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Abstract 
 

In this thesis, the regularized meshless method is adopted to solve Laplace problems and 

eigenproblems with multiply-connected domain, respectively. Here, the solution is represented 

by using double-layer potential. The subtracting and adding-back technique is used to 

regularize the singularity and hypersingularity of the kernel functions. Only boundary nodes on 

the real boundary are required by using the proposed technique in a different way of 

conventional MFS by putty singularities on fictition boundaries. A linear algebraic equation is 

obtained free of mesh generation. After matching boundary conditions, the unknown densities 

in the algebraic system can be easily determined. Test of convergence and sensitivity study of 

the proposed method are also done. Finally, several engineering problems including multiple 

inclusions problem under antiplane shear, piezoelectricity problems with multiple inclusions 

and multiply-connected acoustic eigenproblem, were given to demonstrate the validity of the 

proposed method. Numerical results agree well after comparing with the available exact 

solution and those of boundary element method, point-matching method and finite element 

method. A general-purpose program for multiple cavities and inclusions of various shapes and 

arbitrary positions was developed. 

 
 

Keywords: Laplace problem, multiple holes, multiply-connected domain, eigenproblem, 
method of fundamental solution, Regularized meshless method, inclusion, piezoelectricity, 
eigenproblem, antiplane shear 

 
 



 

 XII

 

 

 
 

摘要 

 

本文係利用正規化無網格法分別求解含多連通領域拉普拉斯與特徵值問題。

使用雙層勢能來表示整個場解，且使用一加一減技巧來正規化處理奇異及超奇異

核函數。使用我們提出的方法有別於傳統基本解法須將源點佈在虛假邊界上，可

將奇異源放在真實的邊界上，並可獲得線性代數方程。配合邊界條件，即可輕易

的決定出線性代數系統的未知係數。此外，我們也做了收斂測試及敏感度的分析

。最後，利用數個多連通的工程算例來驗證我們提出的方法的正確性，包含：多

個夾雜受到反平面剪力的問題、多個壓電夾雜的問題及多連通聲場的特徵值問題

。將結果與現有的解析解、邊界元素法、配點法及有限元素法資料做比較，都可

獲得一致性的結果。最後，我們發展一套含多孔洞及任意夾雜的分析程式。 

 

 

關鍵字：拉普拉斯問題、多洞、多連通、特徵值問題、基本解法、正規化無網格

法、夾雜、壓電材、聲場、反平面剪力。 
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Chapter 1 
Introduction 

 

1.1 Motivation of the research 

 

To simplify complexity of numerical methods in the preprocessor of data 

preparation, meshless methods were developed to accelerate the speed of model 

creation. The mesh reduction techniques possess a great promise to replace the FEM 

and BEM as a dominant numerical method. Because of neither domain nor surface 

meshing are required for the meshless method, it is very attractive for engineering 

communities. 

The method of fundamental solutions (MFS) is one of the meshless methods as 

shown in Fig. 1-1 (a) and belongs to a boundary method for boundary value problems, 

which can be viewed as a discrete type of indirect boundary element method. The 

MFS was attributed to Kupradze in 1964 [1] and had been applied to potential [2], 

Helmholtz [3, 4, 5], diffusion [6], biharmonic [7] and elasticity problems [8]. The 

solution procedure makes use of the fundamental solution which satisfies the 

governing equation in the interested domain. To avoid the singularity problem, the 

solution is represented as a set of singular kernels using the single layer potentials on 

the fictitious boundary. The kernel function is composed of two-point function which 

is one kind of the radial basis functions (RBFs). The independent variable of 

two-point function only depends on the distance between the two points. An overview 

literature on the MFS over the last three decades can be found in Ref. [2]. The 

diagonal coefficients of influence matrices are infinite when the fictitious boundary 

approaches the real boundary. Despite singularity-free merit, the influence matrices 
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become severely ill-posed when the fictitious boundary is far away from the real 

boundary. It results in an ill-posed problem since the condition number for the 

influence matrix becomes very large. The MFS is still not a popular method because 

of the debatable artificial boundary distance of source location in numerical 

implementation especially for a complicated geometry. Therefore, many scholars put 

forward schemes to improve this method. Chen et al. [5] in Taiwan proposed an 

imaginary-part BEM to solving eigenproblems. On the other hand, Chen [9] in China 

independently developed the boundary knot method (BKM), uses the nonsingular 

general solution to avoid the fictitious boundary outside the physical domain in the 

method of fundamental solution. In order to use nonsingular solution, Laplace 

problem was solved by Chen using the Helmholtz equation with small wave number. 

For the Laplace problem, Young et al. [10] developed a new method to improve 

defects of MFS as shown in Fig. 1-1 (b). Later, they extended to solve Helmholtz 

problem of exterior acoustics [3] by using the same idea. 

Young et al. [3, 10] developed a new MFS, namely regularized meshless method 

(RMM), to solve potential problems including the Laplace and exterior acoustic 

problems. The proposed singular meshless method behaves like the MFS by 

improving the singularity evaluation of diagonal terms when the source and 

observation points are coincident to avoid the ambiguity of off-set distance of the 

fictitious boundary for the conventional MFS. The RMM eliminates the perplexing 

artificial boundary in the MFS, which can be arbitrary. The subtracting and 

adding-back technique [3, 10, 11, 12] can regularize the singularity and 

hypersingularity of the kernel functions. This method can simultaneously distribute 

the observation and source points on the real boundary even using the singular kernels 

instead of non-singular kernels [13, 14]. The diagonal terms of the influence matrices 

can be determined out by using the proposed technique. However, numerical cases of 
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above mentioned two papers were limited on problems of simply-connected domain. 

Also, eigensolution for simply-connected problem was not solved yet by RMM. Our 

focus is to extend to solve for multiply-connected Laplace and eigenproblems using 

RMM. For eigenproblems, simply-connected case is tested first in this thesis. 

In this thesis, we implement the RMM to investigate some engineering problems 

including multiple elastic inclusions under anti-plane shear, multiple piezoelectric 

inclusions under anti-plane shear and in-plane electric field and simply, 

multiply-connected acoustic eigenproblems. 

 

1.2 Organization of the thesis 

 

The frame of this thesis is shown in Fig. 1-2. In this thesis, the applications of 

multiply-connected-domain problems with multiple inclusions under remote shear, 

antiplane piezoelectricity with multiple inclusions and acoustic eigenproblem are 

investigated. The content of each chapter is summarized below 

In chapter 2, we extend the validity of RMM for the Laplace equation to 

multiply-connected domain problems. The accuracy and stability of the RMM are 

verified in numerical experiments of the Dirichlet, Neumann, and mixed-type 

problems containing multiple holes. 

In chapter 3, we focus on antiplane problems with multiple inclusions by using 

the regularized meshless method. We develop a systematic approach for solving 

antiplane problems with multiple inclusions by using the present method. Finally, the 

accuracy and stability of the present method are verified by two numerical examples. 

In chapter 4, the applications to antiplane piezoelectricity problems with multiple 

inclusions are considered. The piezoelectricity problem with multiple inclusions 



 4

subjected to out-of-plane displacement field and in-plane electric field is solved. The 

accuracy of the proposed method is demonstrated through numerical examples after 

comparing with analytical solutions. 

In chapter 5, we extend the RMM to acoustic eigenproblems with simply and 

multiply-connected domains. True and spurious eigenvalues are found by using the 

present method. Spurious eigenvalue is filtered out by using the technique of SVD 

updating term. The accuracy and stability of the RMM is also examined in illustrative 

examples.  

Finally, we draw out some conclusions and further research in the chapter 6. 
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Chapter 2  
Regularized meshless method for 

multiply-connected-domain Laplace problems 

 
Summary 

 

In this chapter, the regularized meshless method (RMM) is developed to solve 

two-dimensional Laplace problems with multiply-connected domain. The solution is 

represented by using the double layer potential. The source points can be located on the 

real boundary by using the proposed technique to regularize the singularity and 

hypersingularity of the kernel functions. The troublesome singularity in the traditional 

methods is avoided and the diagonal terms of influence matrices are easily determined. 

The accuracy and stability of the RMM are verified in numerical experiments of the 

Dirichlet, Neumann, and mixed-type problems containing multiple holes. The method is 

found to perform pretty well in comparison with the boundary element method. 

 
2.1 Introduction 
 

In recent years, science and engineering communities have paid much attention to the 

meshless method in which the element is free. Because of neither domain nor boundary 

meshing required for the meshless method, it is very attractive for engineers in modeling. 

Therefore, the meshless method becomes promising in solving engineering problems.  

The boundary knot method (BKM) [9, 15, 16, 17, 18], boundary particle method [19] 

and method of fundamental solutions (MFS) [1, 2, 20] belong to the 

boundary-discretization-type meshless methods. The boundary knot method (BKM), 

developed in Ref. [9], uses the nonsingular general solution to avoid the fictitious 

boundary outside the physical domain in the method of fundamental solution. This idea is 

similar to the imaginary-part BEM for eigenproblems by Chen’s group [21]. 
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Consequently, the stability has greatly been improved, especially in handing 

multiply-connected problem in the BKM via the dual reciprocity method and the RBF as 

in the MFS. In particular, the BKM can produce the symmetric interpolation matrix 

which is often important in some problems (e.g., eigenvalue problem). The boundary 

particle method [19] is a truly boundary-only meshfree method for inhomogeneous 

problems, where the fundamental solution or the general solution is used to evaluate the 

homogeneous solution, while the high-order fundamental solution of the Laplace operator 

is employed to calculate the particular solution. The method can produce very accurate 

results with the boundary nodes for problems whose inhomogeneous function can be well 

represented by a polynomial approximation. 

The MFS is attributed to Kupradze in 1964 [1] and had been applied to potential [2], 

Helmholtz [3, 4, 5], diffusion [6], biharmonic [7] and elasticity problems [8]. In the MFS, 

the solution is approximated by a set of fundamental solutions which are expressed in 

terms of sources located outside the physical domain. The unknown coefficients in the 

linear combination of the fundamental solutions are determined by matching the 

boundary condition. The method is relatively easy to implement. It is adaptive in the 

sense that it can take into account sharp changes in the solution and in the geometry of 

the domain [13, 22] and can easily treat with complex boundary conditions [7]. A survey 

of the MFS and related method over the last thirty years can be found in Ref. [2]. The 

equivalence between MFS and Trefftz method was proved by Chen et al. [23]. However, 

the MFS is still not a popular method because of the debatable artificial boundary 

(fictitious boundary) distance of source location in numerical implementation especially 

for a complicated geometry. The diagonal coefficients of influence matrices are divergent 

in the conventional case when the fictitious boundary approaches the physical boundary. 

Despite singularity-free merit, the influence matrices become severely ill-posed when the 

fictitious boundary is far away from the real boundary. It results in an ill-posed problem 

since the condition number for the influence matrix becomes very large. 

Recently, Young et al. [3, 10] developed a modified MFS, namely regularized 

meshless method (RMM), to overcome the drawback of MFS for solving the Laplace 

equation. The RMM eliminates the perplexing artificial boundary in the MFS, which can 

be arbitrary. The subtracting and adding-back technique [3, 10, 11, 12] is implemented to 
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regularize the singularity and hypersingularity of the kernel functions. This method can 

simultaneously distribute the observation and source points on the physical boundary 

even using the singular kernels instead of non-singular kernels [14, 24]. The diagonal 

terms of the influence matrices can be extracted out by using the proposed technique. 

 Following the success of [10] for simply-connected-domain problems, this study 

makes the first attempt to extend the RMM to the multiply-connected-domain problems 

[25, 26]. A general-purpose program is developed to solve the multiply-connected 

Laplace problems. The results will be compared with those of the BEM and analytical 

solutions. Furthermore, the sensitivity and convergence test will be studied through 

several examples to show the validity of our method. 

 

2.2 Governing equation and boundary conditions 
 

Consider a boundary value problem with a potential )(xu , which satisfies the Laplace 

equation as follows: 

0)(2 =∇ xu , Dx∈ , (2-1)

subject to boundary conditions, 

uxu =)( , u
pBx∈ , mp ,,3,2,1 L=  (2-2)

txt =)( , t
qBx∈ , mp ,,3,2,1 L=  (2-3)

where 2∇  is Laplacian operator, D is the domain of the problem, 
xn
xuxt

∂
∂

=
)()( , m is the 

total number of boundaries including m-1 numbers of inner boundaries and one outer 

boundary (the mth boundary), u
pB  is the essential boundary (Dirichlet boundary) of the 

pth boundary in which the potential is prescribed by u  and t
qB  is the natural boundary 

(Neumann boundary) of the qth boundary in which the flux is prescribed by t . Both u
pB  

and t
qB  construct the whole boundary of the domain D as shown in Fig. 1-1 (a). 
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2.3 Review of conventional method of fundamental solutions 
 

By employing the RBF technique [17, 27], the representation of the solution for 

multiply-connected problem as shown in Fig. 1-1 (a) can be approximated in terms of the 

jα  strengths of the singularities at js  as 

∑
=

=
N

j
jiji xsTxu

1

),()( α  

∑∑∑
++++=

+

+== −

+++=
N

NNNj
jij

NN

Nj
jij

N

j
jij

m

xsTxsTxsT
111 121

21

1

1

),(),(),(
L

L ααα , 
(2-4)

∑
=

=
N

j
jiji xsMxt

1
),()( α  

∑∑∑
++++=

+

+== −

+++=
N

NNNj
jij

NN

Nj
jij

N

j
jij

m

xsMxsMxsM
111 121

21

1

1

),(),(),(
L

L ααα , 
(2-5)

where ix  and js  represent ith observation point and jth source point, respectively, jα  

are the jth unknown coefficients (strength of the singularity), 121 ,,, −mNNN L  are the 

numbers of source points on m-1 numbers of inner boundaries, respectively, mN  is the 

number of source points on the outer boundary, while N is the total numbers of source 

points )( 21 mNNNN +++= L  and 
ix

ij
ij n

xsT
xsM

∂
∂

=
),(

),( . The coefficients { }N
jj 1=

α  

are determined so that BCs are satisfied at the boundary points. The distributions of 

source points and observation points are shown in Fig. 1-1 (a) for the MFS. The chosen 

bases are the double layer potentials [4, 10, 25] as 

2

(( ), )
( , ) i j j

j i
ij

x s n
T s x

r
−

= , (2-6)

4 2

2(( ), )(( ), ) ( , )
( , ) i j j i j i j i

j i
ij ij

x s n x s n n n
M s x

r r
− −

= − , (2-7)

where (,) is the inner product of two vectors, ijr  is ij xs − , jn  is the normal vector at 

js , and in  is the normal vector at ix . 
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It is noted that the double layer potentials have both singularity and hypersingularity at 

source position, which lead to the troublesome artificial boundary in the MFS. The 

fictitious distance between the fictitious (auxiliary) boundary ( B′ ) and the real boundary 

( B ), defined by d , shown in Fig. 1-1 (a) needs to be chosen deliberately. To overcome 

the abovementioned shortcoming, js  is distributed on the physical boundary, shown in 

Fig. 1-1 (b), by using the proposed regularized technique as shown in Section 2.4. The 

reason for choosing double layer potential instead of the single layer potential as used in 

the RMM for the form of RBFs is to take advantage of the regularization of the 

subtracting and adding-back technique, so that no fictitious distance is needed when 

evaluating the diagonal coefficients of influence matrices which will be elaborated on 

later in Section 2.4. The single layer potential can not be chosen because the following 

Eqs. (2-9), (2-12), (2-15) and (2-18) in Section 2.4 for null equations can not be obtained. 

If the single-layer potential is used, the regularization of subtracting and adding-back 

technique can not work. 

 

2.4 Regularized meshless method 
 

When the collocation point ix  approaches the source point js , the potentials in Eqs. 

(2-4) and (2-5) become singular. Eqs. (2-4) and (2-5) for multiply-connected problems 

need to be regularized by using the regularization of subtracting and adding-back 

technique [3, 10, 11, 12] as follows: 
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i Bx ∈ , 1,,3,2,1 −= mp L . 

(2-8) 

where 
i

Ix  is located on the inner boundary ( 1,,3,2,1 −= mp L ) and the superscripts 

I and O  denote the inward and outward normal vectors, respectively, and 
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Therefore, we can obtain 
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(2-10)

When the observation point O
ix  locates on the outer boundary (p=m), Eq. (2-8) becomes 
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Similarly, the boundary flux is obtained as 
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(2-16)

When the observation point locates on the outer boundary (p=m), Eq. (2-14) yields 
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The detailed derivations of Eqs. (2-9), (2-12), (2-15) and (2-18) are given in the reference 

[10]. According to the dependence of the normal vectors for inner and outer boundaries 

[10], their relationships are 
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where the left and right hand sides of the equal sign in Eqs.(2-20) and (2-21) denote the 

kernels for observation and source points with the inward and outward normal vectors, 

respectively. 

By using the proposed technique, the singular terms in Eqs. (2-4) and (2-5) have been 

transformed into regular terms (
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i xsM  are the subtracting terms in the two brackets for reqularization. After 

using the above subtracting and adding-back technique [3, 10, 11, 12], we are able to 

remove the singularity and hypersingularity of the kernel functions. 
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2.5 Construction of influence matrices for arbitrary domain 
problems 

 

By collocating N observation points to match with the BCs from Eqs. (2-10) and (2-13) 

for the Dirichlet problem, the linear algebraic system is obtained 
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For the Neumann problem, Eqs. (2-16) and (2-19) yield 
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in which 
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For the mixed-type problem, a linear combination of Eqs. (2-22) and (2-27) is required to 

satisfy the mixed-type BCs. After the unknown densities ({ }N
jj 1=

α ) are obtained by 

solving the linear algebraic equations, the field solution can be solved by using Eqs. (2-4) 

and (2-5). The solution procedure using the RMM is shown in Fig. 2-1. 
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2.6 Numerical examples 
 

In order to show the accuracy and validity of the proposed method, the potential 

problems with multiply-connected domain subjected to the Dirichlet, Neumann and 

mixed-type BCs are considered. 

 

Case 2-1: Neumann problem 

The multiply-connected Neumann problem is shown in Fig. 2-2, and an analytical 

solution is  

)sin()2cos(2 θθ rru += . (2-32)

The node distribution (200 nodes) is shown in Fig. 2-3 and vector plot denotes the 

direction of out normal vector. To investigate the error analysis, the norm error is defined 

as ∫ =−=
π

θθθ
2

0

2),6.1(),6.1( druruexact . The norm error versus the total number N of 

source points is plotted in Fig. 2-4 by using the RMM and the BEM, respectively. By 

collocating 200 boundary points, we can obtain the convergent result and the norm error 

is less than 210− . It is found that the data using BEM and present method agree very well 

when the number of nodes is over 400. The potentials along the radius 6.1=r  versus 

angle are presented in Fig. 2-5 by using the RMM and the BEM, respectively. The RMM 

and the BEM results perform pretty well in comparison with the exact solution. 

 

Case 2-2: Mixed-type problem 

The mixed-type problem for multiply-connected domain is shown in Fig. 2-6, and an 

analytical solution is available as follows: 

)3cos(3 θru = . (2-33)

The node distribution (175 nodes) is shown in Fig. 2-7. The norm error is defined as 
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∫ =−=
π

θθθ
2

0

2),5.0(),5.0( druruexact . The norm error of the RMM versus the total 

number N of source points by using the RMM and the BEM, respectively, is shown in Fig. 

2-8 and the convergent result is found after distributing 200 points. By adopting 200 

boundary points, the norm error is less than 310− . The absolute errors of the RMM result 

(400 points) in the entire domain are plotted in Fig. 2-9. 

 

Case 2-3: Arbitrary-shape problem 

The arbitrary-shape problem with continuous BCs is given in Fig. 2-10 (a). An 

analytical solution is available as follows: 
)cos(yeu x= . (2-34)

The field potential in Eq. (2-34) is shown in Fig. 2-10 (b). The node distribution (200 

nodes) is shown in Fig. 2-11. The norm error is defined as 

∫ =−=
π

θθθ
2

0

2),9.0(),9.0( druruexact . The norm error versus the total number N of 

source points is shown in Fig. 2-12 and the convergent result can be found from Fig. 

2-12. 

 

2.7 Concluding remarks 
 

In this study, we employed the RMM to solve the Laplace problems with 

multiply-connected domain subjected to the Dirichlet, Neumann and mixed-type BCs. 

Only the boundary nodes on the real boundary are required. The perplexing fictitious 

boundary in the MFS is then circumvented. Despite the presence of singularity and 

hypersingularity of double layer potential, the finite values of the diagonal terms of the 

influence matrix can be extracted out by employing subtracting and add-back techniques. 

The numerical results were obtained by applying the developed program to solve three 

problems with different BCs and shapes of domain. The convergent result is found from 

the convergent study in the three cases. Numerical results agree very well with the 

analytical solutions and those of the BEM. 
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Chapter 3 
Regularized meshless method for solving 

antiplane shear problems with multiple inclusions 

 

Summary 

 

In this chapter, we employ the regularized meshless method (RMM) to solve 

antiplane shear problems with multiple inclusions. The solution is represented by a 

distribution of double layer potentials. The RMM can regularize singularity by using 

subtracting and adding-back technique. Therefore, the troublesome singularity in the 

traditional methods is avoided and the diagonal terms of influence matrices are easily 

determined. An inclusion problem is decomposed into two parts: one is the exterior 

problem for the matrix with holes subjected to remote shear, the other is the interior 

problem for each inclusion. The two boundary densities, essential and natural data, 

along the interface between the inclusion and matrix satisfy the continuity and 

equilibrium conditions. A linear algebraic system is obtained by matching boundary 

conditions and interface conditions. Finally, numerical results demonstrate the 

accuracy of the present solutions. Good agreements are obtained and compared well 

with analytical solutions and Gong’s results. 
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3.1 Introduction 

 

Engineering materials always contain some defects in the form of inclusions or 

second-phase particles. The distribution of stress in an infinite medium containing 

inclusions under antiplane shear has been studied by many investigators [28, 29, 30, 31, 

32, 33, 34, 35, 36, 37]. In 1967, Goree and Wilson [28] presented numerical results for 

an infinite medium containing two inclusions under remote shear. Besides, Sendeckyj 

[29] proposed an iterative scheme for solving problems with multiple inclusions in 1971. 

In addition, analytical solutions for two identical holes and inclusions were obtained by 

Stief [30] and by Budiansky and Carrier [31], respectively. Zimmerman [32] employed 

the Schwartz alternative method for plane problems with two holes or inclusions to 

obtain a closed-form solution. In 1992, Honein et al. [33] derived the analytical solution 

for two unequal inclusions perfectly bonded to an infinite elastic matrix under 

anti-plane shear. The solution was obtained via iterations of Möbius transformations 

involving the complex potential [33]. On the other hand, Bird and Steele [34] used a 

Fourier series procedure to revisit the antiplane elasticity problems of Honein et al.s’ 

paper [33]. For a triangle pattern of three inclusions under antiplane shear, Gong [35] 

derived the general solution by employing complex potentials and the Laurent series 

expansion method in 1995. Based on the technique of analytical continuity and the 

method of successive approximation, Chao and Young [36] studied the stress 

concentration on a hole surrounded by two inclusions. Recently, Chen et al. [37] has 

successfully solved the anti-plane problem with circular holes and/or inclusions by 

using the boundary integral equation in conjunction with degenerate kernel and Fourier 

series. To the author’s best knowledge, applications of MFS on this topic were not 
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found. This chapter may be the first attempt of MFS on inclusion problems under 

antiplane shear. Based on the same algorithm of chapter 2 [38], we focus on inclusion 

problems instead of holes in chapter 2. 

In this chapter, the RMM is employed to solve antiplane shear problems with 

multiple inclusions. An inclusion problem can be decomposed into two parts. One is the 

infinite medium with holes and the other is interior problem for each inclusion. After 

considering the continuity and equilibrium conditions on the interface, a linear algebraic 

system can be obtained. The unknown coefficients in the algebraic system can be 

determined. Furthermore, the field potential and stress can be obtained. Finally, a 

general-purpose program was developed to solve anti-plane problems with arbitrary 

number of inclusions by using the present method without any difficulty. The results 

will be compared with analytical solutions [33] and those of analytical continuity and 

the Laurent series expansion method [35]. Furthermore, the stress concentration for 

various shear modulus ratios will be studied through several examples to show the 

validity of our method. 

 

3.2 Governing equation and boundary conditions 

 

Consider inclusions embedded in an infinite matrix as shown in Fig. 3-1. The 

inclusions and the matrix have different elastic properties. The matrix is subjected to a 

remote antiplane shear, τσ =zy . The displacement field of the antiplane deformation is 

defined as: 

0== vu , ),( yxww = , (3-1) 
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where w  is a function of x  and y . For a linear elastic body, the stress components 

are 

x
w

zxxz ∂
∂

== μσσ , (3-2) 

y
w

zyyz ∂
∂

== μσσ , (3-3) 

where μ  is the shear modulus. The equilibrium equation can be simplified to 

0=
∂
∂

+
∂
∂

yx
zyzx σσ . (3-4) 

Thus, we have 

02
2

2

2

2

=∇=
∂
∂

+
∂
∂ w

y
w

x
w . (3-5)

The continuity equilibrium conditions across interface of the matrix-inclusion is 

described as 

im ww = ,  (3-6) 

n
w

n
w i

i
m

m

∂
∂

−=
∂
∂ μμ , (3-7) 

where the superscripts i and m denote the inclusion and matrix, respectively. The 

loading is remote shear. 

 

3.3 Methods of the solution 

 

3.3.1 Regularized meshless method 

 

The antiplane shear problem with multiple-inclusions is decomposed into two parts as 

shown in Fig. 3-2. One is the exterior problem for the matrix with holes subjected to 

remote shear and the other is the interior problem for each inclusion. The two boundary 
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data between the matrix and inclusion satisfy the continuity and equilibrium conditions 

in Eqs. (3-6) and (3-7). Furthermore, the exterior problem for the matrix can be 

superimposed by two systems as shown in Fig. 3-3. One is the matrix with no hole 

subjected to remote shear and the other is the matrix with hole. The representations of 

the two solutions for interior problem ( )( I
i

xw ) and exterior problem ( )( O
i

xw ) can be 

solved by using the RMM in a unified manner as follows: 

(1) Interior problem 

Following the Eq. (2-10), we obtain 
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Where I
ix  is located on the boundary pB . p  denotes the p th boundary. 

Similarly, the boundary flux is obtained as 
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(3-9) 

 

(2) Exterior problem 
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When the observation point O
ix  locates on the boundary pB , p  denotes p th 

boundary, Eq. (2-13) becomes 

∑∑
−

+++== −

++=
1

11 11

1

),(),()(
i

NNj
j

O
i

O
j

N

j
j

O
i

O
j

O
i

p

xsTxsTxw
L

L αα  

∑∑
−

−

++

+++=

++

+=

+++
11

21

1

11
),(),(

m

m

p NN

NNj
j

O
i

O
j

NN

ij
j

O
i

O
j xsTxsT

L

L

L

L αα  

i
O
i

O
i

NN

NNj

I
i

I
j

N

NNj
j

O
i

O
j xsTxsTxsT

p

Pm

αα
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−+ ∑∑

++

+++=+++= −−

),(),(),(
1

1111 11

L

LL

,  

p
IorO

i Bx ∈ . 

(3-10)

Similarly, the boundary flux is obtained as 
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3.3.2 Construction of influence coefficients for arbitrary domain 

problems 
 

(1) Interior problem (Inclusion) 

From Eqs. (3-8) and (3-9), the linear algebraic system yields 
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(2) Exterior problem (Matrix) 

Eqs. (3-10) and (3-11) yield 
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3.3.3 Construction of influence matrices for inclusion problems under 
antiplane shear 

 

Substituting Eqs. (3-12), (3-13), (3-22) and (3-23) into Eqs. (3-6) and (3-7), the 

linear algebraic system for the antiplane shear problems can be obtained as: 
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where ∞w  denotes the out-of-plane elastic displacement at infinity. After Eq. (3-32) 

are solved by using the linear algebra solver, the unknown densities ({ }iα  and { }mα ) 

are obtained and the field solution can be solved by using Eq. (2-4). To provide a simple 

illustration of how the proposed meshless method works, the solution procedure is listed 

in Fig. 3-4. 

 

3.4 Numerical examples 

 

In order to show the accuracy and validity of the proposed method, the antiplane 

shear problems with multiple inclusions subjected to the remote shear are considered. 

Numerical examples containing two and three inclusions under the antiplane shear, 

respectively, are considered. The numerical results will be compared with analytical 

solutions [33] and those of the Laurent series expansion method [35], respectively. 

 

Case 3-1: Two inclusions 

The antiplane problem with matrix imbedded two inclusions is sketched in Fig. 3-5. 

The smaller inclusion is centered at the origin of radius 1r  and the larger inclusion of 
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radius 12 2rr =  is centered on the y  axis at drr ++ 21  ( 11.0 rd = ). Stress 

concentrations along the boundaries of both the matrix and the smaller inclusion with 

0.1=τ  Nm-2 , 0.10 =μ , 01 3
2 μμ =  and 02 7

13 μμ =  are plotted in Fig. 3-6 (a)~(d) , 

respectively by using 720 nodes. The results are compared well with analytical solutions. 

From Fig. 3-6 (a) and (b), both figures show the equilibrium traction along the interface 

between matrix and smaller inclusion. After comparing with Fig. 3-6 (c) and (d), the 

maximum stress concentration appears in o0=θ  as expected. The absolute error of 

stress concentration along the interface of the smaller inclusion are plotted in Fig. 3-7 (a) 

and (b). 

 

Case 3-2: Three inclusions 

A matrix imbedded three inclusions under antiplane shear is considered as shown in 

Fig. 3-8. The geometry condition is 12rd = . The stress concentration m
zθσ  in the 

matrix around the interface of the left inclusion is evaluated as shown in Fig. 3-9 (a)~(d), 

respectively, by using 1020 nodes. From Fig. 3-9 (a), it is obvious that the limiting case 

of holes ( 0.0/// 030201 === μμμμμμ ) leads to the maximum stress concentration at 

o0=θ . Due to the interaction effects, it is larger 2  than single hole [33]. The stress 

component θσ z  vanishes in the case of more rigid inclusions 

( 0.5/// 030201 === μμμμμμ ), which can be explained by a general analogy between 

solutions for traction-free holes and those involving rigid inclusions [30]. The results 

are well compared with those of the Laurent series expansion method [35]. The absolute 

errors of stress concentration along the interface of the left inclusion for various shear 

modulus ratios are shown in Fig. 3-10 (a)~(b). 
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3.5 Concluding remarks 

 

In this chapter, we extended the RMM approach to solve for antiplane shear problems 

with multiple inclusions. Only boundary nodes on the real boundary are required. The 

major difficulty of the coincidence of the source and collocation points in the 

conventional MFS is then circumvented. Furthermore, the controversy of the fictitious 

boundary outside the physical domain by using the conventional MFS no longer exists. 

Although it results in the singularity and hypersingularity due to the use of double-layer 

potentials, the finite values of the diagonal terms for the influence matrices have been 

extracted out by employing the regularization technique. The numerical results by 

applying the developed program agreed very well with the analytical solution and those 

of the Laurent series expansion method. 
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Chapter 4  
Regularized meshless method for solving 
antiplane piezoelectricity problems with 

multiple inclusions 

 

Summary 

 

In this chapter, we employ the regularized meshless method (RMM) to solve 

antiplane piezoelectricity problems with multiple inclusions. The solution is 

represented by a distribution of double layer potentials. The troublesome singularity 

in the MFS is avoided and the diagonal terms of influence matrices are determined by 

using subtracting and adding-back technique. The coupled piezoelectricity system can 

be decomposed into two potential problems. One is an out-of-plane displacement 

potential field ),( yxw , the other is an in-plane electric potential field ),( yxφ . The 

solutions of two potential problems are represented by using the RMM, respectively. 

After matching interface conditions, the linear algebraic system is obtained. Finally, 

the numerical results demonstrate the accuracy of the solutions after comparing with 

analytical solutions and those of the method of successive approximations. Good 

agreements are obtained. 

 

4.1 Introduction 

 

In recent years, the development of piezoelectric materials or structures has been 

made by the research community. It is well known that piezoelectric materials 
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undergo deformation when subjected to an electric field and displacement potential 

field. Bleustein (1968) [39] investigated the antiplane piezoelectric dynamics problem 

and discovered the existence of Bleustein wave. Pak (1992) [40] has considered a 

more general case by introducing a piezoelectric inclusion which, in the limiting case 

of vanishing elastic and piezoelectric constants, become a permeable hole containing 

free space with electric fields. He obtained an analytical solution by using the 

alternative method. Later, Honein et al. (1995) [41] have visited the problem of two 

circular piezoelectric fibers subjected to out-of-plane displacement and in-plane 

electric field. On the other hand, Chung and Ting (1996) [42] has used basic solution 

[43] approach for solving the problem of an elliptic hole in a solid of anisotropic 

material. Zhong and Meguid [44] employed the complex variable method to treat the 

partially-debonded circular inhomogeneity problems in materials under antiplane 

shear and inplane electric field. In 1997, Chen and Chiang [45] solved for 2D 

problems of an infinite piezoelectric medium containing a solitary cavity or rigid 

inclusion of arbitrary shape, subjected to a coupled anti-plane mechanical and 

in-plane electric load at the matrix by using the conformal mapping techniques. In 

recent years, Chao and Chang [46] studied the stress concentration and tangential 

stress distribution on double piezoelectricity inclusions by using the complex variable 

theory and the method of successive approximations. Wu et al. [47] employ 

conformal mapping and the theorem of analytic continuation for solving the problem 

of two piezoelectric circular cylindrical inclusions in the infinite piezoelectric medium. 

To the author’s best knowledge, no investigators have solved this problem by using 

MFS. The first attempt of using MFS to solve piezoelectric inclusion problem under 

anti-plane load and in-plane electric load will be tried. Based on the same algorithm 

of Chapter 3, we focus on piezoelectricity problems with inclusions. 

In this chapter, the RMM is extended to solve antiplane piezoelectric problems with 
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multiple piezoelectric inclusions. A general-purpose program was developed to solve 

antiplane piezoelectric problems with arbitrary number of inclusions. The results are 

compared with analytical solutions and those by using the method of successive 

approximations [46]. Furthermore, the tangential electric field distribution and stress 

concentration for different ratios of piezoelectric module will be studied through 

several examples to show the validity of our method. 

 

4.2 Governing equation and boundary conditions 

 

Consider piezoelectric inclusions embedded in an infinite domain as shown in 

Fig. 4-1. The inclusions and matrix have different material properties. The matrix is 

subjected to a remote antiplane shear, τσ =zy , and a remote inplane electric field, 

∞= EEy . A uniform electric field can be induced in piezoelectric material by 

applying a potential field ∞= EE . 

For this problem, the out-of-plane elastic displacement w  and the electric 

potential φ  are only functions of x and y, such that 

),( yxww = ,  ),( yxφφ = . (4-1) 

The equilibrium equations for the stresses and the electric displacements are 

0=
∂

∂
+

∂
∂

yx
zyzx σσ

, 

0=
∂

∂
+

∂
∂

y
D

x
D yx , 

(4-2) 

where zxσ  and zyσ  are the shear stresses, while xD  and yD  are the electric 

displacements. For linear piezoelectric materials, the constitutive relations are written 

as 
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xzxzx Eec 1544 −= γσ , 

yzyzy Eec 1544 −= γσ , 

xzxx EeD 1115 εγ += , 

yzyy EeD 1115 εγ += , 

(4-3) 

in which zxγ  and zyγ  are the shear strains, xE  and yE  are the electric fields, 44c  

is the elastic modulus, 15e  denotes the piezoelectric modulus and 11ε  represents the 

dielectric modulus. The shear strains zxγ  and zyγ  and the electric fields xE  and 

yE  are obtained by taking gradient of the displacement potential w  and the electric 

potential φ  by the following relations: 

x
w

zx ∂
∂

=γ ,  
y
w

zy ∂
∂

=γ ,  
x

Ex ∂
∂

−=
φ ,  

y
Ey ∂

∂
−=

φ . (4-4) 

Substituting Eqs. (4-3) and (4-4) into (4-2), we obtain the following governing 

equations: 

⎩
⎨
⎧

=∇−∇
=∇+∇

0
0

2
11

2
15

2
15

2
44

φε
φ

we
ewc

. (4-5) 

From Eq. (4-5), we can obtain the equations as 

02 =∇ w ,  02 =∇ φ , (4-6) 

where 2∇  is the Laplacian operator. The continuity conditions across the 

matrix-inclusion interface are written as 

mi ww = ,  m
zr

i
zr σσ = , (4-7) 

mi φφ = ,  m
r

i
r DD = , (4-8) 

where the superscripts i and m denote the inclusion and material, respectively. The 

loading is remote shear. 
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4.3 Method of the solution 

 

4.3.1 Regularized meshless method 

 

The antiplane piezoelectricity problem with multiple inclusions is decomposed into 

two parts as shown in Fig. 4-2. One is the exterior problem for matrix with holes 

subjected to the far-displacement field and far-electric field, the other is the interior 

problem for each inclusion. The two boundary data of matrix and inclusion satisfy the 

interface conditions in Eqs. (4-7) and (4-8). Furthermore, the exterior problem for 

matrix with holes subjected to a far-displacement field and far-electric field can be 

superimposed by two systems as shown in Fig. 4-3. One is an infinite domain with no 

hole subjected to a far-displacement field and far-electric field, the other is the matrix 

with holes. The representations of the two solutions for the interior problem ( )( I
i

xw  

and )( I
i

xφ ) and exterior problem ( )( O
i

xw  and )( O
i

xφ ) are formulated by using the 

RMM as follows: 

(1) Interior problem 

Following Eqs. (3-8) and (3-9), we can obtain 
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p
I
i Bx ∈ , mp ,,3,2,1 L= . 

where )( I
ixu  can be denoted as )( I

i
xw  and )( I

i
xφ , respectively. Similarly, the 

boundary flux is obtained as 
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where 
x

I
iI

i n
xuxt

∂
∂

=
)()( . 

 

(2) Exterior problem 
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Similarly, the boundary flux is obtained as 
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4.3.2 Construction of influence coefficients for problems with 
arbitrary domain 

 

Following Eqs. (4-9)~(4-12), we can obtain linear algebraic system of the interior 

and exterior problems, respectively. 

(1) Interior problem (Inclusion) 
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where the influence matrices, [ ]IT  and [ ]IM , are equal to influence matrices of Eqs. 

(3-12) and (3-13), respectively. 

 

(2) Exterior problem (Matrix) 
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where the influence matrices [ ]OT  and [ ]OM  are equal to influence matrices of Eqs. 

(3-22) and (3-23), respectively. 

 

4.3.3 Construction of influence matrices for piezoelectricity problems 

 

Substituting Eqs. (4-13), (4-14), (4-15) and (4-16) into Eqs. (4-7) and (4-8), the 

linear algebraic system for antiplane piezoelectricity problem can be obtained as: 
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(4-17)

where w  and φ  denote the out-of-plane elastic displacement and electric potential, 

respectively. The unknown densities ({ }i
wα , { }m

wα , { }iφα , { }m
φα ) in Eq. (4-17) can be  

obtained by implementing the linear algebraic solver and the stress concentration can 

be solved by using Eq. (4-3). To express clearly, the solution procedure is listed in Fig. 

4-4. 

 

4.4 Numerical examples 

 

In order to show the accuracy and validity of the proposed method, the antiplane 

piezoelectricity problems with multiple inclusions subjected to the remote shear and 

the far-electric field are considered. Three examples contain single elastic dielectric 
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inclusion, single piezoelectric inclusion and two piezoelectric inclusions under 

antiplane shear, respectively. 

 

Case 4-1: Single elastic dielectric inclusion ( 015 =e ) [33, 41] 

 This case is an elastic dielectric inclusion in elastic dielectric matrix as shown in 

Fig. 4-5. There is no piezoelectric coupling, i.e., the electric and mechanical effects 

are uncoupled. The shear stress zyσ  along the line 0=θ  is plotted in Fig. 4-6 

(a)~(d), and the result along the line 2/πθ =  is plotted in Fig. 4-7 (a)~(d), 

respectively. When the matrix is stiffer than the inclusion, im cc 4444 > , the maximum 

stress concentration occurs in the matrix at 0=θ  as shown in Figs. 4-6 and 4-7. On 

the contrary, the maximum stress concentration occurs in the matrix at 2/πθ =  for 

mi cc 4444 > . In the single cavity problem under antiplane shear, the maximum stress 

concentration is 2 occuring in the matrix of 0=θ . Fig. 4-6 (b) reduce to Fig. 4 in Ref. 

[33]. Good results are well compared with analytical solutions [41]. 

 

Case 4-2: Single piezoelectric inclusion [41] 

The single piezoelectric inclusion in a piezoelectric matrix is shown in Fig. 4-8. 

In this case, the remote shear, shear modulus, piezoelectric modulus, dielectric 

modulus and elastic modulus are 7105×=τ  Nm-2, 0.1015 =
ie  Cm-2, 

8
1111 1051.1 −×== im εε  CV-1m-1 and 10

4444 1053.3 ×== im cc  Nm-2, respectively. Stress 

concentrations versus different piezoelectric modulus ratio are shown in Fig. 4-9 

(a)~(b) for the case of 610−=E V/m. Furthermore, two other cases of 0=E  V/m 

and 610=E V/m are plotted in Fig. 4-10 (a)~(b) and Fig. 4-11 (a)~(b), respectively. 

When 610−=E V/m and 10/ 1515 −=im ee  for negative poling direction, the negative 

maximum stress concentration occurs in the matrix of 0=θ  as shown in Fig. 4-9 (a). 
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However, the positive maximum stress concentration occurs in the matrix of 

2/πθ =  as shown in Fig. 4-9 (b). Contours of electric potential φ  and shear stress 

m
zyσ  are plotted in Fig. 4-12 (a)~(b), respectively. Good agreement is made after 

comparing with the analytical solution [41]. 

 

Case 4-3: Two piezoelectric inclusions 

Two piezoelectric inclusions in piezoelectric matrix are shown in Fig. 4-13. The 

remote loading and material constants are 7105×=τ Nm-2, 

10
4444 1053.3 ×== im cc Nm-2, 8

1111 1051.1 −×== im εε CV-1m-1 and 0.1015 =
ie Cm-2, 

respectively. Stress concentrations τσ /m
zr  versus different piezoelectric modulus 

ratios are respectively plotted in Fig. 4-14 (a)~(c). On the other hand, stress 

concentrations τσ θ /m
z  versus different piezoelectric modulus ratios are plotted in Fig. 

4-15 (a)~(c), respectively. The negative maximum stress concentration occurs in the 

matrix of 0=θ  and 
2
πβ =  as shown in Fig. 4-14 (c) when 610−=E V/m and 

10/ 1515 −=im ee . However, the maximum stress concentration occurs in the matrix at 

2/πθ =  and 2/πβ =  as shown in Fig. 4-15 (c). When 610=E v/m, 5/ 1515 −=im ee  

and 2/πβ = , the tangential electric field along the boundaries of the matrix 

distribution function of the different ratios 1/ rd  are shown in Fig. 4-16 (a)~(e). It is 

interesting to find that the tangential electric field is not continuous at 2/πθ = , when 

the inclusion approaches another inclusion. Stress concentrations of the different 

ratios of 1/ rd  at 0=β  versus piezoelectric modulus ratio are shown in Fig. 4-17 

(a)~(c). It is found that the stress concentration factor becomes larger, when the two 

inclusions approach each other inclusion. The results are well compared with those of 

the method of successive approximations [46]. 
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4.5 Concluding remarks 

 

 In this study, we employed the RMM to solve piezoelectricity problems with 

piezoelectric inclusions under antiplane shear and inplane electric field. Only the 

boundary nodes on the physical boundary are required. The major difficulty of the 

coincidence of the source and collocation points in the conventional MFS is then 

circumvented. Furthermore, the controversy of the fictitious boundary outside the 

physical domain by using the conventional MFS no longer exists. Although it results 

in the singularity and hypersingularity due to the use of double layer potential, the 

finite values of the diagonal terms for the influence matrices have been determined by 

employing the regularization technique. The numerical results were obtained by 

applying the developed program to solve piezoelectricity problems through three 

examples. Numerical results agreed very well with the analytical solution [41] and 

those of the method of successive approximations [46]. The first attempt to solve 

piezoelectricity problems using MFS was achieved. 

 




