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In this study, we use the addition theorem and superposition technique to solve the scattering problem with
multiple circular cylinders arising from point sound sources. Using the superposition technique, the problem
can be decomposed into two individual parts. One is the free-space fundamental solution. The other is a typ-
ical boundary value problem (BVP) with specified boundary conditions derived from the addition theorem
by translating the fundamental solution. Following the success of null-field boundary integral formulation
to solve the typical BVP of the Helmholtz equation with Fourier densities, the second-part solution is easily
obtained after collocating the observation point exactly on the real boundary and matching the boundary
condition. The total solution is obtained by superimposing the two parts which are the fundamental solution
and the semianalytical solution of the Helmholtz problem. An example was demonstrated to validate the
present approach. The parameter study of size and spacing between cylinders are addressed. The results are
well compared with the available theoretical solutions and experimental data. © 2010 Wiley Periodicals, Inc.
Numer Methods Partial Differential Eq 000: 000–000, 2010

Keywords: addition theorem; Fourier series; null-field integral formulation; scattering; superposition
technique

I. INTRODUCTION

AQ2

Multiple scattering problems occur in many applications related to various areas of applied science,
e.g., acoustics [1,2], electromagnetism [3,4], elasticity [5], and water-wave [6] problems. Mathe-
matically speaking, the scattering field appears as the superposition of free field and radiation field.
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2 CHEN ET AL.

A better understanding of scattering phenomenon requires a precise knowledge of the influence
of the different geometrical and physical parameters of the problem. Owing to the complexity of
this problem, a numerical solution is always resorted, especially in the case where the number,
radii, and positions of objects are arbitrary. It can be consulted with the textbook of Martin [7].

Many researchers investigated the point source problems in the past years. Row [3, 8] suc-
cessfully measured the experimental data of the interaction between two circular cylinders within
an infinite domain. When the point source is far away the scatter, the problem can be seen as a
multiple scattering problem subject to the plane wave. Sherer [1] developed an analytical method
for solving the scattering problem with multiple, rigid circular cylinders arranged in an arbi-
trary configuration. He used the Hankel transform method to calculate the incident field and
determined the scattering fields from each cylinder in the collection through the separation of
variables. The scattering problem from an array of circular cylinders with oblique incidence plane
wave is investigated by Henin et al. [4]. Not only transverse magnetic (TM) but also transverse
electric (TE) incident plane waves were considered. Interaction between two penetrable cylin-
ders subject to the oblique incidence were studied by Yousif and Köhler [9]. Some special cases
of normal incidence, small radii, perfectly conducting cylinders, and a single cylinder are also
considered.

Recently, Chen et al. [10–13] developed the null-field integral equation in conjunction with the
degenerate kernel to solve many engineering problems. They claimed that their approaches is one
kind of semianalytical approaches as the error comes from truncating the terms of Fourier series.
However, the ill-conditioned problem is arisen when the null-field integral equations are used.
This is why people prefer collocation on boundary even though there are some singularity issues
to solve. Li proposed two other kinds of semianalytical approaches, one can combine with FEM
and FDM, and the other use the method of fundamental solutions as given in the Li’s book [14]
and paper [15], respectively. Nonsingular formulation of the Trefftz method was studied by Li
et al. [16]. If the boundary element method (BEM) is used, Cauchy principal value or finite part
concept is required to calculate the singular or hypersingular inteqrals [17]. An idea using the
null-field integral formulation but collocating on the real boundary without singularity is pro-
posed by Chen et al. [10–13]. Five advantages, mesh-free generation, well-posed model, free
of calculating principal value (the singular or hypersingular integrals are transformed into series
summability by introducing degenerate kernels and Fourier series), elimination of boundary-layer
effect, and exponential convergence, are obtained. They also extended their approach to derive
the antiplane dynamic Green’s function [18]. Not only perfect but also imperfect interface prob-
lems were addressed. Chen et al. [19] have also proposed a logical approach to construct the
Green’s function of Laplace operator by using the addition theorem and the superposition tech-
nique. The null-field integral formulation has been successfully used to solve the Laplace [10,20],
Helmholtz [12, 13], biharmonic [21], and bi-Helmholtz [22] problems.

In this study, the addition theorem and superposition technique are used to solve the scattering
problem with multiple circular cylinders arising from point sound sources. The problem is decom-
posed into two parts. One is the problem of the fundamental solution for the free field. The other
is a typical Boundary Value Problem (BVP) with specified boundary conditions derived from
the addition theorem by translating the fundamental solution. Following the success of null-field
boundary integral formulation in conjunction with degenerate kernel to solve the typical BVP, the
second part solution can be easily obtained after collocating the observation point exactly on the
real boundary and matching boundary condition. The total solution is obtained by superimposing
the two parts. An example was demonstrated to validate the proposed approach. The parameters
of size and spacing of cylinders are considered. The results are compared well with the available
theoretical solutions and experimental data.

Numerical Methods for Partial Differential Equations DOI 10.1002/num



J_ID: z8x Customer A_ID: 2009-0001.R2 Cadmus Art: NUM20583 KGL ID: c2numt100014 — 2010/2/26 — page 3 — #3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADDITION THEOREM AND SUPERPOSITION TECHNIQUE 3

FIG. 1. (a) An infinite plane with arbitrary number of circular cylinders subject to the Dirichlet or Neu-
mann boundary conditions. (b) A simple figure for explaining the degenerate kernels in the interior problem.
[Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

II. NULL-FIELD INTEGRAL FORMULATION FOR A TYPICAL BVP

AQ1

AQ3

A. Problem Statements for BVP Without Sources

A typical BVP with H randomly distributed circular cylinders bounded in an infinite domain
enclosed with the boundaries, Bj(j = 1, 2, . . . , H) as shown in Fig. 1(a), F1

B =
H⋃

j=1

Bj , (1)

is considered here. The field u(x) satisfies

(∇2 + k2)u(x) = 0, x ∈ D, (2)

where D is the domain, ∇2 is the Laplacian operator, k is the wave number which is the angular
frequency over the speed of sound. The boundary condition can be specified to either Dirichlet
or Neumann type as follows:

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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4 CHEN ET AL.

u(x) = ū, x ∈ B, or
∂u(x)

∂nx

= t̄ , x ∈ B. (3)

The radiation condition is shown below:

∂u(x)

∂nx

− iku(x) = 0, x ∈ B∞, (4)

where B∞ is the virtual boundary at infinity. This problem is a typical BVP and can be easily
solved by using the null-field integral approach.

B. Dual Null-Field Integral Formulation: The Conventional Version

On the basis of the dual integral formulation [10] for the domain point, we have

2πu(x) =
∫

B

T (s, x)u(s)dB(s) −
∫

B

U(s, x)
∂u(s)

∂ns

dB(s), x ∈ D, (5)

2π
∂u(x)

∂nx

=
∫

B

M(s, x)u(s)dB(s) −
∫

B

L(s, x)
∂u(s)

∂ns

dB(s), x ∈ D, (6)

where s and x are the source and field points, respectively. B is the boundary, nx and ns denote
the outward normal vector at field point and source point, respectively, and the kernel function
U(s, x) is the fundamental solution which satisfies

(∇2 + k2)U(x, s) = 2πδ(x − s), (7)

where δ(x − s) denotes the Dirac-delta function. The other kernel functions can be obtained as

T (s, x) = ∂U(s, x)

∂ns

, (8)

L(s, x) = ∂U(s, x)

∂nx

, (9)

M(s, x) = ∂2U(s, x)

∂ns∂nx

. (10)

By moving the field point x to the boundary, the dual boundary integral equations can be obtained
as follows:

πu(x) = CPV
∫

B

T (s, x)u(s)dB(s) − RPV
∫

B

U(s, x)
∂u(s)

∂ns

dB(s), x ∈ B, (11)

π
∂u(x)

∂nx

= HPV
∫

B

M(s, x)u(s)dB(s) − CPV
∫

B

L(s, x)
∂u(s)

∂ns

dB(s), x ∈ B, (12)

where RPV is the Riemann principal value, CPV is the Cauchy principal value, and HPV is the
Hadamard (or called Mangler) principal value. By moving the field point to the complementary
domain, the dual null-field integral equations are shown as follows:

0 =
∫

B

T (s, x)u(s)dB(s) −
∫

B

U(s, x)
∂u(s)

∂ns

dB(s), x ∈ Dc, (13)

Numerical Methods for Partial Differential Equations DOI 10.1002/num



J_ID: z8x Customer A_ID: 2009-0001.R2 Cadmus Art: NUM20583 KGL ID: c2numt100014 — 2010/2/26 — page 5 — #5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADDITION THEOREM AND SUPERPOSITION TECHNIQUE 5

0 =
∫

B

M(s, x)u(s)dB(s) −
∫

B

L(s, x)
∂u(s)

∂ns

dB(s), x ∈ Dc, (14)

where “Dc” denotes the domain outside D.

C. Dual Null-Field Integral Formulation: The Present Version

Following the success of null-field integral formulation for the Laplace problem [10], we extend
to the Helmholtz case here. By introducing the degenerate kernel, the collocation point can be
exactly located on the real boundary free of calculating singular integrals in the sense of principal
value. Therefore, the integral equations for the domain point and null-field integral equations in
the interior problem are represented as follows:

2πu(x) =
∫

B

T i(s, x)u(s)dB(s) −
∫

B

U i(s, x)
∂u(s)

∂ns

dB(s), x ∈ D ∪ B, (15)

2π
∂u(x)

∂nx

=
∫

B

M i(s, x)u(s)dB(s) −
∫

B

Li(s, x)
∂u(s)

∂ns

dB(s), x ∈ D ∪ B, (16)

and

0 =
∫

B

T e(s, x)u(s)dB(s) −
∫

B

U e(s, x)
∂u(s)

∂ns

dB(s), x ∈ Dc ∪ B, (17)

0 =
∫

B

Me(s, x)u(s)dB(s) −
∫

B

Le(s, x)
∂u(s)

∂ns

dB(s), x ∈ Dc ∪ B. (18)

For the exterior problem, the domain of interest is in the external region of the circular boundary
and the complementary domain is in the internal region of the circle. Therefore, the null-field
integral equations are represented as follows:

2πu(x) =
∫

B

T e(s, x)u(s)dB(s) −
∫

B

U e(s, x)
∂u(s)

∂ns

dB(s), x ∈ D ∪ B, (19)

2π
∂u(x)

∂nx

=
∫

B

Me(s, x)u(s)dB(s) −
∫

B

Le(s, x)
∂u(s)

∂ns

dB(s), x ∈ D ∪ B, (20)

and

0 =
∫

B

T i(s, x)u(s)dB(s) −
∫

B

U i(s, x)
∂u(s)

∂ns

dB(s), x ∈ Dc ∪ B, (21)

0 =
∫

B

M i(s, x)u(s)dB(s) −
∫

B

Li(s, x)
∂u(s)

∂ns

dB(s), x ∈ Dc ∪ B. (22)

where the superscripts of “i” and “e” are selected interior and exterior degenerate kernels for
fundamental solutions. The explicit forms of degenerate kernels will be elaborated later.

D. Expansions of the Fundamental Solution and Boundary Density

The closed-form fundamental solution as previously mentioned is

U(s, x) = −iπH
(1)

0 (kr)

2
, (23)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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6 CHEN ET AL.

where r ≡ |s − x| is the distance between the source point and the field point, H
(1)

0 is the first-
kind Hankel function of zeroth order, and i2 = −1 is the imaginary number. To fully utilize the
property of circular geometry, the mathematical tools, degenerate (separable or finite rank) kernel
and Fourier series, are adopted for analytical calculation of boundary integrals.

Degenerate (Separable) Kernel for Fundamental Solutions. In the polar coordinates, the
field point x and source point s can be expressed as (ρ, φ) and (R, θ), respectively. By using the
addition theorem for separating the source point and field point, kernel functions, U(s, x), T (s, x),
L(s, x), and M(s, x), are expanded in terms of degenerate kernel as shown below [12, 13]:

U(s, x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

U i(s, x) = −iπ

2

∞∑
m=0

εmJm(kρ)H (1)
m (kR) cos[m(θ − φ)], R ≥ ρ,

U e(s, x) = −iπ

2

∞∑
m=0

εmJm(kR)H(1)
m (kρ) cos[m(θ − φ)], R < ρ,

(24)

T (s, x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T i(s, x) = −πki

2

∞∑
m=0

εmJm(kρ)H ′(1)
m (kR) cos[m(θ − φ)], R > ρ,

T e(s, x) = −πki

2

∞∑
m=0

εmJ ′
m(kR)H(1)

m (kρ) cos[m(θ − φ)], R < ρ,

(25)

L(s, x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Li(s, x) = −πki

2

∞∑
m=0

εmJ ′
m(kρ)H (1)

m (kR) cos[m(θ − φ)], R > ρ,

Le(s, x) = −πki

2

∞∑
m=0

εmJm(kR)H ′(1)
m (kρ) cos[m(θ − φ)], R < ρ,

(26)

M(s, x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M i(s, x) = −πk2i

2

∞∑
m=0

εmJ ′
m(kρ)H ′(1)

m (kR) cos[m(θ − φ)], R ≥ ρ,

Me(s, x) = −πk2i

2

∞∑
m=0

εmJ ′
m(kR)H ′(1)

m (kρ) cos[m(θ − φ)], R < ρ,

(27)

where superscripts “i” and “e” denote the interior and exterior cases for the expressions of kernel,
respectively, and εm is the Neumann factor

εm =
{

1, m = 0,

2, m = 1, 2, . . . , ∞.
(28)

It is noted that U and M kernels in Eqs. (24) and (27) contain the equal sign of ρ = R, whereas
T and L kernels do not include the equal sign due to discontinuity. A simple figure for explaining
the degenerate kernels in the interior problem is shown in Fig. 1(b).

Fourier Series Expansion for Boundary Densities. We apply the Fourier series expansion
to approximate the boundary density and its normal derivative as expressed by

u(s) = a0 +
∞∑

n=1

(an cos nθ + bn sin nθ), s ∈ B, (29)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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ADDITION THEOREM AND SUPERPOSITION TECHNIQUE 7

∂u(s)

∂ns

= p0 +
∞∑

n=1

(pn cos nθ + qn sin nθ), s ∈ B, (30)

where an, bn, pn and qn (n = 0, 1, 2, . . .) are the Fourier coefficients and θ is the polar angle. For the
Dirichlet (Neumann) problem, an and bn are known (unknown), whereas pn and qn are unknown
(known). In the real computation, the integrals can be analytically calculated by using the orthog-
onal property of Fourier series and the same number of terms (M) in Eqs. (24)–(27), (29), and
(30) used in the summation instead of infinite terms. This method is one kind of semianalytical
methods as errors only occur from the truncation of Fourier series.

E. Adaptive Observer System

To fully use the property of degenerate kernels for circular boundaries, an adaptive observer sys-
tem is addressed as shown in Fig. 2. For the boundary integrals, the origin of the observer system F2

can be adaptively located on the center of the corresponding boundary contour. The dummy vari-
able in the circular boundary integration is the angle instead of radial coordinate R. By using the
adaptive system, all the integrals can be easily calculated for multiple connected problems.

F. Linear Algebraic Equation

To calculate the Fourier coefficients, N (N = 2M+1) boundary nodes for each circular boundary
are uniformly located on each circular boundary. From Eqs. (17) and (18) or Eqs. (21) and (22),
we have

0 =
H∑

i=1

∫
Bi

T (s, x)u(s)dB(s) −
H∑

i=1

∫
Bi

U(s, x)
∂u(s)

∂ns

dB(s), x ∈ Dc ∪ B, (31)

FIG. 2. Sketch of the null-field integral equation in conjuction with the adaptive observer system. [Color
figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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8 CHEN ET AL.

0 =
H∑

i=1

∫
Bi

M(s, x)u(s)dB(s) −
H∑

i=1

∫
Bi

L(s, x)
∂u(s)

∂ns

dB(s), x ∈ Dc ∪ B. (32)

It is noted that the integration path is clockwise. For the integral of the circular boundary Bi , the
kernels [U(s, x), T (s, x), L(s, x), and M(s, x)] are expressed by using the degenerate kernels and
setting the origin at the center of Bi . The boundary densities [u(s) and ∂u(s)

∂ns
] are substituted by

using the Fourier series. The boundary contour integration can be analytically determined by the
orthogonal relations of the Fourier base and the adaptive coordinate. The 2M +1 boundary nodes
are collocation points for satisfying BCs, instead of discretization for integrals. A linear algebraic
system yields

[U ]{t} = [T ]{u}, (33)

where [U ] and [T ] are the influence matrices with a dimension of H ×(2M+1) by H ×(2M+1),
{u} and {t} denote the column vectors of Fourier coefficients with a dimension of H × (2M + 1)

by 1 for u and ∂u

∂n
, respectively. Only 2M + 1 unknown coefficients are sought for each circu-

lar hole, which can be determined by Eq. (33). Then, all the unknown boundary data can be
determined and the potential is obtained by substituting the boundary data into Eq. (15) or (19).
Based on the null-field integral equation approach, successful applications to Laplace [10, 20],
Helmholtz [12, 13], biharmonic [21], and bi-Helmholtz [22] problems have been done.

III. METHODS OF SOLUTION

A. Problem Statements

The problem that we would like to study is the scattering problem with multiple cylinders arising
from a point source, as shown in Fig. 3. The problem is governed by the Helmholtz operator asF3

follows:

FIG. 3. Infinite plane with arbitrary number of circular cylinders subject to a point sound source at ξ .
[Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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ADDITION THEOREM AND SUPERPOSITION TECHNIQUE 9

FIG. 4. (a) Free field of the fundamental solution. (b) Radiation field (a typical BVP). [Color figure can be
viewed in the online issue, which is available at www.interscience.wiley.com.]

(∇2 + k2)G(x, ξ) = 2πδ(x − ξ), x ∈ D, (34)

and the domain is bounded by

B =
H⋃

j=1

Bj . (35)

For acoustic wave, the soft boundary means the Dirichlet BC, whereas the hard boundary denotes
the Neumann BC. Here, the cylinders are specified to soft boundaries as follows:

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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10 CHEN ET AL.

FIG. 5. Flowchart of the present approach.

G(x, ξ) = 0, x ∈ B. (36)

The proposed approach for solving the problem will be elaborated on the next section.

B. Green’s Function Using the Addition Theorem and Superposition Technique

The scattering problem subject to a point sound source is shown in Fig. 3. It can be decomposed
into two parts, the fundamental solution (free field) and the radiation field, as shown in Fig. 4(a,b).F4

Based on the addition theorem, the fundamental solution can be separated into the series form
using Eq. (24). For matching the boundary condition, the superposition of the artificial boundary
condition [Gf (x, ξ)] in Fig. 4(a) and the radiation boundary condition [Gr(x, ξ)] in Fig. 4(b)
must satisfy the original boundary condition in Fig. 3. The second part (radiation field) is a typical
BVP and can be easily solved by using the null-field integral equation approach as mentioned in
Section 2. For clarity, the flowchart of our method is shown in Fig. 5.F5

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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ADDITION THEOREM AND SUPERPOSITION TECHNIQUE 11

C. Green’s Third-Identity Approach

Based on the Green’s third identity, with respect to two systems u and v, we have∫
D

u(x)∇2v(x)dD(x) =
∫

B

u(x)
∂v(x)

∂n
dB(x) −

∫
D

∇u(x)∇v(x)dD(x), (37)

∫
D

[u(x)∇2v(x)dD(x) − v(x)∇2u(x)dD(x)] =
∫

B

[u(x)
∂v(x)

∂n
− v(x)

∂u(x)

∂n
]dB(x). (38)

By selecting the fundamental solution U(x, s) as u and the Green’s function G(s, ξ) as v, the
Green’s third identity gives

2πG(x, ξ) =
∫

B

T (s, x)G(s, ξ)dB(s) −
∫

B

U(s, x)
∂G(s, ξ)

∂ns

dB(s) + U(ξ , x), x ∈ D. (39)

D. Equivalence Between the Solution Using the Green’s Third Identity and
Superposition Technique

The boundary integral equation for the free field problem can be written as follows:

2πGf (x, ξ) =
∫

B

T (s, x)Gf (s, ξ)dB(s) −
∫

B

U(s, x)
∂Gf (s, ξ)

∂ns

dB(s) + U(ξ , x), x ∈ D,

(40)

where Gf (x, ξ) is the free field. The boundary integral equation for the typical boundary value
problem can be written as follows:

2πGr(x, ξ) =
∫

B

T (s, x)Gr(s, ξ)dB(s) −
∫

B

U(s, x)
∂Gr(s, ξ)

∂ns

dB(s), x ∈ D, (41)

where Gr(x, ξ) is the second part solution for the typical BVP. By superimposing Gf and Gr in
Eqs. (40) and (41), respectively, we have

2π [Gf (s, ξ) + Gr(s, ξ)] =
∫

B

T (s, x)[Gf (s, ξ) + Gr(s, ξ)]dB(s)

−
∫

B

U(s, x)

[
∂Gf (s, ξ)

∂ns

+ ∂Gr(s, ξ)

∂ns

]
dB(s) + U(ξ , x), x ∈ D, (42)

where Gf (s, ξ) + Gr(s, ξ) and
∂Gf (s,ξ)

∂ns
+ ∂Gr (s,ξ)

∂ns
satisfy the original boundary conditions. By

comparing Eq. (42) with Eq. (39), we can find G(x, ξ) = Gf (x, ξ) + Gr(x, ξ). Therefore, we
have proven the mathematical equivalence between the solution of Green’s third identity and that
of superposition technique.

IV. AN ILLUSTRATIVE EXAMPLE

We consider an infinite plane with two identical circular cylinders subject to a point sound source
as shown in Fig. 6. The radii of the two identical cylinders are a. The locations of source and F6

probe are at (−100, 0) and (2λ, y), respectively, where λ is the wave length. The distance between

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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12 CHEN ET AL.

FIG. 6. An infinite plane with two equal circular cylinders subject to a point sound source. [Color figure
can be viewed in the online issue, which is available at www.interscience.wiley.com.]

FIG. 7. Distribution potential on the artificial boundaries in the free field (upper part: series form; lower
part: closed form, M = 20). [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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ADDITION THEOREM AND SUPERPOSITION TECHNIQUE 13

FIG. 8. Distribution potential on the artificial boundaries in the free field versus polar angle. [Color figure
can be viewed in the online issue, which is available at www.interscience.wiley.com.]

the two centers of identical cylinders is 2b. The boundary conditions are the Dirichlet types
[G(x, ξ) = 0] due to the soft cylinders. The potential distribution along the artificial boundary
for the free field is shown in Figs. 7 and 8 versus circular boundary and polar angle, respectively. F7

F8
Both the closed-form formula of Eq. (23) and series-form formula of Eq. (24) are given. After
obtaining the total field at the probe, the relative amplitude is defined by dividing the total field

FIG. 9. Relative amplitude of total field versus the probe location y (M = 20). [Color figure can be viewed
in the online issue, which is available at www.interscience.wiley.com.]

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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14 CHEN ET AL.

FIG. 10. Convergence test of Parseval’s sum for (a) ∂G(x, ξ)/∂nx (real part) and (b) ∂G(x, ξ)/∂nx

(imaginary part).

with respect to the free field at (x, 0). By considering λ = π , b = 1
2π , and a = 0.05λ, the relative

amplitude of the total field versus y of probe location is shown in Fig. 9. The result agrees wellF9

with theoretical results and experimental data by Row [3]. The convergence rate is examined
by using the Parseval’s sum [18] in Fig. 10(a,b), for real and imaginary parts, respectively. TheF10

Parseval’s sum is defined by

∫ 2π

0

(
∂u(s)

∂ns

)2

dθ = 2πp2
0 + π

M∑
n=1

(
p2

n + q2
n

)
, s ∈ B. (43)

It is found that only few terms for Fourier series are required. In the real calculation, 20 terms
are adopted. By changing the size of cylinder (a) and the same parameters of λ = π and b = 1

2π ,

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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ADDITION THEOREM AND SUPERPOSITION TECHNIQUE 15

FIG. 11. Relative amplitude of total field versus the probe location (M = 20). [Color figure can be viewed
in the online issue, which is available at www.interscience.wiley.com.]

the relative amplitudes are shown in Figs. 11 and 12 for different sizes of cylinders a = 0.2λ and F11

F12
a = 0.318λ, respectively. Agreement with the Row’s data is observed. The approach is scheme
stable as the linear algebraic equation is well posed by using the present approach. The diagonally

AQ4

dominant matrix is obtained as we exactly locate on the boundary point in the BIE. A condition
number is in the O(102). By setting the fixed probe at (2λ, 0), the relative amplitudes versus

FIG. 12. Relative amplitude of total field versus the probe location (M = 20). [Color figure can be viewed
in the online issue, which is available at www.interscience.wiley.com.]

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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16 CHEN ET AL.

FIG. 13. Relative amplitude of total field versus 2b/λ (a = 0.2λ and M = 20). [Color figure can be viewed
in the online issue, which is available at www.interscience.wiley.com.]

the spacing between the two cylinders for a = 0.2λ, 0.24λ, 0.318λ, and 0.477λ are shown in
Figs. 13–16, respectively, to see the effect of distance between the two cylinders for various sizesF13–16

of cylinders. All the results in Figs. 13–16 agree well with the theoretical and experimental data
by Row [3]. Although only two cylinders are considered in this proposed approach, our approach

FIG. 14. Relative amplitude of total field versus 2b/λ (a = 0.24λ and M = 20). [Color figure can be
viewed in the online issue, which is available at www.interscience.wiley.com.]
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ADDITION THEOREM AND SUPERPOSITION TECHNIQUE 17

FIG. 15. Relative amplitude of total field versus 2b/λ (a = 0.318λ and M = 20). [Color figure can be
viewed in the online issue, which is available at www.interscience.wiley.com.]

can be extended to solve multiple cylinder problems without any difficulty. In this example, effi-
ciency of the proposed method of the sound-scattering problem is verified. In addition, it can be
extended to deal with scattering problem in different engineering areas, e.g., water-wave problem
or electromagnetism, by following the same concept.

FIG. 16. Relative amplitude of total field versus 2b/λ (a = 0.477λ and M = 20). [Color figure can be
viewed in the online issue, which is available at www.interscience.wiley.com.]
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18 CHEN ET AL.

V. CONCLUSIONS

In this article, we proposed the addition theorem and superposition technique to solve the scatter-
ing problem of two identical cylinders subject to a point source. Regarding the BVP with circular
boundaries, we have proposed a BIEM formulation by using degenerate kernels, null-field inte-
gral equation, and Fourier series in companion with adaptive observer system. This method is
a semianalytical approach for the problems with circular boundaries as only truncation error in
the Fourier series is involved. A general-purpose program for solving the problems with arbitrary
number, any size, and various locations of circular cylinders was developed. Therefore, not only
the sound-scattering problems from a point source but also electromagnetic scattering problems
can be solved by using this approach. Good agreement is observed after comparing with theoretical
and experiment data.
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