SH-wave diffraction by a semi-circular hill revisited: A null-field boundary integral equation method using degenerate kernels

Jeng-Tzong Chen a,b,*, Jia-Wei Lee a, Chine-Feng Wu a, I-Lin Chen c

a Department of Harbor and River Engineering, National Taiwan Ocean University, Keelung, Taiwan
b Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, Keelung, Taiwan
c Department of Naval Architecture, National Kaohsiung Marine University, Kaohsiung, Taiwan

ARTICLE INFO

Article history:
Received 8 September 2010
Received in revised form 28 November 2010
Accepted 1 December 2010
Available online 26 January 2011

Keywords:
SH-wave
Diffraction
Semi-circular hill
Null-field BIEM
Degenerate kernel

ABSTRACT

Following the success of seismic analysis of a canyon [1], the problem of SH-wave diffraction by a semi-circular hill is revisited using the null-field boundary integral equation method (BIEM). To fully utilize the analytical property in the null-field boundary integral equation approach in conjunction with degenerate kernels for solving the semi-circular hill scattering problem, the problem is decomposed into two regions to produce circular boundaries using the technique of taking free body. One is the half-plane problem containing a semi-circular boundary. This semi-infinite problem is imbedded in an infinite plane with an artificial full circular boundary such that degenerate kernel can be fully applied. The other is an interior problem bounded by a circular boundary. The degenerate kernel in the polar coordinates for two subdomains is utilized for the closed-form fundamental solution. The semi-analytical formulation along with matching boundary conditions yields six constraint equations. Instead of finding admissible wave expansion bases, our null-field BIEM approach in conjunction with degenerate kernels have five features over the conventional BIEM/BEM: (1) free from calculating principal values, (2) exponential convergence, (3) elimination of boundary-layer effect, (4) meshless and (5) well-posed system. All the numerical results are comparing well with the available results in the literature. It is interesting to find that a focusing phenomenon is also observed in this study.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Taiwan is located in the Pacific Ring of Fire, which is an area with a large number of earthquakes and volcanic eruptions. It results in significant displacement amplitude on the canyon, hill, and ground surface due to scattering and diffraction of seismic waves. Studying the vibrational response of the soil due to earthquakes is an important issue in this area. Based on assumptions of linear elastic, isotropic and homogeneous medium for the soil, problems of SH-wave diffraction can be formulated to the two-dimensional Helmholtz equation.

Regarding problems of SH-wave diffraction and scattering by the alluvial valley and canyon, Trifunac derived analytical solutions for semi-circular cases with alluvial and without alluvial in 1971 [2] and 1973 [3], respectively. Later, Yuan and Liao [4] employed the approach of wave function expansion to deal with problems of SH-waves scattered by a cylindrical canyon of circular-arc cross-section. For the multi-layers problems, Vogt et al. [5] have employed the indirect-boundary element method (BEM) to solve the canyon problem of arbitrary shape in a layered half-space. The reflection waves caused by a hill are more complex than by a canyon from the point of wave physics. Mathematically speaking, hill scattering is more difficult than the canyon case due to not only its convex geometry but also its solution space. It means that the closed-form or analytical solution is not easy to derive. Therefore, numerical methods are required.

Numerical methods were used to solve this kind of problems including wave function expansion method [6–8], BIEM/BEM [1], hybrid method [9] and spectral-element method (SEM) [10]. For the boundary element methods (BEM), direct [11,12] and indirect formulations [13] have been employed. Regarding the fundamental solution, Kawase [14] used the discrete wave number Green’s function in BEM. For the conventional BEM, the closed-form fundamental solutions is utilized. Chen and his coworkers employed the degenerate kernel for the fundamental solution and proposed the null-field integral equation approach. To consider the complex shape of canyon or hill, hybrid method and SEM are flexible to solve this problem. The main point to care about for the wave function expansion method is the selection of completeness of the wave function base. As quoted by Tsaur and Chang [6] “Unfortunately, their series solution for such a problem is in error due to unsuitable connection between the domain decomposition and the expression of corresponding wavefield.”; this
pointed out that finding admissible bases is important. This is the reason why Lee et al. [15] improved the analytical wave series solution and Chang [6] employed the wave function expansion approach to solve the problem. Besides, five features over the conventional BIEM/BEM: (1) free from calculating principal values, (2) exponential convergence, (3) elimination of boundary-layer effect, (4) meshless and (5) well-posed system, were demonstrated. A large amount of work to demonstrate the five advantages have been done by Chen and his coworkers for Laplace [17], Helmholtz [18], biharmonic [19] and bittelhelmoltz [20] problems.

No matter what approach is used, a benchmark example to demonstrate the validity of numerical approaches is required. For example, cases three popular examples, semi-circular hill [7], Gaussian hill [21] and half-sine hill [22], have been widely used. For simplicity, a semi-circular hill is our focus by testing our formula.

2. Problem statement

A scattering problem subject to a SH wave impinging on a semi-circular hill is shown in Fig. 2(a). The material property of the soil is assumed to be linear elastic, isotropic and homogenous. Therefore, the governing equation of the anti-plane motion is the two-dimensional Helmholtz equation as follows:

$$\nabla^2 u(x) + k^2 u(x) = 0, \quad x \in D,$$

where ∇^2 is the Laplacian operator, k is the shear wave number, $u(x)$ is the anti-plane displacement of the semi-circular hill, x is the field point and D is the domain of interest. The two components of the field point x for the Cartesian and polar coordinates are (x,y) and (ρ,ϕ), respectively. The boundary condition is the traction-free boundary condition as shown below:

$$\tau(x) = \mu \hat{t}(x) = \mu \frac{\partial u(x)}{\partial n} = 0, \quad x \in B,$$

where $\tau(x)$ is the traction along the boundary, $t(x)$ is the normal derivative of $u(x)$, μ is the shear modulus, n is the unit outward normal vector at the field point and B is the boundary. Besides, the traction free boundary condition can be represented by using the polar coordinates as shown below:

$$\tau(\rho,\phi) = \mu \frac{\partial u(\rho,\phi)}{\partial \rho} = 0, \quad \rho = a, \quad 0 \leq \phi \leq \pi,$$

$$\tau(\rho,\phi) = \mu \frac{1}{\rho} \cos(\phi) \frac{\partial u(\rho,\phi)}{\partial \phi} = 0, \quad \rho > a, \quad \phi = 0 \text{ or } \pi,$$

where a is the radius of the semi-circular hill.
The incident plane SH wave is expressed as
\[u_s(x) = A_0 e^{i(\omega t - \alpha x)}, \quad (5) \]
where \(A_0 \) is the amplitude of the SH wave and \(\alpha \) is the incident angle.

3. Dual boundary integral formulations and degenerate kernels

Introducing the degenerate kernels, the collocation point can be located on the real boundary without the need of calculating the principal value. Therefore, the representations of conventional integral equations including the boundary point can be written as
\[2\pi u(x) = \int_B \bar{T}(s)u(s)dB(s) - \int_B U(s)\bar{t}(s)dB(s), \quad x \in D \cup B, \quad (6) \]
\[2\pi t(x) = \int_B T(s)u(s)dB(s) - \int_B L(s)\bar{t}(s)dB(s), \quad x \in D \cup B, \quad (7) \]
and
\[0 = \int_B \bar{T}(s)u(s)dB(s) - \int_B U(s)\bar{t}(s)dB(s), \quad x \in D^c \cup B, \quad (8) \]
\[0 = \int_B T(s)u(s)dB(s) - \int_B L(s)\bar{t}(s)dB(s), \quad x \in D^c \cup B, \quad (9) \]
where \(s \) is the source point, \(D^c \) is the complementary domain and the kernel function \(U(s,x) \) is the fundamental solution that satisfies
\[(\nabla^2 + k^2)U(s,x) = 2\pi \delta(x-s), \quad (10) \]
in which \(\delta(x-s) \) denotes the Dirac-delta function. It is noted that the four kernels in Eqs. (6)–(9) should be chosen for the corresponding degenerate kernels. The other kernel functions, \(T(s,x) \), \(L(s,x) \) and \(M(s,x) \), are defined by
\[T(s,x) = \frac{\partial U(s,x)}{\partial n_s}, \quad (11) \]
\[L(s,x) = \frac{\partial U(s,x)}{\partial n_k}, \quad (12) \]
\[M(s,x) = \frac{\partial^2 U(s,x)}{\partial n_s \partial n_k}, \quad (13) \]
where \(n_s \) denotes the unit outward normal vector at the source point. It is noted that Eqs. (6)–(9) can contain the boundary point \((x-B) \) since the kernel functions \((U, T, L \text{ and } M) \) are expressed in terms of various degenerate kernels that will be elaborated on later in Eqs. (19)–(22).

The closed-form fundamental solution as previously mentioned is
\[U(s,x) = \frac{i n H^{(1)}_0(kr)}{2}, \quad (14) \]
where \(r = |s-x| \) is the distance between the source point and the field point and \(H^{(1)}_0 \) is the zeroth-order Hankel function of the first kind. Based on the property of separation variables in the polar coordinates, the closed-form fundamental solution \(U(s,x) \) of Eq. (14), other kernel functions, \(T(s,x) \), \(L(s,x) \) and \(M(s,x) \), can be expressed as
\[U(s,x) = \begin{cases} \frac{U_R(s,x) = \lim_{N \to \infty} U_R^N(s,x)}{N}, & \rho > R, \\ \frac{U_L(s,x) = \lim_{N \to \infty} U_L^N(s,x)}{N}, & \rho < R, \end{cases} \quad (15) \]
\[T(s,x) = \begin{cases} \frac{T_R(s,x) = \lim_{N \to \infty} T_R^N(s,x)}{N}, & \rho > R, \\ \frac{T_L(s,x) = \lim_{N \to \infty} T_L^N(s,x)}{N}, & \rho < R, \end{cases} \quad (16) \]
\[L(s,x) = \begin{cases} \frac{L_R(s,x) = \lim_{N \to \infty} L_R^N(s,x)}{N}, & \rho > R, \\ \frac{L_L(s,x) = \lim_{N \to \infty} L_L^N(s,x)}{N}, & \rho < R, \end{cases} \quad (17) \]
\[M(s,x) = \begin{cases} \frac{M_R(s,x) = \lim_{N \to \infty} M_R^N(s,x)}{N}, & \rho > R, \\ \frac{M_L(s,x) = \lim_{N \to \infty} M_L^N(s,x)}{N}, & \rho < R, \end{cases} \quad (18) \]
where \(U_R^N(s,x), U_L^N(s,x), T_R^N(s,x), T_L^N(s,x), L_R^N(s,x), L_L^N(s,x), M_R^N(s,x) \) and \(M_L^N(s,x) \) are degenerate kernels as shown below:
\[U_R^N(s,x) = \frac{1}{2\pi} \sum_{m=0}^{N} J_m(kr)J_m(\rho)\cos(m(\theta-\phi)), \quad \rho \geq R, \quad (19) \]
\[U_L^N(s,x) = \frac{1}{2\pi} \sum_{m=0}^{N} J_m(kr)J_m(\rho)\cos(m(\theta-\phi)), \quad \rho < R, \quad (20) \]
\[T_R^N(s,x) = \frac{1}{2\pi} \sum_{m=0}^{N} J_m(kr)J_m(\rho)\cos(m(\theta-\phi)), \quad \rho > R, \quad (21) \]
\[T_L^N(s,x) = \frac{1}{2\pi} \sum_{m=0}^{N} J_m(kr)J_m(\rho)\cos(m(\theta-\phi)), \quad \rho < R, \quad (22) \]
in which \((R,0) \) are the polar coordinates of the source point \(s \), \(J_m \) is the \(m \)-th-order Bessel function of the first kind and \(\varepsilon_m \) is the Neumann factor,
\[\varepsilon_m = \begin{cases} 1, & m = 0, \\ 2, & m = 1, 2, \ldots, \infty. \end{cases} \quad (23) \]

4. Decomposition of the problem and six constraints

4.1. Decomposition of the problem

In order to fully utilize the semi-analytical property of the null-field BIEM for solving boundary value problems containing circular boundaries, the original problem of a semi-circular hill is divided into two regions as shown in Fig. 2(a), where \(G \) and \(H \) denote the horizontal ground surface and semi-circular hill border, respectively. A half-plane region (Region I) is shown in Fig. 2(b) and the other is an enclosed region bounded by the circular boundary (Region II) as shown in Fig. 2(c). In Fig. 2(b), a half-plane with an artificial boundary \(\mathcal{C} \) can be imbedded to an infinite. Then, it can be decomposed into an infinite plane with incident and reflective waves and an infinite plane containing a circular hole that satisfies the specified boundary condition as shown in Fig. 2(d) and (e), respectively.
4.2. Expansion of boundary density

To fully utilize the geometry of circular boundary, the boundary displacement \(u(s) \) and boundary normal stress \(\tau(s) \) along the circular boundary can be approximated by employing the Fourier series. Therefore, we obtain:

\[
\begin{align*}
\bar{u}_i(s) &= u_i(\theta) = \bar{a}_i^0 + \sum_{n=1}^{\infty} \left(\bar{a}_n^s \cos n\theta + b_n^s \sin n\theta \right), \\
\tau_i(s) &= \mu \bar{u}_i(s) = \mu \left(\bar{a}_i^0 + \sum_{n=1}^{\infty} \left(\bar{p}_n^s \cos n\theta + \bar{q}_n^s \sin n\theta \right) \right), \\
\bar{u}_h(s) &= u_h(\theta) = \bar{a}_h^0 + \sum_{n=1}^{\infty} \left(\bar{a}_n^h \cos n\theta + b_n^h \sin n\theta \right), \\
\tau_h(s) &= \mu \bar{u}_h(s) = \mu \left(\bar{a}_h^0 + \sum_{n=1}^{\infty} \left(\bar{p}_n^h \cos n\theta + \bar{q}_n^h \sin n\theta \right) \right),
\end{align*}
\]

where \(\bar{a}_0^s, \bar{a}_n^s, \bar{b}_n^s, \bar{p}_n^s, \bar{q}_n^s, \bar{a}_0^h, \bar{a}_n^h, \bar{b}_n^h, \bar{p}_n^h, \bar{q}_n^h \) are the Fourier coefficients; the superscripts “\(S \)” and “\(H \)” denote the regions I in Fig. 2(e) and II in Fig. 2(c), respectively. In the real computation, only the finite 2\(M \)+1 terms are truncated in the summation of Eqs. (24)–(27).

4.3. Formulations for each region and matching of boundary conditions

To formulate the original problem after decomposition, six equations are obtained from BIEs and matching of BCs.

4.3.1. Exterior problem using the null-field BIE

For the exterior problem containing a circular hole subject to the specified boundary condition as shown in Fig. 2(e) using the null-field BIE for the boundary point in Eq. (8), we have:

\[
\iint_{\mathcal{C} \cup \mathcal{C}^c} \mathbf{T}(\mathbf{s}, \mathbf{x}) \bar{u}_i(s) - \mathbf{U}(\mathbf{s}, \mathbf{x}) \bar{u}_i(s) dB(s) = 0, \quad \mathbf{x} \in \mathcal{C} \cup \mathcal{C}^c
\]

along boundaries \(\mathcal{C} \cup \mathcal{C}^c \).

4.3.2. Interior problem using the null-field BIE

For the null-field BIE of the circular domain in Fig. 2(c), we have the null-field BIE for the boundary point of region II:

\[
\iint_{\mathcal{H} \cup \mathcal{H}^c} \mathbf{T}^I(\mathbf{s}, \mathbf{x}) \bar{u}_i(s) - \mathbf{U}(\mathbf{s}, \mathbf{x}) \bar{u}_i(s) dB(s) = 0, \quad \mathbf{x} \in \mathcal{H} \cup \mathcal{H}^c
\]

along boundaries \(\mathcal{H} \cup \mathcal{H}^c \).

4.3.3. Continuity condition and equilibrium condition on the artificial interface

For the continuity condition on the artificial interface, we have:

\[
\begin{align*}
\bar{u}_i(\phi) + \bar{u}_h(\phi) + \bar{u}_h(\phi) &= \bar{u}_h(\phi), \quad \pi \leq \phi \leq 2\pi, \\
-\tau_i(\phi) + \tau_h(\phi) + \tau_h(\phi) &= \tau_h(\phi), \quad \pi \leq \phi \leq 2\pi
\end{align*}
\]

for the displacement and equilibrium condition of stress, respectively.

4.3.4. Boundary condition on the hill border

The hill border boundary \(\mathcal{H} \) is subject to the boundary condition of traction free (Neumann type) in Eq. (3) as shown below:

\[
\tau_h(\phi) = 0, \quad 0 \leq \phi \leq \pi.
\]

4.3.5. Boundary condition on the horizontal ground surface

The half-plane with a horizontal ground surface boundary is also subject to the boundary condition of traction free in Eq. (4) as shown below:

\[
\mu \frac{\partial^2 u_i(x)}{\partial y^2} = \mu \int_{\mathcal{C}} \left[\frac{\partial T^I(s, x)}{\partial y} u_i(s) - \frac{\partial T^I(s, x)}{\partial y} u_i(s) - \frac{H(s)}{r(s)} dB(s) = 0, \quad x \in \mathcal{C},
\]

where \(\frac{\partial T^I(s, x)}{\partial y} \) and \(\frac{\partial T^I(s, x)}{\partial y} \) are shown below:

\[
\begin{align*}
\frac{\partial T^I(s, x)}{\partial y} &= \sin(\phi) \frac{\partial T^I(s, x)}{\partial \phi} + \frac{1}{\rho} \cos(\phi) \frac{\partial T^I(s, x)}{\partial \phi}, \\
\frac{\partial T^I(s, x)}{\partial y} &= \sin(\phi) \frac{\partial T^I(s, x)}{\partial \phi} + \frac{1}{\rho} \cos(\phi) \frac{\partial T^I(s, x)}{\partial \phi},
\end{align*}
\]

in which \(\frac{\partial T^I(s, x)}{\partial \phi}, \frac{\partial T^I(s, x)}{\partial \phi}, \frac{\partial T^I(s, x)}{\partial \phi} \) and \(\frac{\partial T^I(s, x)}{\partial \phi} \) can be found in the Appendix.

5. Discretization to a linear algebraic equation

5.1. Exterior and interior problems using the null-field BIE

In order to calculate the Fourier coefficients, 2\(M \)+1 boundary nodes for the circular boundary are needed. Eqs. (28) and (29) are discretized to:

\[
\begin{align*}
\mathbf{T}^E_{(2M+1) \times 1}(\mathbf{u}^E)_{(2M+1) \times 1} &= -\mathbf{U}^E_{(2M+1) \times 1}, \\
\mathbf{T}^E_{(2M+1) \times 1}(\mathbf{u}^E)_{(2M+1) \times 1} &= (0)_{(2M+1) \times 1},
\end{align*}
\]

where \([\mathbf{U}^E], [\mathbf{T}^E], [\mathbf{U}^I] \) and \([\mathbf{T}^I] \) are the influence matrices with a dimension of 2\(M \)+1 by 2\(M \)+1: \([\mathbf{u}^E], [\mathbf{t}^E], [\mathbf{u}^I] \) and \([\mathbf{t}^I] \) denote the vectors of \(u(s), \bar{t}(s), \bar{u}(s) \) and \(\bar{t}(s) \) for the generalized coordinates of Fourier coefficients with a dimension of 2\(M \)+1 by 1 as shown below:

\[
\begin{align*}
\mathbf{u}^E &= \left[\begin{array}{c}
\bar{a}_0^s \\
\bar{a}_1^s \\
\vdots \\
\bar{a}_M^s \\
b_1^s \\
b_2^s \\
\vdots \\
b_M^s
\end{array} \right], \\
\mathbf{t}^E &= \left[\begin{array}{c}
p_0^s \\
p_1^s \\
\vdots \\
p_M^s \\
q_1^s \\
q_2^s \\
\vdots \\
q_M^s
\end{array} \right], \\
\mathbf{u}^I &= \left[\begin{array}{c}
\bar{a}_0^h \\
\bar{a}_1^h \\
\vdots \\
\bar{a}_M^h \\
b_1^h \\
b_2^h \\
\vdots \\
b_M^h
\end{array} \right], \\
\mathbf{t}^I &= \left[\begin{array}{c}
p_0^h \\
p_1^h \\
\vdots \\
p_M^h \\
q_1^h \\
q_2^h \\
\vdots \\
q_M^h
\end{array} \right].
\end{align*}
\]

After uniformly collocating the points along the circular boundary, the influence matrices can be written as:

\[
\begin{align*}
[\mathbf{U}^E] &= \\
[\mathbf{T}^E] &= \\
[\mathbf{U}^I] &= \\
[\mathbf{T}^I] &=
\end{align*}
\]

Although both matrices in Eqs. (42) and (43) are not sparse, it is found that the higher-order harmonics is considered, and the smaller influence coefficients in numerical experiments are obtained. It is noted that the superscript “0” in Eqs. (42) and (43) disappears since $\sin(\theta)$. The elements of $[U]$ and $[T]$ are defined, respectively, as

\begin{align*}
U^m(\phi_1) &= \int_0^{2\pi} U(s|x|) \cos(m\theta) d\theta, \\
U^m(\phi_2) &= \int_0^{2\pi} U(s|x|) \sin(m\theta) d\theta, \\
T^m(\phi_1) &= \int_0^{2\pi} T(s|x|) \cos(m\theta) d\theta, \\
T^m(\phi_2) &= \int_0^{2\pi} T(s|x|) \sin(m\theta) d\theta,
\end{align*}

(44)

(45)

(46)

(47)

where $n = 0, 1, 2, \ldots$, M, $m = 1, 2, \ldots$, M and $L = 1, 2, \ldots$, $2M + 1$, and ϕ_i is the polar angle of the collocation point x_i.

$[U] = \begin{bmatrix}
U^0(\phi_1) & U^1(\phi_1) & \cdots & U^M(\phi_1) \\
U^0(\phi_2) & U^1(\phi_2) & \cdots & U^M(\phi_2) \\
U^0(\phi_3) & U^1(\phi_3) & \cdots & U^M(\phi_3) \\
& & & \\
& & & \\
& & & \\
& & & \\
\end{bmatrix}$

(56)

$[T] = \begin{bmatrix}
T^0(\phi_1) & T^1(\phi_1) & \cdots & T^M(\phi_1) \\
T^0(\phi_2) & T^1(\phi_2) & \cdots & T^M(\phi_2) \\
T^0(\phi_3) & T^1(\phi_3) & \cdots & T^M(\phi_3) \\
& & & \\
& & & \\
& & & \\
& & & \\
\end{bmatrix}$

(57)

5.3. Boundary condition on the hill border

Distributing N_hb collocation points at the hill border of Region II in Eq. (32), we have

\[[Q]_{h_b}^0 = \frac{1}{2M+1} \{ \{ t^0 \}_{2M+1} \} = -[Q]_{N_hb} \times 1, \]

(53)

where N_hb is the number of collocation points on the hill border (H) as shown in Fig. 3 and $[Q]_{h_b}$ is

\[[Q]_{h_b} = \begin{bmatrix}
1 & \cos(1\phi_1) & \sin(1\phi_1) & \sin(M\phi_1) \\
1 & \cos(1\phi_2) & \sin(1\phi_2) & \sin(M\phi_2) \\
& & & \\
1 & \cos(1\phi_{N_hb-1}) & \sin(1\phi_{N_hb-1}) & \sin(M\phi_{N_hb-1}) \\
1 & \cos(1\phi_{N_hb}) & \sin(1\phi_{N_hb}) & \sin(M\phi_{N_hb}) \\
\end{bmatrix}
\]

(54)

5.4. Boundary condition on the horizontal ground surface

Collocating N_{bg} nodes to match the traction free boundary conditions along the horizontal ground surface in Eq. (33), we have

\[[T]_{bg}^0 \{ u^0 \}_{2M+1} + [T]_{bg}^0 \{ u^0 \}_{2M+1} = -[Q]_{N_{bg}} \times 1 \]

(55)

where

\[N_{bg} = \begin{bmatrix}
1 & \cos(1\phi_1) & \sin(1\phi_1) & \sin(M\phi_1) \\
1 & \cos(1\phi_2) & \sin(1\phi_2) & \sin(M\phi_2) \\
& & & \\
& & & \\
& & & \\
& & & \\
\end{bmatrix}
\]

(56)

(57)

(58)

(59)

6. A numerical example

Here, we consider a semi-circular hill subject to a SH wave as shown in Fig. 2(a). The dimensionless frequency η is defined as

\[\eta = \frac{\omega a}{\pi c} = \frac{ka}{\lambda}. \]

(59)
where \(\omega \) is the angular frequency, \(c \) is the velocity of shear wave and \(\lambda \) is the shear wave length. The displacement amplitude is an important index for the earthquake engineering. If the shear modulus is \(\mu = 1 \) and amplitude of incident plane SH-wave is \(A_0 = 1 \), the responses at different locations represent amplifications of the incident plane SH-wave wave. The displacement amplitude is defined by

\[
|u| = \begin{cases}
|u_I + u_R + u_S| = \sqrt{\text{Re}(u_I + u_R + u_S)^2 + \text{Im}(u_I + u_R + u_S)^2}, & \text{for Region I,} \\
|u_{III}| = \sqrt{\text{Re}(u_{III})^2 + \text{Im}(u_{III})^2}, & \text{for Region II,}
\end{cases}
\]

(60)

where \(\text{Re}(\cdot) \) and \(\text{Im}(\cdot) \) are the real and imaginary parts of the displacement, respectively. Fig. 4(a) and (b) show the surface displacement amplitude versus \(x/a \) for the dimensionless frequency \(\eta = 1 \) and the corresponding position of the hill border is within the range \(x/a = 1.0 \sim 1.0 \) (bold line). Fig. 4(a) and (b) show the displacement amplitude versus \(x/a \) for the incident angle of \(\theta = 0^\circ, 30^\circ, 60^\circ \) and \(90^\circ \) and the results of Shyu [25] and Tsaur and Chang [6] are also plotted for comparisons. Fig. 5 shows the surface displacement amplitude versus
for the dimensionless frequencies $\eta = 0.5$ and 2 subject to the SH wave for incident angle $\alpha = 90^\circ$ and a good agreement is made. Fig. 6 shows the surface displacement amplitude versus x/a for $\eta = 3$ and the incident angles of $\alpha = 90^\circ$ and $\alpha = 30^\circ$. Besides, the surface displacement amplitudes at the specified location of hill border versus η were compared with those of Shyu [25] and Tsaur and Chang [6] as shown in Figs. 7 and 8. It is noted that Tsaur and Chang employed the approach wave function expansion in conjunction with the region matching technique. Shyu’s results were obtained using the hybrid method. Acceptable results are obtained.

In Fig. 9, it is interesting to find that high displacement amplitude is observed in a localized area for the case of incident angle of 90° and $\eta = 3$. This phenomenon is the so-called the focusing effect as well as in optics and acoustics. A similar phenomenon for a shallow circular hill has been found by Tsaur and Chang [6] in both time and frequency domains.

7. Conclusions

In this paper, the SH-wave problem scattered by a semi-circular hill was revisited. By taking free body, the original problem can be decomposed into two subdomains. For the half-plane with a half circular arc, it is designed to be imbedded in an infinite domain with a full circular boundary. Due to the property of a full circular boundary, we naturally employed the null-field BIEM in conjunction with degenerate kernel and Fourier series. After constructing six constraint equations through two subdomains and four boundary conditions instead of selecting admissible wave function bases, a linear algebraic equation is obtained. Then, unknown Fourier coefficients were determined solving the linear algebraic equation. To test the validity of our formulation, our results were compared well with those of Shyu, and Tsaur and Chang in the literature. Besides, a focusing effect was also observed.
Acknowledgements

Financial support from the National Science Council under Grant no. NSC97-2221-E-019-015-MY3 for the National Taiwan Ocean University is gratefully acknowledged. The authors also thank Drs. Tsaur and Chang for providing the results using the wave function expansion approach and the region matching idea. Besides, Dr. Shyu's results using the hybrid method are also appreciated.

Appendix

Degenerate kernels of \(\partial U^{f}(s,x)/\partial \rho \), \(\partial U^{f}(s,x)/\partial \phi \), \(\partial U^{f}(s,x)/\partial \rho \) and \(\partial T^{f}(s,x)/\partial \rho \) for the polar coordinates are given below:

\[
\begin{align*}
\frac{\partial U(s,x)}{\partial \rho} &= \lim_{N \to \infty} \frac{1}{2N+1} \sum_{m=0}^{N} e_{m} \left(k_{H} H_{1}^{(1)}(k_{s} r) \cos(m(\theta-\phi)) \right), \quad \rho > R, \\
\frac{\partial U(s,x)}{\partial \phi} &= \lim_{N \to \infty} \frac{1}{2N+1} \sum_{m=0}^{N} e_{m} \left(k_{H} H_{1}^{(1)}(k_{s} r) \sin(m(\theta-\phi)) \right), \quad \rho > R, \\
\frac{\partial T(s,x)}{\partial \rho} &= \lim_{N \to \infty} \frac{1}{2N+1} \sum_{m=0}^{N} m e_{m} \left(k_{H} H_{1}^{(1)}(k_{s} r) \cos(m(\theta-\phi)) \right), \quad \rho > R, \\
\frac{\partial T(s,x)}{\partial \phi} &= \lim_{N \to \infty} \frac{1}{2N+1} \sum_{m=0}^{N} m e_{m} \left(k_{H} H_{1}^{(1)}(k_{s} r) \sin(m(\theta-\phi)) \right), \quad \rho < R,
\end{align*}
\]

(A.1)

(A.2)

(A.3)

(A.4)

References

