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摘要 

本文主要目的在探討奇異值分解法在外域聲場中的物理意義。我們採用退化核函

數及映射法推導得到格林函數，而這個格林函數同時可以奇異值展開式表示出。

而格林函數離散後的矩陣可描述出一個輻射或散射物體的聲壓場與物體表面聲

源強度的關聯。格林函數矩陣藉由奇異值分解法可得一組與輻射效率有關的奇異

值，及兩組分別描述與場有關及與原點強度有關的正交的矩陣。此外，由奇異值

分解法得到的酉向量與由奇異值展開式得到的基底函數之間的關聯將予以銜

接。同時，藉由奇異值分解法得到的一圓形長柱體的輻射模態將與由奇異值展開

式得到的解析解作一比較。 

Abstract 
In this paper, the principal objective is to study the physical meaning of the singular 

value decomposition (SVD) in exterior acoustics. The degenerate kernel and image 

method are employed to derive the Green's function. The Green's function can be 

represented by the singular value expansion (SVE). The Green's matrix describes the 

field of acoustic pressure to the strengths of sources on the surface of a body, which 

radiates or scatters sound. The matrix decomposed by the SVD technique resulted in a 

set of singular values and two sets of orthogonal singular vectors. The singular value 

relates to the radiation efficiency and the two sets of orthogonal unitary vectors 

describe field mode shapes and source mode shapes, respectively. In addition, the 

relationship between the unitary vectors provided by the SVD and the basis function 

provided by SVE is constructed. The acoustic radiation mode shape of a circular 

cylinder is obtained by using the SVD technique and is compared with the analytical 

solution by using the SVE. 

Keywords：singular value decomposition (SVD)；singular value expansion (SVE)；

radiation efficiency；radiation mode 

I Introduction 
Recently, the singular value decomposition (SVD) technique has been adopted to 



study the fictitious frequency [1,2] and the spurious eigenvalue [3,4] successfully. In 

analyzing the acoustic radiated power and radiation efficiency, the SVD technique 

also plays an important role. Chen [5] employed the eigenvalue analysis to examine 

the physical meaning of surface complex acoustic power and its relationship to 

acoustic radiation efficiency. Borgiotti [6] was the first to employ the SVD technique  

to analyze the radiation from a vibrating structure into the far field. Nelson and 

Kahana [7] used the SVD technique to decompose the Green's function. They tried to 

connect the  decomposition and the basis functions of classical acoustics for 

three-dimensional case. It was found that the left and right singular vectors associated 

with the SVD related to the sampled spherical harmonics by a unitary transformation.  

However, the formulation of the transformation matrix is not clear in their paper. In 

the present work, we will focus on the relationship between the unitary vectors 

provided by the SVD and the basis function provided by the SVE. Based on the 

degenerate kernels, the image method is used to obtain the Green's function of the 

radiation field. A circular case is demonstrated to study the result of SVD and is 

compared to the result of the Green's function matrix. The Green's function matrix 

displayed in a singular value expansion (SVE) form. The relationship between the 

unitary vectors and the basis function will be connected. 

II The image method of acoustic field 
The Green's function, G(x,s), relating to the acoustic pressure of field to the strengths 

of source on the boundary, satisfies 
)(2),()( 22 sxsxGk −=+∇ πδ                                      (1) 

where )( sx −δ  is the Dirac delta function. For the auxiliary system subject to the 

Neumann boundary condition, the Green's function must satisfy 
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where xn  denotes the outnormal direction at the boundary point x. By employing the 

image method, we have 
),(),(),( sxUsxUsxG ′+=                                         (3) 

where U(x,s) is the fundamental solution and U(x,s') is the fundamental solution of the 

image system with a point sink at the image point s'. By using the two bases of the 

first kind Hankel and Bessel functions of the n-th order and their derivatives, 

)()1( kxH n , )(kxJ n , we can decompose the two-dimensional kernel function into 
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where “+” denote Hermintian conjugate and φφ in
n e=Θ )( , θθ in

n e=Θ )( , ),( φρ=x , 

),( θRs =  and ),( θRs ′=′  in the polar coordinate. The definitions of ρ , φ , R, θ , 

R′ , r and r′  are shown in Fig.1. We can rewrite the Green's function as follows: 
),;,(),;,(),( θφρθφρ RURUsxG ie ′−= ,                              (5) 

subject to the Neumann boundary condition                               
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When the field point x locates on the boundary of the circle with a radius a, 

substitution of Eq.(4) into Eq.(6), the relationship between the R' and R is obtained 
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By substituting Eqs.(4) and (7) into Eq.(5), and the symmetry property, the Green’s 

function is derived, 
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The acoustic pressure field u(x) can be obtained 
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where c is the sound velocity and 0ρ  is the density and )̂(st  is the velocity strength 

of a point source at )̂,( θa . 

III The singular value decomposition for the Green's matrix 
For the readers' convenience, the [G] denotes the Green's matrix obtained by using 

BEM and the [G(s,x)] denotes the Green's function matrix obtained by the Green's 

function in this chapter. In BEM implementation, the boundary of a circle is 

discretized into V constant elements. If the P field points and the V source points are 
considered and }{ Bu  and }{ Bt  denote the acoustic pressure and normal velocity 

vectors on the boundary, respectively,  then the boundary and the domain integral 

equations can be modified and assembled by the following matrix form, 
}]{[}]{[ BBBB tUuT =                                              (10) 

}]{[}]{[)( BDBD tUuTxu −=                                         (11) 

where {u(x)} is the vector whose elements define the field pressure for the domain 
point x, BT , BU  are the boundary influence matrices on the boundary,  DT , DU  are 

the domain influence matrices, respectively.  Substituting Eq.(10) into Eq.(11), we 

have 
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The SVD enables any arbitrary complex matrix [G] of order VP × , the SVD of the 

Green's function matrix can be expressed in such that ∑
=
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Green's matrix is shown to consist of a linear superposition of N submatrices. 

IV The singular value expansion of the Green's function matrix 
We use Eq.(9) to define the elements of the Green's function ),̂( xsG  relating the 

acoustic pressure at number of P points in the sound field to the source strength at 

number of V points on the boundary of the domain. The Green's function matrix can 

be written in the form 
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where 
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ρ . Since each term in the series comprising each element of the 

matrix is weighted by the same factor ng , it is possible to write the matrix as a 

singular value expansion having the form ∑
−=

+

∞→
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)( Pn φΩ  and )ˆ( Vn θΩ  are the left and right singular vectors, respectively. 

V The singular value expansion and the singular value decomposition 
It will be demonstrated by the numerical simulations presented below that there is 

indeed, under certain circumstances, a direct connection between the results of the 

components ( Φ  and Ψ ) in the singular value decomposition for the Green's matrix 
and the matrices )( PφΘ  and )ˆ( VθΘ  of the SVE. Now, we connected the Φ , Ψ , 

)( PφΘ  and )ˆ( VθΘ by a transformation matrix )( PφΓ  and )( VθΓ , respectively. 

The Green's matrix can be written as )ˆ()ˆ()()(][ PPNPPG θθφφ ++ ΘΓΣΓΘ= , where NΣ  is 

the diagonal matrix of the N non-zero real singular values. It is evident from that the 

diagonal matrix Λ  of the complex amplitudes is given by 

)()( VNP θφ +ΓΣΓ=Λ .                                         (14) 

We obtained the relationship between the NΣ  of the SVD and the Λ of the SVE. 

 VI Numerical examples 
For the numerical experiments, we consider an infinite circular cylinder with radius 

ma 1= . Thirty points were adopted in the boundary element mesh for a circular 

boundary and observation field. The source points on the surface and the observation 



points are shown in Fig.2. The first five columns of Φ  and Ψ  matrices for the  
circular cylinder with thirty points at m10=ρ , are shown in Fig.3 for the cases of 

ka=0.01. The dotted line and solid line denote the imaginary-part and the real-part of 

the vector, respectively. The x axis denotes the angular degrees of the position for the 
source points in iψ  and for the observation points in iφ . The y axis denotes the 

amplitude of singular vectors in the Φ  or Ψ  matrices. Figure 3 show that the 

magnitude of the individual component is unchanged, but their phase may be different. 

The figure matches the harmonic bases in the SVD.  

VII Conclusions 
In this paper, we have demonstrated the effectiveness of the SVD technique in solving 

exterior acoustics. The physical meaning of the SVD has been examined. We applied 

the image method in conjunction with the degenerate kernel function to obtain the 

Green's function. The connection between the unitary vectors in the Green's matrix 

provided by the SVD and the function provided by the singular value expansion has 

been investigated. The unitary vectors are the basis functions for a diagonal 

transformation with respect to the generalized coordinate. The left and right singular 

vectors of the SVD of the Green's matrix yield two sets of orthogonal basis functions 

describing field mode shapes and source mode shapes, respectively.  
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Fig.1 The definitions of  

θφρ ,,, R , R′ , r′  and r. 
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Figure 3. The first five columns of Φ  and Ψ  matrices for the circular cylinder at ρ=10.0 m for 

k=0.01 using thirty observation points. 
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Fig.2 The nodes of boundary element mesh 

      and observation points  
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