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Abstract

The dual boundary element method is used to obtain an efficient solution of the Helmholtz equation in the presence of
geometric singularities. In particular, time-harmonic waves in a membrane which contains one or more fixed edge stringers
(or cracks) are investigated. The hypersingular integral equation is used in the procedure to ensure a unique solution for the
problem with a degenerate boundary. The method yields a solution for the entire membrane as well as the dynamic stress
intensity factor. Numerical results are presented for a circular membrane containing a single edge stringer, two edge stringers
and an internal stringer. Also, the first three critical wave numbers of the membrane with the homogeneous boundary condition
are determined, and the dynamic stress intensity factors are found for problems with the nonhomogeneous boundary condition.
Good agreement is found after comparing the results with exact solutions, and with results obtained using DtN-FEM and
ABAQUS. ©1999 Elsevier Science B.V. All rights reserved.

1. Introduction

Analytical solutions for the stresses around cracks, even in the static case, are available only in very simple cases,
primarily for problems in the infinite domain. Exact solutions are even more scarce. Therefore, numerical treatment
of such problems is necessary to obtain solutions, e.g., using the finite difference method, finite element method or
boundary element method.

In studying the membrane problem with stringers using numerical techniques, the analyst may encounter problems
with singularities. Singular behavior is often ignored based on the expectation that the error will be limited to the
vicinity of the singularity. However, it is very important to show how strong the singular behavior is, e.g., the
stress intensity factor of fracture mechanics. In finite elements, special singular or hybrid elements are sometimes
used instead of the quarter-point rule; e.g., MSC/NASTRAN Version 68 [1] provides the capabilities of singular
CRAC3D and CRAC2D elements for static crack problems, but dynamic cases with singularities for the Helmholtz
equation have not been developed to the authors’ best knowledge.
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Fig. 1. A vibrating membrane: (a) with a single edge stringer, (b) with two opposite edge stringers, (c) with an internal stringer.

For the problems with a degenerate boundary, some special techniques have been devised to solve the difficulty.
In crack problems, the special Green’s function methods [2] and zone method [3] are worth mentioning. The special
Green’s function, which satisfies the boundary conditions on the crack, is obtainable. The zone method introduces
an artificial boundary in the intact area to connect cracks and the boundary and thus divides the domain into zones by
employing a superelement concept. The drawback is obvious in that the artificial boundary is arbitrary, not unique,
and thus not qualified as an automatic scheme. For problems with a degenerate boundary, e.g., crack problems [4],
flow around sheet piles [5], thin airfoil in aerodynamics [6,7], cracked bars under torsion [8], and acoustic modes in
a cavity with an incomplete partition [9–12], a singularity exists, and the dual integral formulation has been applied
successfully. Using the dual integral formulation, well-posed boundary value problems can be solved even though a
degenerate boundary is present. It is well known that DBEM (dual boundary element method) is particularly suitable
for problems of extreme localization and concentration with a singularity [13]. The main difference between the
present method and the Burton–Miller method [14] is that the Burton–Miller method combines the singular and
hypersingular equations by an imaginary constant to avoid the fictitious eigenvalues in the exterior problem. The
present dual BEM utilizes the two equations (singular and hypersingular) at the same time. Dual BEM has been
developed to solve crack problems (static or dynamic) [15–18]. Also, a single-domain approach by discretizing the
boundary only using dual BEM can be achieved instead of the method of subdomains by introducing an artificial
boundary [19,20]. The DBEM solution is based on a complete formulation of dual integral equations. The long
standing abstruseness of the nonuniqueness problem in BEM has been solved, and the general purpose program of
BEPO2D (Boundary Element POtential 2-D) has been implemented [7] to solve some potential problems.

In this paper, the dual BEM is extended to solve a problem of a two-dimensional membrane with stringers. The
stringer boundary is degenerate since it has infinite stiffness which enforces a displacement constraint. A general
purpose program, DUALHAK, is implemented to determine the critical wave numbers and the dynamic stress
intensity factors. Numerical experiments for a single edge stringer, two edge stringers and an internal stringer have
been carried out to check the validity of the present formulation. The results have been compared with analytical
solutions and with solutions obtained using DtN-FEM developed by Givoli and Vigdergauz [21] and ABAQUS to
determine their accuracy. Also, the critical wave numbers for stringers of different lengths have been determined.

2. Dual integral formulation for a membrane problem with degenerate boundaries of stringers

Consider a membrane problem, as shown in Fig. 1, which has the following governing equation:

∇2φ(x) + k2φ(x) = 0, x in D, (1)

whereD is the domain of interest,x is the domain point,φ is the displacement andk is the wave number. The
boundary conditions are given as follows:

φ(x) = φ̄, x onB1, (2)

∂φ(x)

∂nx

= t̄ , x onB2, (3)
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Table 1
The explicit form of kernel functions for the two-dimensional Helmholtz equationa

Kernel function U(s, x) T (s, x) L(s, x) M(s, x)

Order of weak strong strong hypersingular
singularity O(ln(r)) O(1/r) O(1/r) O(1/r2)

Symmetry U(x, s) L(x, s) T (x, s) M(x, s)

Two dimensional −iπH
(1)
0 (kr)/2 (−ikπ/2)H

(1)
1 (kr) (ikπ/2)H

(1)
1 (kr) (−ikπ/2){−k(H

(1)
2 (kr)/r2)yiyj ni n̄j

case ×(yini/r) ×(yi n̄i/r) +(H
(1)
1 (kr)/r)ni n̄i}

Remark r2 = yiyi ni = ni(s) n̄i = ni(x) yi = xi − si

aH
(1)
m (kr) denotes the first kind ofmth order Hankel function.

whereB1 is the essential boundary with specified displacement,B2 is the natural boundary where the normal
derivative of the displacement in thenx direction is specified, andB1 andB2 comprise the whole boundary of the
domainD. For the homogeneous boundary conditions ofφ̄ = 0 andt̄ = 0, we have an eigenproblem to determine
the critical wave numberk. For the nonhomogeneous boundary conditions and a specifiedk value, we can solve for
the time-harmonic response and calculate the dynamic stress intensity factors.

The first equation of the dual boundary integral equations for the domain point can be derived from Green’s third
identity:

2πφ(x) =
∫

B

T (s, x)φ(s)dB(s) −
∫

B

U(s, x)
∂φ(s)

∂ns

dB(s), x ∈ D, (4)

whereU(x, s) is the fundamental solution which satisfies

∇2U(x, s) + k2U(x, s) = δ(x − s), x ∈ D, (5)

in which δ(x − s) is the Dirac-delta function, andT (s, x) is defined by

T (s, x) ≡ ∂U(s, x)

∂ns

, (6)

in whichns is the outward directed normal at the boundary points. Since a stringer is present in the membrane, one
alternative way to solve the problem with a degenerate boundary is to derive the hypersingular equation. Although
the hypersingular equation is not absolutely necessary for solving the problem, special considerations [3] or special
functions [2] to satisfy the boundary condition on the stringer are needed. After taking the normal derivative with
respect to Eq. (4), the second equation of the dual boundary integral equations for the domain point can be derived:

2π
∂φ(x)

∂nx

=
∫

B

M(s, x)φ(s)dB(s) −
∫

B

L(s, x)
∂φ(s)

∂ns

dB(s), x ∈ D, (7)

where

L(s, x) ≡ ∂U(s, x)

∂nx

, (8)

M(s, x) ≡ ∂2U(s, x)

∂nx∂ns

, (9)

in whichnx andns represent the outward directed normals ofx ands, respectively. The explicit forms for the four
kernel functions are shown in Table 1. By moving the field pointx in Eqs. (4) and (7) to the boundary, the dual
boundary integral equations for the boundary point can be obtained as follows:

πφ(x) = C.P.V.

∫
B

T (s, x)φ(s)dB(s) − R.P.V.

∫
B

U(s, x)
∂φ(s)

∂ns

dB(s), x ∈ B, (10)
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π
∂φ(x)

∂nx

= H.P.V.

∫
B

M(s, x)φ(s)dB(s) − C.P.V.

∫
B

L(s, x)
∂φ(s)

∂ns

dB(s), x ∈ B, (11)

where R.P.V. is the Riemann principal value, C.P.V. is the Cauchy principal value and H.P.V. is the Hadamard
(Mangler) principal value.

It must be noted that Eq. (11) can be derived directly by applying a normal derivative operator with respect to
Eq. (10). Differentiation of the Cauchy principal value should be carried out carefully using Leibnitz’s rule. The
commutative property provides us with two alternatives for calculating the Hadamard principal value in the same
way as used for crack problems [4]. For the problem including a normal boundaryS and degenerate boundaries
C+ + C−, i.e.,B = S + C+ + C−, Eqs. (10) and (11) can be reformulated as follows: Whenx is located on the
normal boundary, i.e.,x ∈ S, Eqs. (10) and (11) become

πφ(x) = C.P.V.

∫
S

T (s, x)φ(s)dB(s) − R.P.V.

∫
S

U(s, x)
∂φ(s)

∂ns

dB(s) +
∫

C+
T (s, x)1φ(s)dB(s)

−
∫

C+
U(s, x)6

∂φ(s)

∂ns

dB(s), (12)

π
∂φ(x)

∂nx

= H.P.V.

∫
S

M(s, x)φ(s)dB(s) − C.P.V.

∫
S

L(s, x)
∂φ(s)

∂ns

dB(s) +
∫

C+
M(s, x)1φ(s)dB(s)

−
∫

C+
L(s, x)6

∂φ(s)

∂ns

dB(s), (13)

where

1φ(s) = φ(s+) − φ(s−), (14)

6
∂φ

∂n
(s) = ∂φ

∂n
(s+) + ∂φ

∂n
(s−). (15)

Whenx is located on the boundary of the stringer, i.e.,x ∈ C+, Eqs. (10) and (11) reduce to

π6φ(x) = C.P.V.

∫
C+

T (s, x)1φ(s)dB(s) − R.P.V.

∫
C+

U(s, x)6
∂φ(s)

∂ns

dB(s) +
∫

S

T (s, x)φ(s)dB(s)

−
∫

S

U(s, x)
∂φ(s)

∂ns

dB(s), (16)

π1
∂φ(x)

∂nx

= H.P.V.

∫
C+

M(s, x)1φ(s)dB(s) − C.P.V.

∫
C+

L(s, x)6
∂φ(s)

∂ns

dB(s)

+
∫

S

M(s, x)φ(s)dB(s) −
∫

S

L(s, x)
∂φ(s)

∂ns

dB(s), (17)

where

6φ(x) = φ(x+) + φ(x−), (18)

1
∂φ

∂n
(x) = ∂φ

∂n
(x+) − ∂φ

∂n
(x−). (19)

For the fixed stringer problem, the term of1φ and6φ both disappear. For the traction-free crack problem,1∂φ/∂n

and6∂φ/∂n both disappear [4]. Eqs. (14),(15),(18) and (19) indicate that the unknowns on the degenerate boundary
double, and that the additional hypersingular integral equation, Eq. (17), is correspondingly necessary; i.e., the dual
boundary integral equations can provide us with sufficient constraint relations for the doubled boundary unknowns
on the degenerate boundary.
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3. Dual boundary element formulation using the constant element scheme

After deriving the above compatible relationship among the boundary data in Eqs. (10) and (11), the dual boundary
integral equations can be discretized by usingN constant elements, and the resulting algebraic system can be obtained
as

[T̄ij ]{φ} = [Uij ]

{
∂φ

∂n

}
, (20)

[Mij ]{φ} = [L̄ij ]

{
∂φ

∂n

}
, (21)

where [ ] denotes a square matrix with dimensionN by N , { } is a column vector for the boundary data and the
elements of the square matrices are, respectively,

Uij = R.P.V.

∫
Bj

U(sj , xi)dB(sj ), (22)

T̄ij = −πδij + C.P.V.

∫
Bj

T (sj , xi)dB(sj ), (23)

L̄ij = πδij + C.P.V.

∫
Bj

L(sj , xi)dB(sj ), (24)

Mij = H.P.V.

∫
Bj

M(sj , xi)dB(sj ), (25)

whereBj denotes thej th element andδij is the Kronecker delta. All the above formulas can be separated into two
parts: one is regular and the other is irregular. For the irregular part, partial integration is employed to transform the
hypersingular, strongly singular and weakly singular integrals into regular integrations. Therefore, the quadrature
rule can be used to determine all the integrals.

Since the terms involving the irregular integrals are the diagonal elements of the four matrices in Eqs. (22)–(25),
we have
1. U(s, x) kernel:

Uii = −iπ

2
lim
ε→0

∫ 0.5l

−0.5l

H
(1)
0 (k

√
s2 + ε2)ds

= −iπ

2
lim
ε→0

{∫ −√
ε

−0.5l

H
(1)
0 (k|s|)ds +

∫ √
ε

−√
ε

i
2

π
ln(

k

2

√
s2 + ε2)ds +

∫ 0.5l

√
ε

H
(1)
0 (ks)ds

}

= −iπ

2
lim
ε→0

{∫ −√
ε

−0.5l

H
(1)
0 (k|s|)ds + 0 +

∫ 0.5l

√
ε

H
(1)
0 (ks)ds

}

= −iπ

2

{
H

(1)
0

(
kl

2

)
l + k

∫ 0.5l

−0.5l

{H(1)
1 (k|s|)|s|ds}

}
(i no sum); (26)

2. T (s, x) kernel:

Tii = iπk

2
lim
ε→0

∫ 0.5l

−0.5l

H
(1)
1 (k

√
s2 + ε2)

ε√
s2 + ε2

ds = iπk

2
lim
ε→0

∫ 4√ε

− 4√ε

i(−2)

πk
√

s2 + ε2

ε√
s2 + ε2

ds

= lim
ε→0

arctan
s

ε
| 4√ε

− 4√ε
= π(i no sum); (27)
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3. L(s, x) kernel:

Lii = iπk

2
lim
ε→0

∫ 0.5l

−0.5l

H
(1)
1 (k

√
s2 + ε2)

−ε√
s2 + ε2

ds

= lim
ε→0

−iπk

2

∫ 4√ε

− 4√ε

i(−2)

πk
√

s2 + ε2

ε√
s2 + ε2

ds = −π(i no sum); (28)

4. M(s, x) kernel:

Mii = −iπk

2
lim
ε→0

∫ 0.5l

−0.5l

{
−k

H
(1)
2 (k

√
s2 + ε2)

s2 + ε2
(−ε)(−ε) + H

(1)
1 (k

√
s2 + ε2)√

s2 + ε2

}
ds

= −iπk

2

{
−2H

(1)
1

(
kl

2

)
+ k[H(1)

0

(
kl

2

)
+ k

∫ 0.5l

−0.5l

H
(1)
1 (k|s|) |s|ds]

}
(i no sum). (29)

4. Eigenequation for the membrane with stringers

For the membrane with stringers, the Dirichlet problem of the homogeneous boundary condition is considered
here. After determining the influence coefficients and substituting the boundary conditions, we can obtain the
transcendental eigenequation as follows:

[Uij (k)]{tj } = 0, (30)

[L̄ij (k)]{tj } = 0, (31)

wheret = ∂φ/∂ns, {tj } is the boundary mode and the wave number,k, is embedded in each element of the matrices,
[U ] and [L̄].

After combining the dual equations on the degenerate boundary whenx collocates onC+ or C−, the nontrivial
eigensolution exists only when the determinant of the influence matrix is zero by the direct search method. Since
either one of the two equations,UT or LM, for the outer boundaryS can be selected, two alternative approaches,
UT + LM andLM + UT , are proposed as follows:

TheUT + LM method has the eigenequation

[KUL]{ t∼} =




UiSjS
UiSjC+ UiSjC−

UiC+ jS
UiC+ jC+ UiC+jC−

LiC+ jS
LiC+ jC+ LiC+ jC−







tjS

tjC+
tjC−


 = 0, (32)

whereiS andiC+ denote the collocation points on theS andC+ boundaries, respectively, andjS andjC+ denote
the element ID on theS andC+ boundaries, respectively.

TheLM + UT method has the eigenequation

[KLU]{ t∼} =




LiSjS
LiSjC+ LiSjC−

LiC+ jS
LiC+ jC+ LiC+ jC−

UiC+ jS
UiC+ jC+ UiC+ jC−







tjS

tjC+
tjC−


 = 0. (33)

To solve for the eigenequation, a direct search method is employed.
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Fig. 2. The boundary element mesh: (a) single edge stringer, (b) two opposite edge stringers, (c) an internal stringer.

5. Dynamic stress intensity factor for the membrane with stringers

For the membrane with stringers shown in Fig. 1(a)–(c), we have the nonhomogeneous boundary conditions as
follows:

φ(r, θ)|r=b = sin(θ/2), for Fig.1(a),

φ(r, θ)|r=b = sin2(θ), for Fig.1(b),

φ(r, θ)|r=b = sin2(θ), for Fig.1(c),

φ(r, θ) = 0, (r, θ) on the stringer.

After considering the behavior at the stringer tip, the dynamic stress intensity factors,Kw, can be determined by

Kw = k
√

R/2π

sin(kR)

∫ 2π

0
sin

(
θ ′

2

)
φ(R, θ ′)dθ ′, (34)

whereR is the radius of a circle enclosing the singularity.

6. Numerical examples

We next consider the three problems illustrated in Fig. 1(a)–(c), which have been solved by Givoli and Vigdergauz
[21]. A circular membrane is given with radiusb. A single stringer, two opposite edge stringers and an internal
stringer are shown in Fig. 1(a)–(c), respectively. The length of the stringers isa, as shown. For simplicity, we set
b = 1. The length of the stringer varies from 0 to 1 with an increment of 0.2. For the special cases,a = 0 anda = 2
in Fig. 1(a) and (c) anda = 1 in Fig. 1(b), we have the extreme cases of no stringer in a circular and a half circular
membrane. For any value of 0≤ a ≤ 1 other than 0, 0.5 and 1.0, the solution must be obtained numerically. In
this study, the dual BEM was employed and the results were compared with the exact solution, the DtN-FEM data
and the ABAQUS results. Two kinds of problems, an eigenproblem for homogeneous boundary conditions and
problems related to dynamic stress intensity factors with nonhomogeneous boundary conditions, are considered in
the following.

6.1. Critical wave number

The boundary element meshes for a single edge stringer and two edge stringers are shown in Fig. 2(a)–(c). The
critical wave numbers for the single edge stringer with lengtha = 1 can be determined using the direct-search
method as shown in Fig. 3(a)–(d). Fig. 3(a) and (b) show a failure to determine the eigenvalue since either theUT or
LM equation alone can not solve the problem with a degenerate boundary. After combining the dual equations, Fig.
3(c) and (d) show in the dotted lines the local minimum of the first three critical wave numbers obtained using the
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Fig. 3. The determinant vs. the wave number obtained using (a) the conventional BEM using only theUT equation, (b) the conventional BEM
using only theLM equation, (c) the dual BEM using theUT equation (combined with theLM equation), (d) the dual BEM using theLM

equation(combined with theUT equation).

Table 2
The first five critical wave numbers (k2), of a single edge stringer ofa = 1 using DtN-FEM, dual BEM and ABAQUSa

Mode 1 Mode 2 (J1(3.83r)) Mode 3 Mode 4 (J2(5.14r)) Mode 5

DtN-FEM 9.88 NA 20.22 NA 33.32
Dual BEM 9.80 14.72 20.23 26.43 33.29
ABAQUS 9.91 14.63 20.09 26.20 32.95
Exact Sol. 9.87 14.68 20.19 26.37 33.32

aNotice that the two modesJ1(3.83r) andJ2(5.14r) are not included in [21].

direct-search method. To check the accuracy of the method, we compared the numerical solution with the analytical
solution for the case ofa = 1.0. Also, finite element solutions obtained using ABAQUS were used to double
check the comparison. Table 2 shows the first five modes for the single edge stringer with lengtha = 1m, using
DtN-FEM, the dual BEM and ABAQUS. The mode shapes are shown in Fig. 4 (a)–(e) and Fig. 5(a)–(e) using the
dual BEM and ABAQUS, respectively. It is interesting to find that both the dual BEM and the ABAQUS program
obtain the two modes ofJ1(3.83r) andJ2(5.14r). The two modes both have nodal lines across the stringer as shown
in Fig. 4(b) and (d) and Fig. 5(b) and (d); however, the two modes are not found when the DtN-FEM method was
employed [21]. The reason is that only the symmetric case in the DtN-FEM formulation is considered in the half
model. Nevertheless, the two modes are also eigensolutions since they satisfy the governing equation and boundary
conditions. Table 3 shows the squares of the first three critical wave numbers,k2, of the single edge stringer for
various stringer lengths of 0< a < 1 with an increment of 0.2. Table 4 shows the squares of the first two critical
wave numbers,k2, of the two edge stringers for various stringer lengths. It is also found that solutions for the cases
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Fig. 4. The first eight modes of the single stringer witha = 1 obtained using the dual BEM: (a) the first mode, (b) the second mode (J1(3.83r)),
(c) the third mode, (d) the fourth mode (J2(5.14r)), (e) the fifth mode, (f) the sixth mode, (g) the seventh mode, (h) the eighth mode.
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Fig. 5. The first eight modes of the single stringer configuration, witha = 1 obtained using ABAQUS: (a) the first mode, (b) the second mode
(J1(3.83r)), (c) the third mode, (d) the fourth mode (J2(5.14r)), (e) the fifth mode, (f) the sixth mode, (g) the seventh mode, (h) the eighth mode.

of no stringer witha = 0 anda = 2 are not obtainable using the DtN-FEM method since it embedes a tip of the
stringer in the formulation. For the case of two edge stringers witha = 0.5, the first eight modes obtained using
the dual BEM and ABAQUS, respectively are shown in Figs. 6 and 7. The first six critical wave numbers (squares)
are summarized in Table 5. It is interesting to find that all six modes can be obtained using the dual BEM and the
ABAQUS program. However, the four modes, including the second (J1(3.83r)) the third, the fourth (J2(5.14r))
and the fifth modes, are not available for DtN-FEM. The reason why some modes are not available for the four
modes shown in Fig. 6(b)–(d) and (f) obtained using the dual BEM or in Fig. 7(b)–(f) obtained using the ABAQUS
program is that only symmetry boundary conditions for the quarter model are assumed.

Dynamic stress intensity factor:
Figs. 8–10 are the contour plots of the displacement obtained using the dual BEM for the single edge stringer,

the two edge stringers and the internal stringer, respectively. The results compare well with those obtained using
DtN-FEM. Also, the exact solution for the dynamic stress intensity factor for the single edge stringer with length
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Fig. 6. The first eight modes of the two stringer configuration, witha = 0.5 obtained using the dual BEM: (a) the first mode, (b) the second
mode (J1(3.83r)), (c) the third mode, (d) the fourth mode (J2(5.14r)), (e) the fifth mode, (f) the sixth mode, (g) the seventh mode, (h) the eighth
mode.
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Fig. 7. The first eight modes of the two stringer configuration, witha = 0.5 obtained using ABAQUS: (a) the first mode, (b) the second mode
(J1(3.83r)), (c) the third mode, (d) the fourth mode (J2(5.14r)), (e) the fifth mode, (f) the sixth mode, (g) the seventh mode, (h) the eighth mode.

Fig. 8. (a) Single edge stringer configuration, witha = 0.8 andk = 1. (b) Contours of the displacement for the single edge stringer configuration,
with a = 0.8 andk = 1 obtained using the dual BEM. (c) Contours of the displacement for the single edge stringer configuration, witha = 0.8
andk = 1 obtained using DtN-FEM [21].
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Table 3
The first four critical wave numbers (squares),k2, of the exact solution, dual BEM (present), DtN-FEM and FEM obtained using ABAQUS for
the membrane problem with an edge stringer

Method Stringer lengtha

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Mode 1 DtN-FEM NA 6.03 6.41 7.02 8.23 9.88 12.09 14.03 14.81 15.08 NA
Dual BEM 5.78 5.91 6.30 7.02 8.15 9.80 11.99 13.92 14.65 14.71 14.71
ABAQUS 5.78 9.91 14.63
Exact Sol. 5.78 9.87 14.68

Mode 2 DtN-FEMa NA 15.83 17.11 18.83 20.04 20.22 20.60 22.95 26.30 27.63 NA
Dual BEM 14.71 14.72 14.72 14.72 14.72 14.72 14.71 14.71 25.68 26.41 26.43
ABAQUS 14.64 14.63 26.21
Exact Sol. 14.68 14.68 26.37

Mode 3 DtN-FEM NA 28.66 29.39 30.50 33.15 33.32 33.52 34.69 40.09 43.81 NA
Dual BEM 26.43 15.22 16.69 18.57 19.94 20.23 20.50 22.65 26.41 40.73 40.80
ABAQUS 26.21 20.09 40.29
Exact Sol. 26.37 20.19 40.71

Mode 4 DtN-FEM NA NA
Dual BEM 30.49 26.45 26.44 26.44 26.43 26.43 26.43 26.43 38.28 49.32 49.33
ABAQUS 30.24 26.20 48.61
Exact Sol. 30.47 26.37

aThe row shows the data of second mode obtained by [21], which are truly the third mode of the data obtained by using ABAQUS and dual
BEM, since the mode (e.g.,J1(3.83r)) is not available.

Table 4
The first three critical wave numbers (square),k2, of exact solution, dual BEM (present method), DtN-FEM and FEM obtained using ABAQUS
for the membrane problem with two edge stringers

Method Stringer lengtha
0 0.5 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.5

Mode 1 DtN-FEM NA 6.02 6.15 6.49 7.05 7.91 9.22 11.11 13.38 15.36 NA
Dual BEM 5.79 5.85 6.05 6.41 6.99 7.82 9.05 10.73 12.66 14.17 14.71
ABAQUS 5.78 7.94 14.63
Exact Sol. 5.78 14.68

Mode 2 DtN-FEMa NA 31.77 33.26 35.30 37.94 39.01 39.88 40.44 41.17 42.06 NA
Dual BEM 14.71 14.74 14.72 14.72 14.72 14.71 14.71 14.71 14.71 14.70 26.43
ABAQUS 14.64 14.64 26.21
Exact Sol. 14.68 14.68 26.37

Mode 3 DtN-FEM
Dual BEM 26.43 14.95 15.87 17.36 19.42 21.76 24.07 25.61 26.34 26.42 40.80
ABAQUS 26.21 21.96 40.29
Exact Sol. 26.37 40.71

aThis row shows the data of second mode obtained by [21], which are truly the sixth mode shown in Table 5 obtained by ABAQUS or dual BEM.

a = 1.0 is compared with that obtained using the dual BEM. According to Eq. (34), the dynamic stress intensity
factor for the edge stringer problem witha = 1.0, b = 1.0 andk = 1.0 obtained by the dual BEM is (1.50).
The result is satisfactory after comparing with the exact solution (1.49) and that of DtN-FEM (1.49). The results
of two additional examples are shown in Table 6. The present method is accurate for the problems that have been
considered.
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Table 5
The first six critical wave numbers (square),k2, for the case of two edge stringers witha = 0.5 using DtN-FEM, dual BEM and ABAQUSa

Method Mode 1 Mode 2 (J1(3.83r)) Mode 3 Mode 4(J2(5.14r)) Mode 5 Mode 6

DtN-FEM 7.91 NA NA NA NA 39.01
Dual BEM 7.82 14.71 21.76 26.44 29.65 39.50
ABAQUS 7.94 14.64 21.96 26.21 29.48 39.24
Exact Sol. 14.68 26.41

aNotice that the two modesJ1(3.833r) andJ2(5.14r) are not included in [21].

Fig. 9. (a) Two edge stringer configuration, witha = 0.6 andk = 1. (b) Contours of the displacement for the two edge stringer configuration,
with a = 0.6 andk = 1 obtained using the dual BEM. (c) Contours of the displacement for the two edge stringer configuration, witha = 0.6
andk = 1 obtained using DtN-FEM [21].

Fig. 10. (a) Internal stringer witha = 0.8 andk = 1. (b) Contours of the displacement for the internal stringer witha = 0.8 andk = 1 obtained
using the dual BEM. (c) Contours of the displacement for the internal stringer witha = 0.8 andk = 1 obtained using DtN-FEM [21].

Table 6
The single edge stringer problem: stress intensity factors(KKK) for three stringers with different lengths (k2 = 1)

k2 Method 0.4 0.5 0.6

1.0 DtN-FEM 1.48 1.49 1.53
Dual BEM 1.41 1.50 1.61
Exact Sol. NA 1.49 NA

7. Conclusion

In this paper, we have demonstrated the usefulness of the dual BEM in solving problems which involve wave
scattering from stringer-type singularities. We have considered time-harmonic waves around stringers in a mem-
brane. This setup was chosen as a model for studying wave scattering due to geometrical singularities, which is
simpler than two-dimensional elasticity.

The general formulation of the dual integral equations of the boundary value problem for the two-dimensional
Helmholtz equation with a degenerate boundary has been derived in this paper. A dual BEM program, DUALHAK,
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has been implemented to solve for the critical wave numbers and vibration modes for a membrane with stringers.
Also, the dynamic stress intensity factors have been determined using the program. Three example cases have been
successfully solved using the proposed dual BEM, and the results compare well with those obtained using other
numerical methods and with the exact solution.
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