case of degenerate

scale as shown in Table 2-3. Fig.2-12 shows the spurious modes of{φ1} and{ψ1}. In this case,

no analytical solution can be compared with. By using the conventional BEM, the zero singular

value occurs in case of the degenerate scale. After adding the rigid body term in the fundamen-

tal solution, the zero singular value moves to another degenerate scale instead of original one

as shown in Fig.2-13(a). To investigate how seriously the rank deficiency behaves, we plot the

second minimum singular value versus the expansion ratio in Fig.2-13(b). It indicates that rank is

deficient by one only. By employing the hypersingular equation in the dual BEM, it is found that

the singular value of[L] matrix for any scale is nonzero as shown in Fig.2-13(c). In order to avoid

hypersingularity, the CHEEF method by collocating one point outside the domain can promote

the rank as shown in Fig.2-13(d).

2-10 Conclusions

In this chapter, the numerical instability for torsion problems by using the conventional BEM was

addressed. Instead of direct searching for the degenerate scale by trial and error, a more efficient
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technique is proposed to directly obtain the singular case since only one normal scale needs to be

computed. The degenerate scale for the torsion bar with an elliptical section was derived analyti-

cally in the continuous system using the elliptical coordinate. For the discrete system, the source

of numerical instability is found to be the spurious modes (left and right unitary vectors in SVD

with respect to the zero singular value) which were obtained by using the Fredholm alternative

theorem and SVD updating document. To deal with the numerical instability due to the degen-

erate scale, three approaches, method of adding a rigid body mode, hypersingular formulation

and CHEEF method, were successfully applied to remove the zero singular value. Good agree-

ment between the BEM results and the analytical solutions were obtained if the regularization

techniques are used. Numerical examples, including a circular bar, an elliptical bar, a square bar,

triangular bar and a circular bar with keyway were demonstrated to check the validity.
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Chapter 3

Eigenanalysis for membranes with stringers using BEM in
conjunction with SVD technique

Summary

It is well known that either the multi-domain BEM or the dual BEM can solve boundary value

problems with degenerate boundaries. In this chapter, the eigensolutions for membranes with

stringers are obtained in a single domain by using the conventional BEM in conjunction with

the SVD technique. By adopting the SVD technique for rank revealing, the nontrivial boundary

mode can be detected by the successive zero singular values which are not due to the degeneracy

of degenerate boundary. The boundary modes are obtained according to the right unitary vectors

with respect to the zero singular values in the SVD. Three examples, a single-edge stringer, a

double-edge stringer and a central stringer in a circular membrane, are considered. The results of

the present method, are compared with those of the multi-domain BEM, the dual BEM, the DtN

method, the FEM (ABAQUS) and analytical solutions if available. Good agreement is obtained.

The goal to deal with the eigenproblem in a single domain without hypersingularity is achieved.

3-1 Introduction

A large amount of boundary value problems (BVPs) were solved efficiently by using the bound-

ary element method (BEM) since Rizzo [121] discretized the integral equations for elastostatics

in 1967. Over twenty years, the main applications were limited in BVPs without degenerate

boundaries. Since the degenerate boundary results in rank deficiency for the conventional BEM,

the multi-domain BEM was utilized to solve the nonunique solution by introducing an artificial

boundary in the last two decades,e.g., cutoff wall [102], thin barrier [106] and crack problems [7].

However, the eigenproblem with a degenerate boundary was not solved by using the multi-domain

BEM to the authors’ best knowledge. The drawback of the multi-domain approach is obvious in

that the artificial boundary is arbitrary, and thus not qualified as an automatic scheme. In addition,
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a larger system of equations is required since the degrees of freedoms on the interface are put

into the system. For half plane or infinite problem, the artificial boundary is not finite. The three

shortcomings encourage researchers to deal with the degenerate boundary problem by using the

dual BEM with hypersingularity in the last decades,e.g.,Hong and Chen [35, 76], Gray [66, 67]

and Kirkup [94, 95, 96] independently derived the hypersingular formulation for the degenerate

boundary problems. Aliabadi and his coworkers [1, 110, 119] have published many papers on its

applications to fracture mechanics. One can consult the review article by Chen and Hong [27]. We

may wonder is it possible to find the eigensolution in a single domain with a degenerate boundary

approach without using the hypersingular equation.

In this thesis, we will solve the membrane eigenproblems with stringers using the multi-

domain BEM and a new method. By employing only the conventional BEM instead of the dual

BEM, the eigenvalue will be detected in a single domain by finding the successive zero singular

values using the rank revealing technique of SVD. Three cases, a single-edge stringer, a double-

edge stringer and a central stringer, will be considered. Also, the FEM using ABAQUS, the DtN

method, the dual BEM and analytical solutions if available will be utilized in comparison with the

present solutions of both the multi-domain BEM and the new method.

3-2 Integral formulation and boundary element implementation for the mem-

brane eigenproblem with stringers

Consider a membrane eigenproblem as shown in Fig.3-1(a), (b) and (c), which has the following

governing equation:

∇2u(x) + k2u(x) = 0, x in D, (3-1)

whereD is the domain of interest,x is the domain point,u(x) is the displacement andk is the

wave number. The boundary conditions are given as follows:

u(x) = 0, x on B1, (3-2)

∂u(x)

∂nx

= 0, x on B2, (3-3)
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whereB1 is the essential boundary with the specified homogeneous displacement,B2 is the nat-

ural boundary with homogeneous normal flux in thenx direction, andB1 andB2 comprise the

whole boundary of the domainD. For the stringerB1 can be composed of stringer (degener-

ate boundary)C+ andC− as shown in Fig.3-1(a), (b) and (c). For the homogeneous boundary

conditions, we can determine the critical wave numberk by using the BEM.

The first equation of the dual boundary integral equations for the domain point can be derived

from Green’s third identity [43] :

2πu(x) =

∫
B

T (s, x)u(s)dB(s)−
∫

B

U(s, x)
∂u(s)

∂ns

dB(s), x ∈ D, (3-4)

whereU(x, s) is the fundamental solution which satisfies

∇2U(x, s) + k2U(x, s) = δ(x− s), x ∈ D, (3-5)

in which δ(x− s) is the Dirac-delta function, andT (s, x) is defined by

T (s, x) ≡ ∂U(s, x)

∂ns

, (3-6)

in whichns is the outward directed normal at the boundary points. By moving the field pointx

in Eq.(3-4) to the boundary, the first dual boundary integral equation for the boundary point can

be obtained as follows:

πu(x) = C.P.V.

∫
B

T (s, x)u(s)dB(s)−R.P.V.

∫
B

U(s, x)
∂u(s)

∂ns

dB(s), x ∈ B, (3-7)

whereC.P.V. is the Cauchy principal value andR.P.V. is the Riemann principal value. The

boundary integral equation can be discretized by usingN constant boundary elements forB, and

the resulting algebraic system (UT formulation: conventional BEM) can be obtained as

[T ]{u} = [U ]{t}, (3-8)

wheret = ∂u
∂n

, [ ] denotes a square matrix with dimensionN byN , { } is a column vector for the

boundary data and the elements of the square matrices are, respectively,

Uij = R.P.V.

∫
Bj

U(sj, xi)dB(sj), (3-9)

Tij = −πδij + C.P.V.

∫
Bj

T (sj, xi)dB(sj), (3-10)

whereBj denotes thejth boundary element andδij is the Kronecker delta.
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3-3 Review of the multi-domain BEM and the dual BEM for the eigenprob-

lem with a degenerate boundary

3-3-1 Multi-domain BEM

Since the degenerate boundary onC+ andC− as shown in Fig.3-2(a) produces double unknowns,

Eq.(3-8) can provide an additional equation by collocating the pointx on C+ or C−. Instead

of obtaining the independent equations by using the hypersingular formulation [43], the multi-

domain BEM is one alternative. By dividing the domain into two subdomains (index 1 and 2)

and using the conventional BEM for each subdomain, we have the two equations from Eq.(3-8)

as follows,  T 1
cc T 1

cf

T 1
fc T 1

ff

{
u1

c

u1
f

}
=

 U1
cc U1

cf

U1
fc U1

ff

{
t1c
t1f

}
, (3-11)

and  T 2
cc T 2

cf

T 2
fc T 2

ff

{
u2

c

u2
f

}
=

 U2
cc U2

cf

U2
fc U2

ff

{
t2c
t2f

}
, (3-12)

where the superscripts 1 and 2 are the labels of the subdomains and the subscriptsc andf de-

note the complementary and interface sets foru andt, respectively. Since the unknown pairs of

{u1
f}, {u2

f}, {t1f} and{t2f} are introduced in the artificial boundary as shown in Fig.3-2(a), two

constraints of the continuity and equilibrium conditions are necessary,

{u1
f} = {u2

f}, (3-13)

and

{t1f} = −{t2f}. (3-14)

By assembling the Eqs.(3-11) and (3-12) and using Eqs.(3-13) and (3-14), we have
U1

cc U1
cf 0

U1
fc U1

ff 0

0 −U2
cf U2

cc

0 −U2
ff U2

fc




t1c

t1f

t2c

 =


T 1

cc T 1
cf 0

T 1
fc T 1

ff 0

0 T 2
cf T 2

cc

0 T 2
ff T 2

fc




u1
c

u1
f

u2
c

 . (3-15)
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By collecting the unknown variables,{t1c}, {t1f}, {t2c}, {u1
f} for the Dirichlet eigenproblem and

the known homogeneous boundary conditions,{u1
c} and{u2

c}, to the left and right hand sides of

the equal sign, respectively, Eq.(3-15) is reformulated to

[
UMD

]


t1c

t1f

t2c

u1
f


= {0}, (3-16)

where{u1
c} = {u2

c} = 0 for the Dirichlet boundary condition are substituted and

[
UMD

]
=


U1

cc U1
cf 0 T 1

cf

U1
fc U1

ff 0 T 1
ff

0 −U2
cf U2

cc T 2
cf

0 −U2
ff U2

fc T 2
ff

 . (3-17)

By plotting the determinant of the matrix,[UMD], versusk, we can find the eigenvalue where the

determinant drops to a local minimum in the direct-searching scheme.

3-3-2 Dual BEM [43]

Instead of using the multi-domain BEM, the dual BEM is also one alternative for the degenerate-

boundary problem. By adding independent constraints, differential operator can be introduced.

This is the key idea of the dual BEM. After taking the normal derivative with respect to Eq.(3-4),

the second equation of the dual boundary integral equations for the domain point can be derived:

2π
∂u(x)

∂nx

=

∫
B

M(s, x)u(s)dB(s)−
∫

B

L(s, x)
∂u(s)

∂ns

dB(s), x ∈ D, (3-18)

where the two kernels are

L(s, x) ≡ ∂U(s, x)

∂nx

, (3-19)

M(s, x) ≡ ∂2U(s, x)

∂nx∂ns

. (3-20)
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By moving the field pointx in Eq.(3-18) to the boundary, the second one of dual boundary integral

equations for the boundary point can be obtained as follows:

π
∂u(x)

∂nx

= H.P.V.

∫
B

M(s, x)u(s)dB(s)− C.P.V.

∫
B

L(s, x)
∂u(s)

∂ns

dB(s), x ∈ B, (3-21)

whereH.P.V. is the Hadamard (Mangler) principal value. After boundary element descretization,

we have

[M ]{u} = [L]{t}, (3-22)

where

Lij = πδij + C.P.V.

∫
Bj

L(sj, xi)dB(sj), (3-23)

and

Mij = H.P.V.

∫
Bj

M(sj, xi)dB(sj). (3-24)

For the membrane eigenproblem with stringers, the homogeneous Dirichlet boundary condition is

considered. After determining the influence coefficients and substituting the boundary conditions,

we can obtain the transcendental eigenequations as follows:

[U(k)]{t} = {0}, (3-25)

[L(k)]{t} = {0}, (3-26)

where{t} is the boundary mode fort = ∂u
∂n

, and the wave number,k, is embedded in each element

of the matrices,[U ] and [L]. By employing the direct-searching scheme for the determinant of

[U ] or [L], trivial data are obtained for the plot of determinant versusk since the two matrices

are singular for any value ofk. In other words, eitherUT or LM method alone fails to solve the

eigenproblem.

By combining the dual equations on the degenerate boundary whenx collocates onC+ or

C−, the nontrivial eigensolution exists when the determinant of the combined influence matrix is

zero by using the direct-searching method. Since either one of the two equations,UT or LM ,

for the normal boundaryS as shown in Fig.3-1(a) can be selected, two alternative approaches,

UT + LM andLM + UT , are proposed for the combined influence matrices as follows:
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TheUT + LM method has the eigenequation

[KUL]


tjS

tjC+

tjC−

 = {0}, (3-27)

where

[KUL] =


UiSjS

UiSjC+ UiSjC−

UiC+jS
UiC+jC+ UiC+jC−

LiC+jS
LiC+jC+ LiC+jC−

 , (3-28)

the subscripts,iS andiC+ , denote the collocation points on theS andC+ boundaries, respectively,

and the subscripts,jS andjC+ , denote the element ID on theS andC+ boundaries, respectively.

TheLM + UT method has the eigenequation

[KLU ]


tjS

tjC+

tjC−

 = {0}, (3-29)

where

[KLU ] =


LiSjS

LiSjC+ LiSjC−

LiC+jS
LiC+jC+ LiC+jC−

UiC+jS
UiC+jC+ UiC+jC−

 . (3-30)

By plotting the determinants of[KUL] or [KLU ] versusk, eigenvalues can be found by using the

direct-searching scheme.

3-4 Direct-searching scheme by using determinant and singular value in

BEM

3-4-1 Multi-domain BEM

The eigenvaluek can be obtained by direct searching the determinant versusk, such that

det[UMD(k)] = 0, (3-31)
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where[UMD(k)] is defined in Eq.(3-17). The numerical results will be elaborated on later. After

determining the eigenvalues, the boundary mode can be obtained by setting a normalized value to

be one in an element for the nontrivial vector. By substituing the eigenvalue and boundary mode

into Eq.(3-4), the interior mode can be obtained.

3-4-2. Dual BEM

In the same way, the eigenvaluek can be obtained from

det[KUL(k)] = 0 or det[KLU(k)] = 0, (3-32)

where[KUL(k)] and [KLU(k)] are defined in Eqs.(3-28) and (3-30), respectively. The interior

mode can be obtained in the same way as the multi-domain BEM does.

3-4-3 UT BEM+SVD

The aforementioned two methods, either the multi-domain BEM or the dual BEM is well known

for degenerate boundary problems in the literature. Here, we propose a new approach to deal with

the eigenproblem using theUT BEM and SVD. For the Dirichlet eigenproblem, the boundary

element mesh on the degenerate boundary was shown in Fig.3-2(b). The influence matrix[U(k)]

is rank deficient due to two sources, the degeneracy of stringers and the nontrivial mode for the

eigensolution. SinceNd constant elements locate on the stringer, the matrix[U(k)] results in

Nd zero singular values(σ1 = σ2 · · · = σNd
= 0). The next(Nd + 1)th zero singular value

σNd+1 = 0 originates from the nontrivial eigensolution. To detect the eigenvalues, the(Nd + 1)th

zero singular value versusk can be plotted to find the drop where the eigenvalue occurs.

Since the SVD technique is adopted for rank revealing, the decomposition is reviewed as

follow:

Given a matrix[K], SVD can decompose into

[K(k)]M×P = [Φ]M×M [Σ]M×P [Ψ]HP×P , (3-33)
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where[Φ] is a left unitary matrix constructed by the left singular vectors({φi}, i = 1, 2, . . .M),

and [Σ] is a diagonal matrix which has singular valuesσ1, σ2, · · · , σP−1 andσP allocated in a

diagonal line as

[Σ] =



σP · · · 0
...

...
...

0 · · · σ1

...
...

...

0 · · · 0


M×P

, (3-34)

in which σP ≥ σP−1 · · · ≥ σ1 and [Ψ]H is the complex conjugate transpose of a right unitary

matrix constructed by the right singular vectors({ψi}, i = 1, 2, . . . P ). As we can see in Eq.(3-

34), there exist at mostP nonzero singular values.

By employing the SVD technique to determine the eigenvalue, we can obtain the boundary

mode at the same time by extracting the right singular vector{ψ} in the right unitary matrix[Ψ]

of SVD with respect to the near zero or zero singular value by using

[K]{ψi} = σi{φi} i = 1, 2, 3 · · ·P . (3-35)

If the qth singular value,σq, is zero, in Eq.(3-35) we have

[K]{ψq} = 0{φq} = {0}, q ≤ P . (3-36)

According to Eq.(3-36), the nontrivial boundary mode is found to be the right singular vector,

{ψq}, in the right unitary matrix. Therefore, the step to determine nontrivial boundary mode

in the multi-domain BEM and dual BEM is avoided by setting a reference value. Here,UT

BEM+SVD employed the influence[U ] for [K] in Eq.(3-8) for the Dirichlet eigenproblem.

3-5 Numerical examples

We next consider the three problems illustrated in Fig.3-1(a)-(c), which have been solved by

Givoli and Vigdergauz [68] and Chenet al. [43]. A circular membrane is given with a radius
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R. For simplicity, we setR = 1m. In this study, the conventional BEM (UT formulation) in

conjunction with SVD is employed. In order to check the validity, the results ofUT BEM+SVD

and the multi-domain BEM are compared with those of the exact solution, the DtN method, the

dual BEM and the ABAQUS (FEM) results. The conventional boundary element meshes for

these cases are shown in Fig.3-3(a), (b) and (c) and the multi-domain boundary element meshes

are shown in Fig.3-4(a), (b) and (c) for the single-edge, the double-edge and the central stringers,

respectively.

Case 1. Single-edge stringer with lengtha = 1:

Using the conventional BEM (UT formulation) in conjunction with SVD, the(σNd+1)
th zero

singular value obtained by using Eq.(3-33) for[U ] matrix,([K] = [U ]) is plotted versus the wave

number in Fig.3-5(a). The curve drops at the eigenvalues. By using the dual BEM and the multi-

domain BEM, the determinants in Eqs.(3-32) and (3-31) versus the wave number are also shown

in Fig.3-5(b) and (c), respectively, without using the SVD technique [43]. Good agreement for the

former eigenvalues in Fig.3-5(a), (b) and (c) are made. The DtN method missed some eigenvalues

as disscussed in [43], since symmetry and anti-symmetry are not fully considered. In addition,

the exact eigenvalues satisfyingJn
2
(k), n = 1, 2, 3 · · · , and the FEM results using ABAQUS are

compared with those of theUT BEM+SVD, the dual BEM (DBEM) and the multi-domain BEM

in Table 3-1(a). For this case, the number of boundary elements,Nd, on the degenerate boundary is

5. Since the(Nd +1)th zero singular value,σNd+1, originates from the nontrivial boundary mode,

Fig.3-6(a) shows the{ψNd+1} along the boundary for the former eight eigenvalues. It is found

that{ψNd+1}matched well with the exact boundary eigensolutions which are(−1)n sin(nθ
2

), n =

1, 2, · · · , as predicted analytically in [43]. For the former eight eigenvalues, the first right singular

vector{ψ1} corresponding to the first zero singular value(σ1 = 0) along the boundary in Fig.3-

6(b), also indicate that the element of boundary mode{ψ1} are trivial except on the degenerate

boundary. Since the formerNd zero singular values(σ1 = σ1 = · · · = σNd
= 0) originate from

the degenerate boundary, the corresponding right singular vectors({ψ1} ∼ {ψNd
}) are found to

be trivial except on the degenerate boundary as shown in Fig.3-7, for the case ofk = 3.09. In

other words, Fig.3-7 reveals that the former five zero singular values stems from the degeneracy

due to stringers. The former eight modes by using theUT BEM+SVD are compared well with
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those of FEM as shown in Fig.3-8.

Case 2. Double edge stringer with lengtha = 0.5:

Using the conventional BEM (UT formulation) in conjunction with SVD, the(Nd + 1)th

zero singular value obtained by using Eq.(3-33) for[U ] matrix, ([K] = [U ]) is plotted versus the

wave number in Fig.3-9(a). The curve drops at the eigenvalues. By using the dual BEM and the

multi-domain BEM, the determinants in Eqs.(3-32) and (3-31) versus the wave number are also

shown in Fig.3-9(b) and (c), respectively. Good agreement for the eigenvalues in Fig.3-9(a), (b)

and (c) is obtained. In addition, the FEM results by using ABAQUS are compared with those

usingUT BEM+SVD, the dual BEM and the multi-domain BEM in Table 3-1(b). The former

eight modes by using theUT BEM+SVD are compared with those of the FEM as shown in

Fig.3-10.

Case 3. Central stringer with lengtha = 0.8:

Using the conventional BEM (UT formulation) in conjunction with SVD, the(Nd + 1)th

zero singular value obtained by using Eq.(3-33) for[U ] matrix, ([K] = [U ]) is plotted versus the

wave number in Fig.3-11(a). The curve drops at the eigenvalues. By using the dual BEM and the

multi-domain BEM, the determinants in Eqs.(3-32) and (3-31) versus the wave number are also

shown in Fig.3-11(b) and (c), respectively. Good agreement for the eigenvalues in Fig.3-11(a), (b)

and (c) is obtained. The FEM results by using ABAQUS are compared with those using theUT

BEM+SVD, the dual BEM and the multi-domain BEM in Table 3-1(c). The former eight modes

by using theUT BEM+SVD are compared with those of the FEM as shown in Fig.3-12.

3-6 Conclusions

Instead of using either the multi-domain BEM or the dual BEM, the conventional BEM was

successfully utilized to solve the degenerate boundary eigenproblem in conjunction with the

SVD technique. Not only hypersingularity can be avoided but also a single domain is required.

By detecting the successive zero singular values, the eigenvalues were found and the boundary

eigenmodes were obtained according to the corresponding right unitary vectors. Good agreement
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among the results of present method, the FEM (ABAQUS), DtN method, the multi-domain BEM,

the dual BEM and analytical solutions if available was obtained. The goal to solve the eigenprob-

lem using the singular formulation in a single domain was achieved. In addition, the boundary

mode and eigenvalue can be obtained at the same time once the influence matrix was decomposed

by using the SVD.
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Chapter 4

On the true and spurious eigensolutions for eigenproblems
using the Fredholm alternative theorem and SVD

Summary

The appearance of spurious eigensolutions for interior eigenproblems is examined by employ-

ing the complex-valued formulation, the real-part, the imaginary-part BEMs and the multiple

reciprocity method in a unified manner. In this chapter, the Fredholm alternative theorem and

SVD updating techniques in conjunction with the dual formulation are employed to deal with the

eigenproblem. Numerical examples given circular domains are illustrated to see the validity of

the present formulation.

4-1 Introduction

Solving eigenproblems by using BEM has been studied by many researchers. Many methods

including the complex-valued boundary element method [43], the multiple reciprocity method

(MRM) [37], the real-part [37, 100] and the imaginary-part BEMs [63] have been proposed. Al-

thuogh the real-part BEM can obtain the true eigenvalue, this leads to spurious roots in addition to

the correct ones. Hutchinson [81] has investigated the mode shapes in order to identify and reject

the spurious ones. Chenet al. used the residue method to identify the true solution by substituting

the possible eigensolution into dual equations. One may wonder is it possible to recognize the

true or spurious eigenvalues without determining the mode shapes in advance. In order to achieve

this purpose, Chen and his coworkers [21] have studied the interior eigenproblems and published

many papers [22, 39, 101]. Among them,e.g.,domain partition method, SVD updating method,

CHEEF method, and GSVD technique were employed to sort out the true eigensolutions. Besides,

Chen and Wong [47], and Yeihet al. [135, 136] found analytically the spurious eigensolutions

for a rod and a beam in the MRM. In addition, Kamiyaet al. [86] and Yeihet al. [137] inde-

pendently claimed that MRM is no more than the real-part BEM. Kanget al. [91] employed the
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Nondimensional Dynamic Influence Function method (NDIF) to solve the eigenproblem. Chen

et al. [40] commented that the NDIF method is a special case of imaginary-part BEM. Kang and

Lee also found the spurious eigensolutions and filtered out the spurious eigenvalues by using the

net approach [89]. Later, they extended to solve plate vibration problems [90]. Chenet al. [19]

proposed a double-layer potential approach to filter out the spurious eigenmodes. In this chapter,

a unified formulation will be presented, including using the Fredholm alternative theorem and

SVD techniques in conjunction with the dual formulation for sorting out the true and spurious

eigenvalues. A circular case is used to examine the validity of the present formulation.

4-2 Problem statement and the methods of solution

The governing equation for the eigenproblem is the Helmholtz equation as follows:

∇2u(x) + k2u(x) = 0, x in D. (4-1)

whereD is the domain of interest,x is the domain point,k is the wave number andu(x) is the

displacement or acoustic pressure for the vibration problem or acoustic problem, respectively.

On the basis of the dual formulation, the unified null-field integral formulation for the

Helmholtz equation using the direct method can be written as

0 =

∫
B

T (s, x)u(s)dB(s)−
∫

B

U(s, x)t(s)dB(s), x ∈ De (4-2)

0 =

∫
B

M(s, x)u(s)dB(s)−
∫

B

L(s, x)t(s)dB(s), , x ∈ De (4-3)

whereDe is the complementary domain ofD, x = (ρ, φ) is a field point andx = (R, θ) is a

source point,t(s) = ∂u(s)
∂ns

, U(s, x) is the fundamental solution and the explicit forms for the four

methods as shown bellow:

Direct BEM Complex-valued BEM Real-part BEM Imaginary-part BEM MRM

U(s, x)
−iπH

(1)
0 (kr)

2
πY0(kr)

2
πJ0(kr)

2
π
2
Ȳ0(kr)

45



wherer = |s − x|, H(1)
0 (kr) is the first kind Hankel function with zeroth order andJ0(kr) and

Y0(kr) are the zeroth order Bessel functions of first kind and second kind, respectively. The

fundamental solution of the MRM is

π

2
Ȳ0(kr) = (ln r)

∞∑
n=0

pn(kr)2n +
∞∑

n=0

qn(kr)2n (4-4)

=
π

2
Y0(kr)− [ln

k

2
+ γ]J0(kr), (4-5)

in which γ is the Euler constant,pn = (−1)n

4n(n!)2
andqn = (−1)(n+1)

4n(n!)2
(1 + 1

2
+ 1

3
· · · + 1

n
). Another

kernel functions are derived by

T (s,x) =
∂U(s,x)

∂ns

,

L(s,x) =
∂U(s,x)

∂nx

,

M(s,x) =
∂2U(s,x)

∂nsnx

.

The true and spurious eigensolution were solved by using the degenerate kernel, Fourier

series and circulants in continuous and discrete systems. Four approaches, the complex-valued

formulation, the real-part, the imaginary-part BEMs and MRM, are summarized and the occur-

rence of true and spurious eigensolutions is also reviewed in the following subsection.

4-2-1 True eigensolutions by using the complex-valued BEM

By using theUT andLM formulations for the Dirichlet eigenproblem, the eigenequations are

derived for the circular problem, respectively

UT : [J`(kρ) + iY`(kρ)]J`(kρ) = 0, (4-6)

and

LM : [J ′`(kρ) + iY ′
` (kρ)]J`(kρ) = 0. (4-7)

The true eigenvalues are the roots ofJ`(kρ) = 0 for the common part in the eigenequations of

Eqs.(4-6) and (4-7).

For the Neumann problem, the eigenequations are derived, respectively

UT : [J`(kρ) + iY`(kρ)]J
′
`(kρ) = 0, (4-8)
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and

LM : [J ′`(kρ) + iY ′
` (kρ)]J

′
`(kρ) = 0. (4-9)

The true eigenvalues are the roots ofJ ′`(kρ) = 0 for the common part in the eigenequations of

Eqs.(4-8) and (4-9).

4-2-2 True and spurious eigensolutions by using the real-part BEM

By employing the real-part kernels in theUT andLM equations for the Dirichlet eigenproblem,

we obtain the eigenequations,

UT : Y`(kρ)J`(kρ) = 0, ` = 0,±1,±2, · · · ,±(N − 1), N, (4-10)

LM : Y ′
` (kρ)J`(kρ) = 0, ` = 0,±1,±2, · · · ,±(N − 1), N, (4-11)

respectively. Thek value satisfying Eqs.(4-10) or (4-11) may be spurious eigenvalues of union

set (Y`(kρ) = 0 or Y ′
` (kρ) = 0) or true eigenvalues of intersection set (J`(kρ) = 0) to satisfy both

Eqs.(4-10) and (4-11).

For the Neumann problem, we obtain the eigenequations,

UT : Y`(kρ)J
′
`(kρ) = 0, ` = 0,±1,±2, · · · ,±(N − 1), N, (4-12)

LM : Y ′
` (kρ)J

′
`(kρ) = 0, ` = 0,±1,±2, · · · ,±(N − 1), N, (4-13)

respectively. Thek values satisfying Eqs.(4-12) or (4-13) may be spurious eigenvalue of union

set (Y`(kρ) = 0 or Y ′
` (kρ) = 0) or true eigenvalue of intersection set (J ′`(kρ) = 0) to satisfy both

Eqs.(4-12) and (4-13).

4-2-3 True and spurious eigensolutions by using the imaginary-part BEM

By employing the imaginary-part kernels in theUT andLM equations for the Dirichlet eigen-

problem, we obtain the eigenequations,

UT : J`(kρ)J`(kρ) = 0, ` = 0,±1,±2, · · · ,±(N − 1), N, (4-14)
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LM : J ′`(kρ)J`(kρ) = 0, ` = 0,±1,±2, · · · ,±(N − 1), N, (4-15)

respectively. Thek values satisfying Eqs.(4-14) or (4-15) may be spurious eigenvalues of union

set (J`(kρ) = 0 or J ′`(kρ) = 0) or true eigenvalues of intersection set (J`(kρ) = 0) to satisfy both

Eqs.(4-14) and (4-15).

For the Neumann problem, we obtain the eigenequations,

UT : J`(kρ)J
′
`(kρ) = 0, ` = 0,±1,±2, · · · ,±(N − 1), N, (4-16)

LM : J ′`(kρ)J
′
`(kρ) = 0, ` = 0,±1,±2, · · · ,±(N − 1), N, (4-17)

respectively. Thek values satisfying Eqs.(4-16) or (4-17) may be spurious eigenvalues of union

set (J`(kρ) = 0 or J ′`(kρ) = 0) or true eigenvalues of intersection set (J ′`(kρ) = 0) to satisfy both

Eqs.(4-16) and (4-17).

4-2-4 True and spurious eigensolutions by using the MRM

By employing the MRM kernels in theUT andLM equations for the Dirichlet eigenproblem, we

can summarize the eigenequations as follows [36],

True eigenequation:Jn(kρ) = 0, (4-18)

By using the direct MRM (UT ) formulation, we have

Spurious eigenequation:
π

2
Y0(kρ)− (ln

k

2
+ γ)J0(kρ) = 0. (4-19)

By employing the MRM kernels inUT andLM equations for the Neumann problem, we

can summarize the true eigenequation as follows,

True eigenequation:J
′

n(kρ) = 0, (4-20)

By using the direct MRM (LM ), we have

Spurious eigenequation:
π

2
Y

′

0 (kρ)− (ln
k

2
+ γ)J

′

0(kρ) = 0. (4-21)
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4-3 Extraction of the spurious eigensolutions by using the Fredholm alterna-

tive theorem and SVD updating techniques

Fredholm alternative theorem:

The linear algebraic equation[K] {u} = {b̄} has a unique solution if and only if the only contin-

uous solution to the homogeneous equation

[K] {u} = {0} (4-22)

is {u} ≡ {0}. Alternatively, the homogeneous equation has at least one solution if the homoge-

neous adjoint equation

[K]T{φ} = {0} (4-23)

has a nontrivial solution{φ}, where[K]T is the transpose conjugate matrix of[K] and{b̄} must

satisfy the constraint({b̄}T{φ} = 0). By using the UT formulation, we have

[U(k)] {t} = [T (k)] {u} = {b̄}. (4-24)

According to the Fredholm alternative theorem, Eq.(4-24) has at least one solution for{t} if the

homogeneous adjoint equation

[U(ks)]
T {φ1} = {0}, (4-25)

has a nontrivial solution{φ1}, in which the constraint({b̄}T{φ1} = 0) must be satisfied. By

substituting{b̄} = [T (k)]{u} in Eq. (4-24) into{b̄}T{φ1} = 0, we obtain

{u}T [T (ks)]
T {φ1} = 0. (4-26)

Since{u} is an arbitrary vector for the Dirichlet problem, we have

[T (ks)]
T {φ1} = {0}, (4-27)

where{φ1} is the spurious mode. Combining Eq. (4-25) and Eq. (4-27) together, we have [U(ks)]
T

[T (ks)]
T

 {φ1} = {0} or {φ1}T
[

[U(ks)] [T (ks)]
]

= {0}. (4-28)
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Eq.(4-28) indicates that the two matrices have the same spurious mode{φ1} corresponding to the

same zero singular value for the spurious eigenvalueks. The former one in Eq.(4-28) is a form of

updating term and the latter one is a form of updating document. By using the real-part BEM (UT

formulation) in conjunction with the Fredholm alternative theorem and SVD updating techniques,

the spurious eigenvalueks satisfies [UR(ks)]
T

[TR(ks)]
T

 {φ(UT )
R } = {0}, (4-29)

where the subscriptR denotes the real part.

In the hypersingular formulation (LM method), the spurious eigenvalue satisfies [LR(ks)]
T

[MR(ks)]
T

 {φ(LM)
R } = {0}. (4-30)

By using the imaginary-part BEM, the spurious eigenvalue satisfies [UI(ks)]
T

[TI(ks)]
T

 {φ(UT )
I } = {0}, (4-31)

where the subscriptI denotes the imaginary part. In the hypersingular formulation of imaginary-

part BEM, the spurious eigenvalue satisfies [LI(ks)]
T

[MI(ks)]
T

 {φ(LM)
I } = {0}. (4-32)

4-4 Extraction of the true eigensolutions by using the Fredholm alternative

theorem and SVD updating techniques

For the Dirichlet eigenproblem, the true eigenvaluekt satisfies [UR(kt)]

[LR(kt)]

 {ψ(UL)
R } = {0}, (4-33)

and  [UI(kt)]

[LI(kt)]

 {ψ(UL)
I } = {0}, (4-34)
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by using the real-part and imaginary-part BEMs, respectively.

For the Neumann problem, the true eigenvalue can be sorted out by using [TR(kt)]

[MR(kt)]

 {ψ(TM)
R } = {0}, (4-35)

and  [TI(kt)]

[MI(kt)]

 {ψ(TM)
I } = {0}, (4-36)

by using the real-part and imaginary-part BEMs, respectively.

General speaking, the SVD structure for the four influence matrices in the dual BEM are

unified in Tables 4-1(a) and 4-1(b) whenk = ks andk = kt, respectively. .

4-5 Numerical examples

Both the Dirichlet and Neumann eigenproblems for a circular domain with radiusa m are con-

sidered here. The true and spurious eigenvalues are shown in Tables 4-2 and 4-3 by employing

various approaches, the real-part and the imaginary-part BEMs as well as singular and hypersin-

gular formulations.

In Table 4-2, the real-part BEM is used for the interior eigenproblem and twenty constant

elements are adopted on the boundary. For the Dirichlet eigenproblem, the true eigenvalues,

Jn(ka) = 0, can be found by checking the same dropping positions in the the figures of the local

minimum singular value obtained from[U ] and [L] matrices. For the Neumann eigenproblem,

the true eigenvaluesJ
′
n(ka) = 0, are also found in the similar way by checking local minimum

singular value obtained from the[T ] and [M ] matrices. The local minimum singular value ob-

tained from the updating matrices,[U L]T , and[T M ]T occurs in the true eigenvalues. It is found

that [U ] and[T ] matrices have the same spurious eigenvalues ofYn(ka) = 0 by using the singu-

lar formulation. In the hypersingular formulation,[L] and[M ] matrices have the same spurious

eigenvalues ofY
′
n(ka) = 0. The updating matrices,[U T ], and[L M ] can sort out the spurious

eigenvalues,Yn(ka) = 0 andY
′
n(ka) = 0 by using the SVD, respectively.
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By using the imaginary-part BEM, only eight constant elements are used on the boundary

in order to avoid the ill-conditioned matrix. The results are shown in Table 4-3. For the Dirichlet

eigenproblem, the true eigenvalues,Jn(ka) = 0, can be found by checking the same dropping po-

sitions in the the figures of the local minimum singular value obtained from[U ] and[L] matrices.

For the Neumann eigenproblem, the true eigenvaluesJ
′
n(ka) = 0, are also found in the similar

way by checking local minimum singular value obtained from the[T ] and [M ] matrices. The

local minimum singular value obtained from the updating matrices,[U L]T , and[T M ]T occurs

in the true eigenvalues. It is found that[U ] and[T ] matrices have the same spurious eigenvalues

of Jn(ka) = 0 by using the singular formulation. In the hypersingular formulation,[L] and[M ]

matrices have the same spurious eigenvalues ofJ
′
n(ka) = 0. The updating matrices,[U T ], and

[L M ] can sort out the spurious eigenvalues,Jn(ka) = 0 andJ
′
n(ka) = 0 by using the SVD,

respectively. In this case, spurious multiplicity appears since spurious since spurious eigenvalues

are equal to true ones.

The true and spurious eigenvalues by using MRM are shown in Table 4-4. It is found that all

the figures drop at the positions as predicted analytically in Eqs.(4-29)∼(4-36).

4-6 Conclusions

By using the Fredholm alternative theorem and SVD techniques in conjunction with the dual

formulations, the true and spurious eigenvalues in the complex-valued formulation, the real-part,

the imaginary-part BEMs and MRM are sorted out successfully. The numerical results agree well

with the analytical prediction. Although Table 4-2, 4-3 and 4-4 match well with the analytical

prediction, it is worth mentioning that the imaginary-part BEM becomes ill-conditioned once the

number of element increaesd. Ill-conditioned behavior is inherent in the regular formulation and

deserves further study.
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Chapter 5

Fictitious frequency revisited

Summary

The nonexistence and nonuniqueness problems associated with integral equation methods for

exterior acoustics are revisited. Based on the Fredholm alternative theorem in conjunction with

the SVD updating technique, the fictitious frequency and mode can be extracted. After selecting

the CHIEF points, we can obtain the influence row vectors. A criterion in selecting the minimum

number of CHIEF points and their positions is developed to check the validity by testing the

orthogonality condition between the influence row vector and right unitary vector. It is proved

in the discrete system that the source of numerical instability originates from the zero division

by zero by using the generalized coordinates of unitary vectors in SVD. A flowchart to detect the

fictitious frequency and to overcome the numerical instability by the CHIEF method is plotted and

implemented in our program. Radiation problems of a cylinder and a square rod are demonstrated

to see the validity of the present formulation.

5-1 Introduction

Boundary element method has been used for solving radiation and scattering problems [15, 20]

for many years. The fictitious-frequency problems in the exterior acoustics have the same rank-

deficiency mechanism as the spurious eigenvalue appears in the interior eigenproblem when the

multiple reciprocity BEM, the real-part or the imaginary-part BEM is employed. In a fictitious-

frequency problem of the exterior acoustics, the ill-conditioned matrices occurring in the BEM

[49] are linearly dependent,i.e.,they are rank deficient. For this problem, Schenck [122] proposed

the CHIEF (Combined Helmholtz Interior integral Equation Formulation) method by collocating

the point outside the domain as an auxiliary constraint to promote the rank of influence matrices.

Chenet al. extended the CHIEF method to CHEEF method for overcoming the spurious eigen-

values. However, this method still has some drawbacks. If the CHIEF point locates on or near the
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nodal line of interior modes, it can not provid a valid constraint [85]. To overcome this problem,

Chenet al. [15] presented the analytical study to select the valid CHIEF points for the circular

case using circulants. For the same purpose to general cases, a criterion for checking the validity

of the selected CHIEF points will be addressed in detail by employing the Fredholm alternative

theorem and the SVD updating techniques. Numerical examples will be demonstrated to see the

validity of the present formulation.

5-2 Problem statement and review of the CHIEF method

In this section, the CHIEF method for the two-dimensional Helmholtz equation is briefly summa-

rized here. The governing equation for the exterior acoustics is

∇2u(x) + k2u(x) = 0, x in D, (5-1)

whereu(x) and k are the acoustic pressure and the wave number, respectively. To solve the

problem by using the boundary integral formulation, we have

πu(x) = C.P.V.

∫
B

T (s, x)u(s)dB(s)−R.P.V.

∫
B

U(s, x)
∂u(s)

∂ns

dB(s), (5-2)

wherex is the field point,s is the source point,ns is the normal vector for the boundary points,

C.P.V. andR.P.V. denote the Cauchy principal value and Riemann principal value, respectively.

By discretizing the boundary integral formulation (BIE) in Eq.(5-2) intoN constant elements, the

linear algebraic equation can be obtained

[U ] {t} = [T ] {u} , (5-3)

where[U ] and[T ] are the influence matrices [44]. For the ficitious frequency case, the influence

matrix is singular,i.e., the rank is deficient. In order to promote the rank, the CHIEF method

by collocating the points outside the domain as auxiliary constraints was successfully applied to

deal with this problem. By collocating the point outside the domain for the null-field BIE, the

additional constraint is

< w > {t} =< v > {u}, (5-4)
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where< w > and< v > are the influence row vectors by collocating the point in the null-field

equation. By combining Eq.(5-3) with Eq.(5-4), we have the over-determined system [U ]

< w >

{
t

}
=

 [T ]

< v >

{
u

}
, (5-5)

if the sufficient CHIEF points are provided.

5-3 Detection of the fictitious frequency and ficitious mode in BEM for ex-

terior acoustics using the Fredholm alternative theorem and SVD technique

Fredholm alternative theorem:

The linear algebraic equation[K] {u} = {b} has a unique solution if and only if the continuous

solution to the homogeneous equation

[K] {u} = {0}, (5-6)

is {u} ≡ {0}. Alternatively, the homogeneous equation has at least one solution if the homoge-

neous adjoint equation

[K]H{φ} = {0} (5-7)

has a nontrivial solution{φ}, where[K]H is the transpose conjugate matrix of[K] and{b} must

satisfy the constraint({b}H{φ} = 0). By using theUT formulation, we have

[U(k)] {t} = [T (k)] {u} = {b}. (5-8)

According to the Fredholm alternative theorem, Eq.(5-8) has at least one solution for{t} if the

homogeneous adjoint equation

[U(kf )]
H {φ1} = {0} (5-9)

has a nontrivial solution{φ1}, wherekf is the fictitious wave number. For the Dirichlet problem,

the constraint({b}H{φ1} = 0) must be satisfied. By substituting{b} = [T (kf )]{u} in Eq. (5-8)

into {b}H{φ1} = 0, we obtain

{u}H [T (kf )]
H {φ1} = 0. (5-10)
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Since{u} is an arbitrary vector, we have

[T (kf )]
H {φ1} = {0}, (5-11)

where{φ1} is the ficitious mode. Combining Eq.(5-9) and Eq.(5-11) together, we have [U(kf )]
H

[T (kf )]
H

 {φ1} = {0} or {φ1}H
[

[U(kf )] [T (kf )]
]

= {0}. (5-12)

Eq.(5-12) indicates that the two matrices have the same spurious mode{φ1} corresponding to the

same zero singular value when rank deficiency occurs in case of ficitious frequency. The former

one in Eq.(5-12) is a form of updating term and the latter one is a form of updating document.

By using the singular and hypersingular formulations, the fictitious wave number,kf of a

multiplicity P , satisfies [Ui(kf )]
H

[Ti(kf )]
H

 {φj} = {0}, j = 1, 2, · · · , P (5-13)

 [Li(kf )]
H

[Mi(kf )]
H

 {φj} = {0}, j = 1, 2, · · · , P (5-14)

where the subscripti denotes the use of interior degenerate kernel for the exterior problem.

5-4 Mathemetical structure for the updating matrix

According to the SVD technique, Eq.(5-13) results in

[Ui]{ψ(U)
j } = 0{φj} = {0}, j = 1, 2, · · · , P (5-15)

[Ti]{ψ(T )
j } = 0{φj} = {0}, j = 1, 2, · · · , P (5-16)

where{ψ(U)
j } and{ψ(T )

j } are the right unitary vectors for[U ] and[T ], {φj} are the common left

unitary vectors. By using the updating term for deriving the true boundary modes{ψD
j } in the

interior Dirichlet eigenproblem, we have [Ue]

[Le]

 {ψD
j } = {0}, j = 1, 2, · · · , P (5-17)
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where the subscripte denotes the use of exterior degenerate kernel for the interior problem. Since

the kernel functions have the symmetry and transponse symmetry properities, we have

Ue(s, x) = Ui(x, s) or [Ue] = [Ui] symmetry, (5-18)

and

Le(s, x) = Ti(x, s) or [Le] = [Ti] transponse symmetry. (5-19)

By using Eqs.(5-18) and (5-19), Eq.(5-17) reduces to [Ui]

[Ti]

 {ψD
j } = {0} j = 1, 2, · · · , P. (5-20)

Comparing Eq.(5-20) with Eqs.(5-15) and (5-16), we find

{ψ(U)
j } = {ψ(T )

j } = {ψD
j } j = 1, 2, · · · , P. (5-21)

It means that the[Ui] and [Ti] matrices for the exterior acoustics, have the same right singular

vectors ({ψD
j }) as the[Ue] and[Le] matrices have for the interior Dirichlet eigenproblem.

In order to examine the left and right singular vectors in the singular matrix, Eq.(5-13) can

be rewritten as follows: [Ui(kf )]
H

[Ti(kf )]
H


2N×N

{φj}N×1 = 0

 ψD
j

ψD
j


2N×1

j = 1, 2, · · · , P. (5-22)

Generally speaking, the matrix of Eq.(5-22) can be decomposed into [Ui]
H

[Ti]
H


2N×N

= [ΨD]2N×2N [Σ]2N×N [Φ]HN×N , (5-23)

where

[ΨD]2N×2N =

 {ψD
1 } · · · {ψD

P } | {ψP+1} · · · {ψ2N}

{ψD
1 } · · · {ψD

P } | {ψP+1} · · · {ψ2N}


2N×2N

, (5-24)
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[Σ]2N×N =



[0]P×P · · · · · · 0
... σP+1

...
...

...
...

0 · · · · · · σN

0 · · · · · · 0
...

...
...

...
...

...

0 · · · · · · 0


2N×N

(5-25)

and

[Φ]HN×N =
[
{φ1} · · · {φP} | {φP+1} · · · {φN}

]H

N×N
, (5-26)

Eq.(5-23) indicates that all the ficitious modes{φi}, 1 ≤ i ≤ P, and the true modes{ψD
i }, 1 ≤

i ≤ P, are obtained at the same time once the updating matrix is decomposed by SVD technique.

In other words, the SVD structure for the four influence matrices in the dual BEM can be

unified in Table 5-1.

5-5 Source of numerical instability - zero division by zero

The analytical study and numerical experiments for the optimum numbers and proper positions of

the selected CHIEF points have been proposed by Chenet al. [15] for a circular case. However,

we will extend to the general case in a discrete system. In the case of the fictitious frequency of

multiplicity P , P CHIEF points are needed. One can obtainP fictitious modes by using Eq.(5-

13). The source of number instability is proved as follows:

According to the right unitary vectors{ψi} for [T ] and[U ] matrices, we can express the boundary

data into

{u} =
N∑

i=1

βi{ψ(T )
i } = [Ψ(T )]{β}, (5-27)

{t} =
N∑

i=1

αi{ψ(U)
i } = [Ψ(U)]{α}, (5-28)
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whereN is the number of unknowns,αi andβi are the generalized coordinates. By using the

SVD technique, Eq.(5-8) can be rewritten to

[Φ(U)][Σ(U)]{α} = {b}, (5-29)

By pre-multiplying the regular mode{φ(U)
i }H , P + 1 ≤ i ≤ N, to both sides of Eq.(5-29), we

have

σ
(U)
i αi = {φ(U)

i }H{b}, P + 1 ≤ i ≤ N. (5-30)

Since the singular valuesσ(U)
i , P+1 ≤ i ≤ N, are nonzero, the generalized coordinatesαi, P+

1 ≤ i ≤ N, can be determined by

αi =
1

σ
(U)
i

{φ(U)
i }H{b}, P + 1 ≤ i ≤ N. (5-31)

By pre-multiplying the fictitious mode{φ(U)
i }H , 1 ≤ i ≤ P , to both sides of Eq.(5-29) and

using orthogonal propurty, we have

σ
(U)
i αi = {φ(U)

i }H{b}, 1 ≤ i ≤ P. (5-32)

Since the singular valuesσ(U)
i , 1 ≤ i ≤ P, are zero, the coefficientsαi, 1 ≤ i ≤ P, can not be

determined due to zero division by zero from Eq.(5-31) in the fictitious case of multiplicityP .

It is interesting to find that the generalized coordinates,α1, α2, · · · andαP are the terms of

zero division by zero in Eq.(5-32) since

{φ(U)
i }H [T ]{ū} = 0, P + 1 ≤ i ≤ N, (5-33)

after using{b} = [T ]{ū} and[T ]H{φ(U)
i } = 0.

5-6 A criterion to check the validity of CHIEF points

For the fictitious frequency of a multiplicityP , the generalized coordinatesα1, α2, · · · , αP−1 and

αP can not be determined from Eq.(5-31). By choosingP CHIEF points, we have additional

constraints [
UPP | UPK

] {
α

}
=

[
TPP | TPK

] {
β

}
, (5-34)
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where the subscriptsP andK denote the degree of freedom separated by the fictitious set(1, 2, · · · , P )

and the regular set(P + 1, P + 2, · · · , N). The elements in[UPP ], [UPK ], [TPP ] and[TPK ] are

definded as

(UPP )ij = < wi > {ψ(U)
j }, 1 ≤ i, j ≤ P, (5-35)

(UPK)ij = < wi > {ψ(U)
j }, 1 ≤ i ≤ P, P + 1 ≤ j ≤ N, (5-36)

(TPP )ij = < vi > {ψ(T )
j }, 1 ≤ i, j ≤ P, (5-37)

(TPK)ij = < vi > {ψ(T )
j }, 1 ≤ i ≤ P, P + 1 ≤ j ≤ N. (5-38)

SinceαP+1, αP+2, · · · , andαN can be determined by Eq.(5-31), and the influence row vectors

< wi >, i = 1, 2, · · · , P, can be obtained by collocating the CHIEF points, Eq.(5-34) reduces to

[
UPP

] 
α1

...

αP

 =
[
TPP | TPK

] 
β1

...

βN

−
[
UPK

] 
αP+1

...

αN

 = {f}, (5-39)

The terms of the right hand side of the equal sign can be calculated as a load vector{f} since

their values can be determined. The unknown vector,{α}P×1 is solvable once the determinant of

the matrix[UPP ] is nonzero as follows:

det

∥∥∥∥∥∥∥∥∥
< w1 > {ψ(U)

1 } · · · < w1 > {ψ(U)
P }

...
...

...

< wP > {ψ(U)
1 } · · · < wP > {ψ(U)

P }

∥∥∥∥∥∥∥∥∥ 6= 0. (5-40)

Whether the number of CHIEF point is sufficient or not depends on the multiplicityP , i.e., we

need at leastP CHIEF points for the fictitious frequency of a multiplicityP to determine the

P coefficients(α1 · · ·αp). Once theP CHIEF points are selected, their validity depends on the

nonzero determinant of Eq.(5-40).

For the special case of multiplicity one(P = 1), Eq.(5-40) reduces to

< w > {ψ(U)
1 } 6= 0. (5-41)

By collocating the interior point, the magnitude of the determinant represent the inner product

of the influence row vector and the interior mode since{ψ(U)} is the true boundary mode of the
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Dirichlet eigenproblem. The value is equal to the distribution of interior mode.

For the special case of multiplicity two(P = 2), Eq.(5-40) reduces to,

det

∥∥∥∥∥∥ < w1 > {ψ(U)
1 } < w1 > {ψ(U)

2 }

< w2 > {ψ(U)
1 } < w2 > {ψ(U)

2 }

∥∥∥∥∥∥ 6= 0. (5-42)

In the following examples, both the multiplicity one(P = 1) and two(P = 2) will be disscussed

for cylinder and square rod radiators.

For the Neumann problem, we can also provide the same criterion in a similar way by re-

placing< w > and{ψ(U)
j } with < v > and{ψ(T )

j }, respectively.

5-7 Numerical examples

Case 1: infinite cylinder radiation

An exterior acoustic problem of a circular boundary with radiusa = 1 m for the Dirich-

let cylinder conditions is considered here. According to the flowchart illustrated in Fig.5-1, the

Fredholm alternative theorem and SVD updating techniques are employed to detect the fictitious

frequencies as shown in Fig.5-2. It is found that[Ui] and [Ti] matrices have the same ficitious

poles ofJn(ka) = 0. The spurious poles agree with the true poles of the interior Dirichlet eigen-

problem. For the hypersingular formulation,[L] and [M ] matrices also have the same fictitious

poles ofJ
′
n(ka) = 0 which are the true eigenvalues for the Neumann problem. After checking the

multiplicity of the fictitious pole, two cases of multiplicity one(k = J
(2)
0 = 0), and multiplicity

two (k = J
(1)
1 = 0), are adopted for demonstrating the validity of the present formulation.

1. Multiplicity of one(k = J
(2)
0 ):

For selecting all the possible CHIEF points, their positions locate inside the circle as shown

in Fig.5-3(a). In this case, the determinants of Eq.(5-41) were calculated for each interior point

and were plotted as shown in Fig.5-3(b). Contour plot shows the distribution of the magnitude

of the real and imaginary parts of determinant. The selected CHIEF point of the darker color is

vailder than the point with the whiter color. The failure points are found on the nodal line with

white color and the results matched well with the analytical prediction [15].
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2. Multiplicity of two (k = J
(1)
1 ):

In this case, one CHIEF point was fixed first and then consider the other CHIEF points as a

variable. For selecting all the possible CHIEF points for the variable point, their positions located

inside the circle as shown in Fig.5-3(b). The value of determinants were calculated by changing

the second CHIEF points position in the interior rigion and were plotted in Fig.5-4. Contour plot

shows the distribution of the magnitude of the real and imaginary parts of determinants. The

selected CHIEF point of the darker color is vailder than the point with the whiter color. The

failure points are found on the nodal line with white color and the results matched well with the

analytical data [15].

Case 2: infinite square radiation

An exterior acoustic problem of a square boundary with lateral lengtha = 2 m for the

Dirichlet boundary conditions is considered here. The Fredholm alternative theorem and SVD

updating techniques are employed to detect the fictitious frequencies as shown in Fig.5-5.

1. Multiplicity of one(k = 2.22) and(k = 4.44) :

For selecting all the possible CHIEF points, their positions located inside the square as shown

in Fig.5-6(a). In this case, the determinants of Eq.(5-41) were calculated one by one and were

plotted as shown in Fig.5-6(b). Contour plot shows the distribution of the magnitude of the real

and imaginary parts of determinant. The selected CHIEF point of the darker color is vailder than

the point with the whiter color. The failure points are found on the nodal line with white color.

2. Multiplicity of two (k = 3.51):

In this case, one CHIEF point was fixed first and then consider the other CHIEF points as

a variable. For selecting all the possible CHIEF points, their positions spread inside the square

as shown in Fig.5-6(a). The determinants were calculated by changing the second CHIEF points

location in the square and were plotted in Fig.5-7. Contour plot shows the distribution of the

magnitude of the real and imaginary parts of determinants. The selected CHIEF point of the

darker color is vailder than the point with the whiter color. The failure points are found on the

nodal line with white color.
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5-8 Conclusions

In order to overcome the rank-deficiency problem due to fictitious frequency, the CHIEF method

was revisited and reformulated in a unified manner by using the Fredholm alternative theorem

and SVD technique. The ficitious modes were obtained in the singular vectors of SVD as well as

the true eigenmodes for the interior problems at the same time once the updating matrix was de-

composed by using the SVD technique. Besides, the minimum number of CHIEF points was also

addressed. A criterion for checking the validity of the CHIEF points was presented analytically

in the discrete system. In addition, the source of numerical instability due to fictitious frequencies

was found to originate from the zero divison by zero. Numerical examples of the cylinder and

square rod radiators were demonstrated to see the validity of the unified formulation.
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Chapter 6

Conclusions and further research

6-1 Conclusions

Four degenerate problems in the BEM were reviewed in this thesis. Mathematically speaking,

the numerical problems originate from the rank deficiency of the influence matrix. Their rank-

deficiency mechanisms were found and the numerical instability was solved in a unified manner

by using the Fredholm alternative theorem and SVD techniques. From this study, several conclu-

sions can be summarized as follows:

1. For the interior eigenproblem and exterior problem, spurious (fictitious) mode and true

mode were separated to be imbedded in the left and right unitary vectors, respectively. after

decomposing the influence matrix using the SVD updating techniques, Fredholm alternative

theorem was adopted to obtain the updating documents in SVD.

2. In Chapter 2, it has been proved that the degenerate scale occured in the Dirichlet problem

of 2-D Laplace problems by using the BEM. The conventional BEM (UT formulation) can

not obtain acceptable results for the torsion bar problems with the degenerate scale. For

an arbitrary cross section, instead of direct searching for the degenerate scale by trial and

error, a more efficient technique was proposed to directly determine the degenerate scale

since only one normal scale needs to be computed. Three regularization techniques, method

of adding a rigid body mode, the hypersingular formulation and the CHEEF method, were

successfully applied to overcome the rank-deficiency problem caused by the degenerate

scale. Also, the added term“c” of a rigid body mode in the fundamental solution of BEM

has been proven to shift to another degenerate scale by a factor of“e−c”.

3. The degenerate boundary has been solved by using the multi-domain BEM and the dual

BEM. However, for the multi-domain BEM, one important drawback is incapability of

dealing with infinite domain or semi-infinite domain problems. For the dual BEM, hyper-

singular integrals must be handled. In Chapter 3, a new method, conventional BEM (UT
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equation) in conjunction with the SVD techniques, for solving the degenerate boundary

problem, was presented. The mechanism of rank-deficiency for the degenerate boundary

problem stems form two sources, one is the degenerate boundary and the other is nontrivial

eigensolution.

4. For interior eigenproblems, some constraints are lost if either the real-part or the imaginary-

part dual BEM was used. In other words, the appearance of the spurious eigenvalue origi-

nates from the selected numerical methods,e.g.,UT equation,LM equation, single-layer

method and double-layer method. For the real-part or imaginary-part dual BEM, the Fred-

holm alternative theorem in conjunction with SVD updating techniques was employed to

extract the spurious eigenvalues for singular and hypersingular formulations. Besides, true

eigenvalues can be detected for the Dirichlet or Neumann problem by using the SVD tech-

nique for the dual BEM.

5. In Chapter 5, a criterion was developed to check the validity of the selected CHIEF points

by testing the orthogonality condition between the influence vector of collocation point

and right singular vector. For exterior problems, the number of the required CHIEF points

depend on the multiplicity of the corresponding fictitious eigenvalue. The fictitious mode

can be extracted by using the SVD updating technique. The value of the inner product

provides the valid (nonzero) or invalid (zero) information. Numerical results agree well.

6-2 Further research

There are several researches need further investigation as follows:

1. Although the degenerate scale occurs in the Dirichlet problem of simply two-dimensional

Laplace problems by using the BEM, there is no proof of the occurrence of degenerate scale

for the problem with the mixed-type boundary condition.

2. In a continuous system, the added term“c” of a rigid body mode in the fundamental solution

of BEM has been proven to shift to another degenerate scale by a factor of“e−c”. However,

the proof may be extended to the discrete system.
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3. On the basis of the success of Chapter 3, the degenerate boundary problem for the Laplace

equation may be solved by using the conventional BEM (UT formulation) and the SVD

techniques. Also, the mathematical relation between the present method and the multi-

domain BEM should be constructed.

4. The main drawback of the imaginary-part BEM seems to produce ill-conditional matri-

ces. While this is sometimes the case, it is hoped that further research can alleviate the

drawback. In addition, the mathematical equivalence between the imaginary-part BEM,

the Trefftz method, the edge function method and the boundary collocation method (BCM)

needs further investigation.

5. Whether the spurious (ficitious) modes in theUT andLM formulations are the same or not

deserves further study.

6. In chapter 5, a criterion for a circular domain has been developed to check the validity of the

selected CHIEF point by testing the orthogonality condition between the influence vector

and fictitious mode. This criterion could be tested for problems with general boundaries.

7. Although we have proved the existence of degenerate scale in BEM for 2-D Laplace prob-

lem, the uniqueness theorem needs further examination.
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