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Following the success of seismic analysis of a canyon [1], the problem of SH-wave diffraction by a semi-

circular hill is revisited using the null-field boundary integral equation method (BIEM). To fully utilize the

analytical property in the null-field boundary integral equation approach in conjunction with degenerate

kernels for solving the semi-circular hill scattering problem, the problem is decomposed into two regions

to produce circular boundaries using the technique of taking free body. One is the half-plane problem

containing a semi-circular boundary. This semi-infinite problem is imbedded in an infinite plane with an

artificial full circular boundary such that degenerate kernel can be fully applied. The other is an interior

problem bounded by a circular boundary. The degenerate kernel in the polar coordinates for two

subdomains is utilized for the closed-form fundamental solution. The semi-analytical formulation along

with matching boundary conditions yields six constraint equations. Instead of finding admissible wave

expansion bases, our null-field BIEM approach in conjunction with degenerate kernels have five features

over the conventional BIEM/BEM: (1) free from calculating principal values, (2) exponential convergence,

(3) elimination of boundary-layer effect, (4) meshless and (5) well-posed system. All the numerical results

are comparing well with the available results in the literature. It is interesting to find that a focusing

phenomenon is also observed in this study.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Taiwan is located in the Pacific Ring of Fire, which is an area with
a large number of earthquakes and volcanic eruptions. It results in
significant displacement amplitude on the canyon, hill, and ground
surface due to scattering and diffraction of seismic waves. Studying
the vibrational response of the soil due to earthquakes is an
important issue in this area. Based on assumptions of linear elastic,
isotropic and homogenous medium for the soil, problems of
SH-wave diffraction can be formulated to the two-dimensional
Helmholtz equation.

Regarding problems of SH-wave diffraction and scattering by the
alluvial valley and canyon, Trifunac derived analytical solutions for
semi-circular cases with alluvial and without alluvial in 1971 [2] and
1973 [3], respectively. Later, Yuan and Liao [4] employed the approach
of wave function expansion to deal with problems of SH-waves
scattered by a cylindrical canyon of circular-arc cross-section. For
the multi-layers problems, Vogt et al. [5] have employed the indirect-
ll rights reserved.

d River Engineering, National

6 2 24622192x6177;

en).
boundary element method (BEM) to solve the canyon problem of
arbitrary shape in a layered half-space. The reflection waves caused by
a hill are more complex than by a canyon from the point of wave
physics. Mathematically speaking, hill scattering is more difficult than
the canyon case due to not only its convex geometry but also its
solution space. It means that the closed-form or analytical solution is
not easy to derive. Therefore, numerical methods are required.

Numerical methods were used to solve this kind of problems
including wave function expansion method [6–8], BIEM/BEM [1],
hybrid method [9] and spectral-element method (SEM) [10]. For the
boundary element methods (BEM), direct [11,12] and indirect for-
mulations [13] have been employed. Regarding the fundamental
solution, Kawase [14] used the discrete wave number Green’s function
in BEM. For the conventional BEM, the closed-form fundamental
solutions is utilized. Chen and his coworkers employed the degenerate
kernel for the fundamental solution and proposed the null-field integral
equation approach. To consider the complex shape of canyon or hill,
hybrid method and SEM are flexible to solve this problem. The main
point to care about for the wave function expansion method is the
selection of completeness of the wave function base. As quoted by
Tsaur and Chang [6] ‘‘Unfortunately, their series solution for such a
problem is in error due to unsuitable connection between the domain
decomposition and the expression of corresponding wavefield.’’; this
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Fig. 1. Decomposition of scattering problem with semi-circular topography.

(a) Seismic analysis for a hill scattering and (b) harbor resonance and

electromagnetics.

Fig. 2. Decomposition of the semi-circular hill scattering problem. (a) Original

problem, (b) a half-plane subject to traction free B.C. along the horizontal ground

surface, (c) a circular region, (d) an infinite plane and (e) an infinite plane containing

a circular hole.
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pointed out that finding admissible bases is important. This is the
reason why Lee et al. [15] improved the analytical wave series solution
of Yuan and Men’s [7] and Yuan and Liao’s [8] papers to take care of the
stress singularity on the rim of the hill. A convenient criterion of
completeness was mentioned by Sánchez-Sesma et al. [16]. The
expansion can converge uniformly if Rayleigh hypothesis is satisfied.

In 2008, Chen et al. [1] employed the null-field BIEM to solve SH-
wave diffraction problems by multiple semi-circular alluvial
valleys. Due to the circular geometry, Chen and his coworkers
naturally employed the null-field BIEM in conjunction with
degenerate kernels and Fourier series. Therefore, their proposed
approach is a semi-analytical approach. The expansion of closed-
form fundamental solution is also one kind of addition theorem
that has been widely used in the approach of wave function
expansion. Besides, five features over the conventional BIEM/
BEM: (1) free from calculating principal values, (2) exponential
convergence, (3) elimination of boundary-layer effect, (4) meshless
and (5) well-posed system, were demonstrated. A large amount of
work to demonstrate the five advantages have been done by Chen
and his coworkers for Laplace [17], Helmholtz [18], biharmonic
[19] and bittelmholtz [20] problems.

No matter what approach is used, a benchmark example to
demonstrate the validity of numerical approaches is required. For
hill scattering cases, three popular examples, semi-circular hill [7],
Gaussian hill [21] and half-sine hill [22], have been widely used. For
simplicity, a semi-circular hill is our focus by testing our formula-
tion. To deal with this problem, the idea of domain decomposition
was used in earthquake, ocean and electrical engineering. It is
interesting to find that earthquake engineers always cut the
circular arc to have a circular region as the second domain [7],
as shown in Fig. 1(a). In harbor resonance [23] and electromag-
netics [24], a straight line is introduced to separate into two
regions, as shown in Fig. 1b.

Focusing effect in optics, acoustics and electromagnetics has
been noticed, but only a little in elastic wave was recorded. Tsaur
and Chang [6] employed the wave function expansion approach to
find the focusing behavior for the shallow circular arc hill in both
time and frequency domains. The maximum response may occur
beneath the hill boundary, which may cause failure for under-
ground structures. In this paper, we also have an interest to search
for the possible focusing in the semi-circular hill.

Accordingly, we aim to extend the approach to deal with SH-
wave diffraction problems by a semi-circular hill. Instead of finding
admissible wave function expansion bases, we construct six
constraint equations from the null-field BIE formulations and
matching boundary conditions. Numerical results will be com-
pared with the available results in the literature.
2. Problem statement

A scattering problem subject to a SH wave impinging on a semi-
circular hill is shown in Fig. 2(a). The material property of the soil is
assumed to be linear elastic, isotropic and homogenous. Therefore, the
governing equation of the anti-plane motion is the two-dimensional
Helmholtz equation as follows:

ðr
2
þk2ÞuðxÞ ¼ 0, xAD, ð1Þ

wherer2 is the Laplacian operator, k is the shear wave number, u(x) is
the anti-plane displacement of the semi-circular hill, x is the field point
and D is the domain of interest. The two components of the field point x
for the Cartesian and polar coordinates are (x,y) and (r,f), respectively.
The boundary condition is the traction-free boundary condition as
shown below:

tðxÞ ¼ mtðxÞ ¼ m @uðxÞ

@nx
¼ 0, xAB, ð2Þ

where t(x) is the traction along the boundary, t(x) is the normal
derivative of u(x), m is the shear modulus, nx denotes the unit outward
normal vector at the field point and B is the boundary. Besides, the
traction free boundary condition can be represented by using the polar
coordinates as shown below:

tðr,fÞ ¼ m @uðr,fÞ
@r ¼ 0, r¼ a, 0rfrp, ð3Þ

tðr,fÞ ¼ m 1

r cosðfÞ
@uðr,fÞ
@f

¼ 0, r4a, f¼ 0 or p, ð4Þ

where a is the radius of the semi-circular hill.
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The incident plane SH wave is expressed as

uIðxÞ ¼ A0eikðxcosðaÞþysinðaÞÞ, ð5Þ

where A0 is the amplitude of the SH wave and a is the
incident angle.
3. Dual boundary integral formulations and degenerate
kernels

Introducing the degenerate kernels, the collocation point can be
located on the real boundary without the need of calculating the
principal value. Therefore, the representations of conventional
integral equations including the boundary point can be written as

2puðxÞ ¼

Z
B

Tðs,xÞuðsÞdBðsÞ�

Z
B

Uðs,xÞtðsÞdBðsÞ, xAD [ B, ð6Þ

2ptðxÞ ¼

Z
B

Mðs,xÞuðsÞdBðsÞ�

Z
B

Lðs,xÞtðsÞdBðsÞ, xAD [ B, ð7Þ

and

0¼

Z
B

Tðs,xÞuðsÞdBðsÞ�

Z
B

Uðs,xÞtðsÞdBðsÞ, xADc [ B, ð8Þ

0¼

Z
B

Mðs,xÞuðsÞdBðsÞ�

Z
B

Lðs,xÞtðsÞdBðsÞ, xADc [ B, ð9Þ

where s is the source point, Dc is the complementary domain and
the kernel function U(s,x) is the fundamental solution that satisfies

ðr
2
þk2ÞUðs,xÞ ¼ 2pdðx�sÞ, ð10Þ

in which d(x�s) denotes the Dirac-delta function. It is noted that
the four kernels in Eqs. (6)–(9) should be chosen for the corre-
sponding degenerate kernels. The other kernel functions, T(s,x),
L(s,x) and M(s,x), are defined by

Tðs,xÞ ¼
@Uðs,xÞ

@ns
, ð11Þ

Lðs,xÞ ¼
@Uðs,xÞ

@nx
, ð12Þ

Mðs,xÞ ¼
@2Uðs,xÞ

@ns@nx
, ð13Þ

where ns denotes the unit outward normal vector at the source
point. It is noted that Eqs. (6)–(9) can contain the boundary point
(x-B) since the kernel functions (U, T, L and M) are expressed in
terms of various degenerate kernels that will be elaborated on later
in Eqs. (19)–(22).

The closed-form fundamental solution as previously mentioned
is

Uðs,xÞ ¼�
ipHð1Þ0 ðkrÞ

2
, ð14Þ

where r�9s�x9 is the distance between the source point and the
field point and Hð1Þ0 is the zeroth-order Hankel function of the first
kind. Based on the property of separation variables in the polar
coordinates, the closed-form fundamental solution U(s,x) of
Eq. (14), other kernel functions, T(s,x) L(s,x), and M(s,x), can be
expressed as

Uðs,xÞ ¼

UEðs,xÞ ¼ lim
N-1

UE
Nðs,xÞ, rZR,

UIðs,xÞ ¼ lim
N-1

UI
Nðs,xÞ, roR,

8><
>: ð15Þ
Tðs,xÞ ¼

TEðs,xÞ ¼ lim
N-1

TE
Nðs,xÞ, r4R,

TIðs,xÞ ¼ lim
N-1

TI
Nðs,xÞ, roR,

8><
>: ð16Þ

Lðs,xÞ ¼

LEðs,xÞ ¼ lim
N-1

LE
Nðs,xÞ, r4R,

LIðs,xÞ ¼ lim
N-1

LI
Nðs,xÞ, roR,

8><
>: ð17Þ

Mðs,xÞ ¼

MEðs,xÞ ¼ lim
N-1

ME
Nðs,xÞ, rZR,

MIðs,xÞ ¼ lim
N-1

MI
Nðs,xÞ, roR,

8><
>: ð18Þ

where UE
Nðs,xÞ, UI

Nðs,xÞ, TE
Nðs,xÞ, TI

Nðs,xÞ, LE
Nðs,xÞ, LI

Nðs,xÞ, ME
Nðs,xÞ and

MI
Nðs,xÞ are degenerate kernels as shown below:

UE
Nðs,xÞ ¼ �pi

2

XN

m ¼ 0

emJmðkRÞHð1Þm ðkrÞcosðmðy�fÞÞ, rZR,

UI
Nðs,xÞ ¼ �pi

2

XN

m ¼ 0

emJmðkrÞHð1Þm ðkRÞcosðmðy�fÞÞ, roR,

8>>>>><
>>>>>:

ð19Þ

TE
Nðs,xÞ ¼ �pki

2

XN

m ¼ 0

emJmu ðkRÞHð1Þm ðkrÞcosðmðy�fÞÞ, r4R,

TI
Nðs,xÞ ¼ �pki

2

XN

m ¼ 0

emJmðkrÞHu
ð1Þ
m ðkRÞcosðmðy�fÞÞ, roR,

8>>>>><
>>>>>:

ð20Þ

LE
Nðs,xÞ ¼ �pki

2

XN

m ¼ 0

emJmðkRÞHu
ð1Þ
m ðkrÞcosðmðy�fÞÞ, r4R,

LI
Nðs,xÞ ¼ �pki

2

XN

m ¼ 0

emJumðkrÞHð1Þm ðkRÞcosðmðy�fÞÞ, roR,

8>>>>><
>>>>>:

ð21Þ

ME
Nðs,xÞ ¼ �pk2 i

2

XN

m ¼ 0

emJmu ðkRÞHu
ð1Þ
m ðkrÞcosðmðy�fÞÞ, rZR,

MI
Nðs,xÞ ¼ �pk2 i

2

XN

m ¼ 0

emJmu ðkrÞHu
ð1Þ
m ðkRÞcosðmðy�fÞÞ, roR,

8>>>>><
>>>>>:

ð22Þ

in which (R, y) are the polar coordinates of the source point s, Jm is
the mth-order Bessel function of the first kind and em is the
Neumann factor,

em ¼
1, m¼ 0,

2, m¼ 1, 2,:::,1:

(
ð23Þ
4. Decomposition of the problem and six constraints

4.1. Decomposition of the problem

In order to fully utilize the semi-analytical property of the null-
field BIEM for solving boundary value problems containing circular
boundaries, the original problem of a semi-circular hill is divided
into two regions as shown in Fig. 2(a), where G and H denote the
horizontal ground surface and semi-circular hill border, respec-
tively. A half-plane region (Region I) is shown in Fig. 2(b) and the
other is an enclosed region bounded by the circular boundary
(Region II) as shown in Fig. 2(c). In Fig. 2(b), a half-plane with an
artificial boundary (G) can be imbedded to an infinite. Then, it can
be decomposed into an infinite plane with incident and reflective
waves and an infinite plane containing a circular hole that satisfies
the specified boundary condition as shown in Fig. 2(d) and (e),
respectively.
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4.2. Expansion of boundary density

To fully utilize the geometry of circular boundary, the boundary
displacement u(s) and boundary normal stress t(s) along the
circular boundary can be approximated by employing the Fourier
series. Therefore, we obtain

uSðsÞ ¼ uSðyÞ ¼ aS
0þ

X1
n ¼ 1

ðaS
ncosnyþbS

nsinnyÞ, ð24Þ

tSðsÞ ¼ mtSðsÞ ¼ mtSðyÞ ¼ m pS
0þ

X1
n ¼ 1

ðpS
ncosnyþqS

nsinnyÞ

 !
, ð25Þ

uHðsÞ ¼ uHðyÞ ¼ aH
0 þ

X1
n ¼ 1

ðaH
n cosnyþbH

n sinnyÞ, ð26Þ

tHðsÞ ¼ mtHðsÞ ¼ mtHðyÞ ¼ m pH
0 þ

X1
n ¼ 1

ðpH
n cosnyþqH

n sinnyÞ

 !
, ð27Þ

where aS
0, aS

n, bS
n, pS

0, pS
n, qS

n aH
0 , aH

n , bH
n , pH

0 , pH
n and qH

n are the Fourier
coefficients; the superscripts ‘‘S’’ and ‘‘H’’ denote the regions I in
Fig. 2(e) and II in Fig. 2(c), respectively. In the real computation,
only the finite 2M+1 terms are truncated in the summation of
Eqs. (24)–(27).

4.3. Formulations for each region and matching of boundary

conditions

To formulate the original problem after decomposition, six
equations are obtained from BIEs and matching of BCs.

4.3.1. Exterior problem using the null-field BIEM

For the exterior problem containing a circular hole subject to the
specified boundary condition as shown in Fig. 2(e) using the null-
field BIEM for the boundary point in Eq. (8), we haveZ

G[Gu
½TIðs,xÞuSðsÞ�UIðs,xÞtSðsÞ�dBðsÞ ¼ 0, xAG [ Gu ð28Þ

along boundaries G [ Gu.

4.3.2. Interior problem using the null-field BIEM

For the null-field BIEM of the circular domain in Fig. 2(c), we
have the null-field BIE for the boundary point of region II:Z

H[H
½TEðs,xÞuHðsÞ�UEðs,xÞtHðsÞ�dBðsÞ ¼ 0, xAH [ H ð29Þ

along boundaries H [ H

4.3.3. Continuity condition and equilibrium condition on the artificial

interface

For the continuity condition on the artificial interface, we have

uIðfÞþuRðfÞþuSðfÞ ¼ uHðfÞ, prfr2p, ð30Þ

�ðtIðfÞþtRðfÞþtSðfÞÞ ¼ tHðfÞ, prfr2p, ð31Þ

for the displacement and equilibrium condition of stress, respectively.

4.3.4. Boundary condition on the hill border

The hill border boundary (H) is subject to the boundary condition
of traction free (Neumann type) in Eq. (3) as shown below:

tHðfÞ ¼ 0, 0rfrp: ð32Þ

4.3.5. Boundary condition on the horizontal ground surface

The half-plane with a horizontal ground surface boundary is
also subject to the boundary condition of traction free in Eq. (4) as
shown below:

m @uSðxÞ

@y
¼ m

Z
G[Gu

@TEðs,xÞ

@y
uSðsÞ�

@UEðs,xÞ

@y
tSðsÞ

� �
dBðsÞ ¼ 0, xAG,

ð33Þ

where qUE(s,x)/qy and qTE(s,x)/qy are shown below:

@UEðs,xÞ

@y
¼ sinðfÞ

@UEðs,xÞ

@r
þ

1

r
cosðfÞ

@UEðs,xÞ

@f
, ð34Þ

@TEðs,xÞ

@y
¼ sinðfÞ

@TEðs,xÞ

@r
þ

1

r
cosðfÞ

@TEðs,xÞ

@f
, ð35Þ

in which @UE(s,x)/@r, @UE(s,x)/@f, @TE(s,x)/@r and @TE(s,x)/@f can be
found in the Appendix.
5. Discretization to a linear algebraic equation

5.1. Exterior and interior problems using the null-field BIEM

In order to calculate the Fourier coefficients, 2M+1 boundary
nodes for the circular boundary are needed, Eqs. (28) and (29) are
discretized to

½TI
�ð2Mþ1Þ�ð2Mþ1Þfu

Sgð2Mþ1Þ�1�½U
I
�ð2Mþ1Þ�ð2Mþ1Þft

Sgð2Mþ1Þ�1

¼ f0gð2Mþ1Þ�1, ð36Þ

½TE
�ð2Mþ1Þ�ð2Mþ1Þfu

Hgð2Mþ1Þ�1�½U
E
�ð2Mþ1Þ�ð2Mþ1Þft

Hgð2Mþ1Þ�1

¼ f0gð2Mþ1Þ�1, ð37Þ

where [UI], [TI], [UE] and [TE] are the influence matrices with a
dimension of 2M+1 by 2M+1; {uS}, {tS}, {uH} and {tH} denote the
vectors of uS(s), tS(s), uH(s) and tS(s) for the generalized coordinates
of Fourier coefficients with a dimension of 2M+1 by 1 as shown
below:

fuSg ¼ aS
0 aS

1 aS
2 � � � aS

M bS
1 bS

2 � � � bS
M

D ET
, ð38Þ

ftSg ¼ pS
0 pS

1 pS
2 � � � pS

M qS
1 qS

2 � � � qS
M

D ET
, ð39Þ

fuHg ¼ aH
0 aH

1 aH
2 � � � aH

M bH
1 bH

2 � � � bH
M

D ET
, ð40Þ

ftHg ¼ pH
0 pH

1 pH
2 � � � pH

M qH
1 qH

2 � � � qH
M

D ET
: ð41Þ

After uniformly collocating the points along the circular bound-
ary, the influence matrices can be written as

½U� ¼

U0cðf1Þ U1cðf1Þ � � � UMcðf1Þ U1sðf1Þ � � � UMsðf1Þ

U0cðf2Þ U1cðf2Þ � � � UMcðf2Þ U1sðf2Þ � � � UMsðf2Þ

U0cðf3Þ U1cðf3Þ � � � UMcðf3Þ U1sðf3Þ � � � UMsðf3Þ

^ ^ & ^ ^ & ^

U0cðf2MÞ U1cðf2MÞ � � � UMcðf2MÞ U1sðf2MÞ � � � UMsðf2MÞ

U0cðf2Mþ1Þ U1cðf2Mþ1Þ � � � UMcðf2Mþ1Þ U1sðf2Mþ1Þ � � � UMsðf2Mþ1Þ

2
6666666664

3
7777777775

,

ð42Þ

½T� ¼

T0cðf1Þ T1cðf1Þ � � � TMcðf1Þ T1sðf1Þ � � � TMsðf1Þ

T0cðf2Þ T1cðf2Þ � � � TMcðf2Þ T1sðf2Þ � � � TMsðf2Þ

T0cðf3Þ T1cðf3Þ � � � TMcðf3Þ T1sðf3Þ � � � TMsðf3Þ

^ ^ & ^ ^ & ^

T0cðf2MÞ T1cðf2MÞ � � � TMcðf2MÞ T1sðf2MÞ � � � TMsðf2MÞ

T0cðf2Mþ1Þ T1cðf2Mþ1Þ � � � TMcðf2Mþ1Þ T1sðf2Mþ1Þ � � � TMsðf2Mþ1Þ

2
6666666664

3
7777777775
:

ð43Þ
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Although both matrices in Eqs. (42) and (43) are not sparse, it is
found that the higher-order harmonics is considered, and the smaller
influence coefficients in numerical experiments are obtained. It is noted
that the superscript ‘‘0s’’ in Eqs. (42) and (43) disappears since sin(0y).
The elements of [U] and [T] are defined, respectively, as

UncðfLÞ ¼

Z 2p

0
Uðs,xLÞcosðnyÞady, ð44Þ

UnsðfLÞ ¼

Z 2p

0
Uðs,xLÞsinðnyÞady, ð45Þ

TncðfLÞ ¼

Z 2p

0
Tðs,xLÞcosðnyÞady, ð46Þ

TnsðfLÞ ¼

Z 2p

0
Tðs,xLÞsinðnyÞady, ð47Þ

where n¼ 0,1,2,. . ., M, n¼ 1,2,. . ., M and L¼ 1,2,. . ., 2Mþ1, and
fL is the polar angle of the collocation point xL.
UE
y

h i
¼

U0c
y ðf1Þ U1c

y ðf1Þ � � � UMc
y ðf1Þ U1s

y ðf1Þ � � � UMs
y ðf1Þ

U0c
y ðf2Þ U1c

y ðf2Þ � � � UMc
y ðf2Þ U1s

y ðf2Þ � � � UMs
y ðf2Þ

U0c
y ðf3Þ U1c

y ðf3Þ � � � UMc
y ðf3Þ U1s

y ðf3Þ � � � UMs
y ðf3Þ

^ ^ & ^ ^ & ^

U0c
y ðfNhgs�1Þ U1c

y ðfNhgs�1Þ � � � UMc
y ðfNhgs�1Þ U1s

y ðfNhgs�1Þ � � � UMs
y ðfNhgs�1Þ

U0c
y ðfNhgs

Þ U1c
y ðfNhgs

Þ � � � UMc
y ðfNhgs

Þ U1s
y ðfNhgs

Þ � � � UMs
y ðfNhgs

Þ

2
66666666664

3
77777777775

, ð56Þ

½TE
y� ¼

T0c
y ðf1Þ T1c

y ðf1Þ � � � TMc
y ðf1Þ T1s

y ðf1Þ � � � TMs
y ðf1Þ

T0c
y ðf2Þ T1c

y ðf2Þ � � � TMc
y ðf2Þ T1s

y ðf2Þ � � � TMs
y ðf2Þ

T0c
y ðf3Þ T1c

y ðf3Þ � � � TMc
y ðf3Þ T1s

y ðf3Þ � � � TMs
y ðf3Þ

^ ^ & ^ ^ & ^

T0c
y ðfNhgs�1Þ T1c

y ðfNhgs�1Þ � � � TMc
y ðfNhgs�1Þ T1s

y ðfNhgs�1Þ � � � TMs
y ðfNhgs�1Þ

T0c
y ðfNhgs

Þ T1c
y ðfNhgs

Þ � � � TMc
y ðfNhgs

Þ T1s
y ðfNhgs

Þ � � � TMs
y ðfNhgs

Þ

2
66666666664

3
77777777775

, ð57Þ
5.2. Continuity condition on the artificial interface

Matching the interface conditions at the artificial interface
(G or H ), Eqs. (30) and (31) can be rewritten as

uSðfÞ�uHðfÞ ¼�ðuIðfÞþuRðfÞÞ, prfr2p, ð48Þ

tSðfÞþtHðfÞ ¼ �ðtIðfÞþtRðfÞÞ, prfr2p, ð49Þ

by collocating Nai nodes, and we have

½Q ai�Nai�ð2Mþ1Þfu
Sgð2Mþ1Þ�1�½Q ai�Nai�ð2Mþ1Þfu

Hgð2Mþ1Þ�1 ¼�fuIþuRgNai�1, ð50Þ

½Q ai�Nai�ð2Mþ1Þft
Sgð2Mþ1Þ�1þ½Q ai�Nai�ð2Mþ1Þft

Hgð2Mþ1Þ�1 ¼�f tIþtRgNai�1,

ð51Þ

where Nai is the number of boundary nodes on the artificial
interface as shown in Fig. 3 and [Qai] is defined by

½Q ai� ¼

1 cosð1f1Þ � � � cosðMf1Þ sinð1f1Þ � � � sinðMf1Þ

1 cosð1f2Þ � � � cosðMf2Þ sinð1f2Þ � � � sinðMf2Þ

^ ^ & ^ ^ & ^

1 cosð1fNai�1Þ � � � cosðMfNai�1Þ sinð1fNai�1Þ � � � sinðMfNai�1Þ

1 cosð1fNai
Þ � � � cosðMfNai

Þ sinð1fNai
Þ � � � sinðMfNai

Þ

2
6666664

3
7777775

Nai�ð2Mþ1Þ

:

ð52Þ
5.3. Boundary condition on the hill border
Distributing Nhb collocation points at the hill border of Region II
in Eq. (32), we have

½Q hb�Nhb�ð2Mþ1Þft
Hgð2Mþ1Þ�1 ¼�f0gNhb�1, ð53Þ

where Nhb is the number of collocation points on the hill border (H)
as shown in Fig. 3 and [Qhb] is

½Q hb� ¼

1 cosð1f1Þ � � � cosðMf1Þ sinð1f1Þ � � � sinðMf1Þ

1 cosð1f2Þ � � � cosðMf2Þ sinð1f2Þ � � � sinðMf2Þ

^ ^ & ^ ^ & ^

1 cosð1fNhb�1Þ � � � cosðMfNhb�1Þ sinð1fNhb�1Þ � � � sinðMfNhb�1Þ

1 cosð1fNhb
Þ � � � cosðMfNhb

Þ sinð1fNhb
Þ � � � sinðMfNhb

Þ

2
6666664

3
7777775

Nhb�ð2Mþ1Þ

:

ð54Þ

5.4. Boundary condition on the horizontal ground surface

Collocating Nhgs nodes to match the traction free boundary
conditions along the horizontal ground surface in Eq. (33), we have

½TE
y�Nhgs�ð2Mþ1Þfu

Sgð2Mþ1Þ�1�½U
E
y�Nhgs�ð2Mþ1Þft

Sgð2Mþ1Þ�1 ¼ f0gNhgs�1,

ð55Þ

where
where Nhgs is the number of collocation points on the horizontal
ground surface (G) as shown in Fig. 3.

Assembling the matrices from the six equations, Eqs. (36), (37),
(50), (51), (53) and (55), we have

TS
�US 0 0

0 0 TH
�UH

Q ai 0 �Q ai 0

0 Q ai 0 Q ai

0 0 0 Q hb

TS
y �US

y 0 0

2
66666666664

3
77777777775
ð8Mþ4Þ�ð8Mþ4Þ

uS

tS

uH

tH

8>>><
>>>:

9>>>=
>>>;
ð8Mþ4Þ�1

¼

0

0

�uI�uR

�tI�tR

0

0

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
ð8Mþ4Þ�1

:

ð58Þ

where 2Nai+Nhb+Nhgs¼4M+2. According to the linear algebraic equa-
tion in Eq. (58), all the Fourier coefficients can be easily obtained.
6. A numerical example

Here, we consider a semi-circular hill subject to a SH wave as
shown in Fig. 2(a). The dimensionless frequency Z is defined as

Z¼ oa

pc
¼

ka

p ¼
2a

l
, ð59Þ



Fig. 4. Surface displacement amplitudes versus x/a for the dimensionless frequency

Z¼1. (a) a¼901 and 601 and (b) a¼301and 01.
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problem.
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whereo is the angular frequency, c is the velocity of shear wave and l
is the shear wave length. The displacement amplitude is an important
index for the earthquake engineering. If the shear modulus ism¼1 and
amplitude of incident plane SH-wave is A0¼1, the responses at
different locations represent amplifications of the incident plane SH-
wave wave. The displacement amplitude is defined by

9u9¼
9uIþuRþuS9¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ReðuIþuRþuSÞ�

2þ½ImðuIþuRþuSÞ�
2

q
, for Region I,

9uH9¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ReðuHÞ�

2þ½ImðuHÞ�
2

q
, for Region II,

8><
>:

ð60Þ

where Re(U) and Im(U) are the real and imaginary parts of the
displacement, respectively. Fig. 4(a) and (b) show the surface displace-
ment amplitude versus x/a for the dimensionless frequency Z¼1, and
the corresponding position of the hill border is within the range
x/a¼�1.0�1.0 (bold line). Fig. 4(a) and (b) show the displacement
amplitude versus x/a for the incident angle of a¼01, 301, 601 and 901
and the results of Shyu [25] and Tsaur and Chang [6] are also plotted for
comparisons. Fig. 5 shows the surface displacement amplitude versus
x/a

0
-4 -3 -2 -1 0 1 2 3 4

1

2

3

4

5

|u|

�=90

Fig. 5. Displacement amplitudes versus x/a for the incident angle a¼901.
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Fig. 6. Displacement amplitudes versus x/a for the dimensionless frequency Z¼3.
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x/a for the dimensionless frequencies Z¼0.5 and 2 subject to the SH
wave for incident angle a¼901 and a good agreement is made. Fig. 6
shows the surface displacement amplitude versus x/a for Z¼3 and the
incident angles ofa¼901anda¼301. Besides, the surface displacement
amplitudes at the specified location of hill border versus Z were
compared with those of Shyu [25] and Tsaur and Chang [6] as shown in
Figs. 7 and 8. It is noted that Tsaur and Chang employed the approach
wave function expansion in conjunction with the region matching
technique. Shyu’s results were obtained using the hybrid method.
Acceptable results are obtained.

In Fig. 9, it is interesting to find that high displacement amplitude is
observed in a localized area for the case of incident angle of 901 and
Z¼3. This phenomenon is the so-called the focusing effect as well as in
optics and acoustics. A similar phenomenon for a shallow circular hill
has been found by Tsaur and Chang [6] in both time and frequency
domains.
7. Conclusions

In this paper, the SH-wave problem scattered by a semi-circular
hill was revisited. By taking free body, the original problem can be
decomposed into two subdomains. For the half-plane with a half
circular arc, it is designed to be imbedded in an infinite domain
with a full circular boundary. Due to the property of a full circular
boundary, we naturally employed the null-field BIEM in conjunc-
tion with degenerate kernel and Fourier series. After constructing
six constraint equations through two subdomains and four bound-
ary conditions instead of selecting admissible wave function bases,
a linear algebraic equation is obtained. Then, unknown Fourier
coefficients were determined solving the linear algebraic equation.
To test the validity of our formulation, our results were compared
well with those of Shyu, and Tsaur and Chang in the literature.
Besides, a focusing effect was also observed.
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Appendix

Degenerate kernels of qUE(s,x)/@r, @UE(s,x)/@f, @TE(s,x)/@r and
@TE(s,x)/@f for the polar coordinates are given below:

@Uðs,xÞ

@r ¼

@UEðs,xÞ
@r ¼ lim

N-1

�pki
2

XN

m ¼ 0

emJmðkRÞHu
ð1Þ
m ðkrÞcosðmðy�fÞÞ, rZR,

@UI ðs,xÞ
@r ¼ lim

N-1

�pki
2

XN

m ¼ 0

emJmu ðkrÞHð1Þm ðkRÞcosðmðy�fÞÞ, roR,

8>>>>><
>>>>>:

ðA:1Þ

@Uðs,xÞ

@f
¼

@UEðs,xÞ
@f ¼ lim

N-1

�pi
2

XN

m ¼ 0

memJmðkRÞHð1Þm ðkrÞsinðmðy�fÞÞ, rZR,

@UI ðs,xÞ
@f ¼ lim

N-1

�pi
2

XN

m ¼ 0

memJmðkrÞHð1Þm ðkRÞsinðmðy�fÞÞ, roR,

8>>>>><
>>>>>:

ðA:2Þ

@Tðs,xÞ

@r ¼

@TEðs,xÞ
@r ¼ lim

N-1

�pk2i
2

XN

m ¼ 0

emJmu ðkRÞHu
ð1Þ
m ðkrÞcosðmðy�fÞÞ, r4R,

@TI ðs,xÞ
@r ¼ lim

N-1

�pk2i
2

XN

m ¼ 0

emJmu ðkrÞHu
ð1Þ
m ðkRÞcosðmðy�fÞÞ, roR,

8>>>>><
>>>>>:

ðA:3Þ

@Tðs,xÞ

@f
¼

@TEðs,xÞ
@f ¼ lim

N-1

�pki
2

XN

m ¼ 0

memJmu ðkRÞHð1Þm ðkrÞsinðmðy�fÞÞ, r4R,

@TIðs,xÞ
@f ¼ lim

N-1

�pki
2

XN

m ¼ 0

memJmðkrÞHu
ð1Þ
m ðkRÞsinðmðy�fÞÞ, roR:

8>>>>><
>>>>>:

ðA:4Þ
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