多體輻射與散射

計畫類別：□個別型計畫 ■整合型計畫
計畫編號：NSC 94－2115－M－019－003

執行期間：94 年 08 月 01 日至 95 年 07 月 31 日

計畫主持人：陳正宗
共同主持人：
計畫參與人員： 陳柏源、陳佳聰

成果報告類型(依經費核定清單規定繳交)：□精簡報告 ■完整報告

本成果報告包括以下應繳交之附件：
□赴國外出差或研習心得報告一份
□赴大陸地區出差或研習心得報告一份
□出席國際學術會議心得報告及發表之論文各五份(2002-2005)
□國際合作研究計畫國外研究報告書一份

處理方式：除產學合作研究計畫、提升產業技術及人才培育研究計畫、列管計畫及下列情形者外，得立即公開查詢
□涉及專利或其他智慧財產權，□一年□二年後可公開查詢

執行單位：國立台灣海洋大學 河海工程學系

中華民國 94 年 10 月 31 日
Abstract: In this project, the radiation and scattering problems with circular boundaries are studied by using the null-field integral equations in conjunction with degenerate kernels and Fourier series to avoid calculating the Cauchy and Hadamard principal values. In implementation, the null-field point can be located on the real boundary owing to the introduction of degenerate kernels for fundamental solution. An adaptive observer system of polar coordinate is considered to fully employ the property of degenerate kernels. For the hypersingular equation, vector decomposition for the radial and tangential gradient is carefully considered. This method can be seen as a semi-analytical approach since errors attribute from the truncation of Fourier series. Neither hypersingularity in Burton and Miller approach nor the CHIEF concepts were required to deal with the problem of irregular frequencies. Four gains, well-posed model, singularity free, boundary-layer effect free and exponential convergence are achieved using the present approach. A fast convergence rate in exponential order than algebraic one in BEM stems from the series expansions. Three examples were demonstrated to see the validity of the present formulation and show the better accuracy than BEM.

Keywords: null-field integral equation, degenerate kernel, Fourier series, Helmholtz, radiation, scattering.

1. Introduction

It is well known that boundary integral equation methods have been used to solve exterior acoustic radiation and scattering problems for many years. The importance of the integral equation in the solution, both theoretical and practical, for certain types of boundary value problems is universally recognized. One of the problems frequently addressed in BIEM/BEM is the problem of irregular frequencies in boundary integral formulations for exterior acoustics and water wave problems. These frequencies do not represent any kind of physical resonance but are due to the numerical method, which has non-unique solutions at characteristic frequencies.
associated with the eigenfrequency of the interior problem. Burton and Miller approach [1] as well as CHIEF technique have been employed to deal with these problems [2].

Numerical examples for non-uniform radiation and scattering problems by using the dual BEM were provided and the irregular frequencies were easily found [3]. The non-uniqueness of radiation and scattering problems are numerically manifested in a rank deficiency of the influence coefficient matrix in BEM [1]. In order to obtain the unique solution, several integral equation formulations that provide additional constraints to the original system of equations have been proposed. Burton and Miller [1] proposed an integral equation that was valid for all wave numbers by forming a linear combination of the singular integral equation and its normal derivative. However, the calculation for the hypersingular integration is required. To avoid the computation of hypersingularity, an alternative method, Schenck [2] used the CHIEF method, which employs the boundary integral equations by collocating the interior point as an auxiliary condition to make up deficient constraint condition. Many researchers [5-7] applied the CHIEF method to deal with the problem of fictitious frequencies. If the chosen point locates on the nodal line of the associated interior eigenproblem, then this method fails. To overcome this difficulty, Wu and Seybert [5,6] employed a CHIEF-block method using the weighted residual formulation for acoustic problems. For water wave problems, Ohmatsu [8] presented a combined integral equation method (CIEM), it was similar to the CHIEF-block method for acoustics proposed by Wu and Seybert. In the CIEM, two additional constraints for one interior point result in an overdetermined system to insure the removal of irregular frequencies. An enhanced CHIEF method was also proposed by Lee and Wu [7]. The main concern of the CHIEF method is how many numbers of interior points are selected and where the positions should be located. Recently, the appearance of irregular frequency in the method of fundamental solutions was theoretically proved and numerically implemented [9]. However, as far as the present authors are aware, only a few papers have been published to date reporting on the efficacy of these methods in radiation and scattering problems involving more than one vibrating body. For example, Dokumaci and Sarigül [10] had discussed the fictitious frequency of radiation problem of two spheres. They used the surface Helmholtz integral equation (SHIE) and the CHIEF method to find the position of fictitious frequency. In our formulation, we are also concerned with the fictitious frequency especially for the multiple cylinders of scatters and radiators. At the same time, we may wonder if there is one approach free of both Burton and Miller approach and CHIEF technique.

For the problems with circular boundaries, the Fourier series expansion method is specially suitable to obtain the analytical solution. The interaction of water waves with arrays of vertical circular cylinders was studied using the dispersion relation by Linton and Evans [11]. If the depth
dependence is removed, it becomes two-dimensional Helmholtz problem. For membrane and plate problems, analytical treatment of integral equations for circular and annular domains were proposed in closed-form expressions for the integral in terms of Fourier coefficients by Kitahara [12]. Elsherbeni and Hamid [13] used the method of moments to solve the scattering problem by parallel conducting circular cylinders. They also divided the total scattered field into two components, namely a noninteraction term and a term due to all interactions between the cylinders. Chen et al. [3] employed the dual BEM to solve the exterior acoustic problems with circular boundary. Grote and Kirsch [14] utilized multiple Dirichlet to Neumann (DtN) method to solve multiple scattering problems of cylinders. DtN solution was obtained by combining contributions from multiple outgoing wave fields. Degenerate kernels were given in the book of Kress[15]. The mathematical proof of exponential convergence for Helmholtz problems using the Fourier expansion was derived in [16]. According to the literature review, it is observed that exact solutions for boundary value problems are only limited for simple cases, e.g. a cylinder radiator and scatter, half-plane with a semi-circular canyon, a hole under half-plane, two holes in an infinite plate. Therefore, proposing a systematic approach for solving BVP with circular boundaries of various numbers, positions and radii is our goal in this article.

In this paper, the boundary integral equation method (BIEM) is utilized to solve the exterior radiation and scattering problems with circular boundaries. To fully utilize the geometry of circular boundary, not only Fourier series for boundary densities as previously used by many researchers but also the degenerate kernel for fundamental solutions in the present formulation is incorporated into the null-field integral equation. All the improper boundary integrals are free of calculating the principal values (Cauchy and Hadamard) in place of series sum. In integrating each circular boundary for the null-field equation, the adaptive observer system of polar coordinate is considered to fully employ the property of degenerate kernel. To avoid double integration, point collocation approach is considered. Free of worrying how to choose the collocation points, uniform collocation along the circular boundary yields a well-posed matrix. For the hypersingular equation, vector decomposition for the radial and tangential gradients is carefully considered, especially for the eccentric case. Fictitious frequencies in the multiple scatters and radiators are also examined. Nonuniform radiation and scattering problems are solved for a single circular cylinder. Finally, a five-scatters problem in the full plane was given to demonstrate the validity of the present method. The results are compared with those of analytical solution, BEM, FEM and/or other numerical solutions.

2. Problem Statement and Integral Formulation
2.1 Problem statement

The governing equation of the acoustic problem is the Helmholtz equation

\[(\nabla^2 + k^2)u(x) = 0, \quad x \in D\] \hspace{1cm} (1)

where \(\nabla^2\), \(k\) and \(D\) are the Laplacian operator, the wave number, and the domain of interest, respectively. Consider the radiation and scattering problems containing \(N\) randomly distributed circular holes centered at the position vector \(\epsilon_j (j = 1, 2, ..., N)\) as shown in Fig. 1 (a) and (b), respectively.

2.2 Dual boundary integral formulation

Based on the dual boundary integral formulation of the domain point [17], we have

\[2\pi u(x) = \int_B T(s, x)u(s)dB(s) - \int_B U(s, x)t(s)dB(s), \quad x \in D \cup B \] \hspace{1cm} (2)

\[2\pi t(x) = \int_B M(s, x)u(s)dB(s) - \int_B L(s, x)t(s)dB(s), \quad x \in D \cup B \] \hspace{1cm} (3)

where \(s\) and \(x\) are the source and field points, respectively, \(B\) is the boundary. Eqs. (2) and (3) are quite different from the conventional formulation since they are valid not only for the point in the domain \(D\) but also for the boundary points if the kernels are properly expressed as degenerate kernels. The set of \(x\) in Eqs. (2) and (3) is closed since \(x \in D \cup B\). The flux \(t(s)\) is the directional derivative of \(u(s)\) along the outer normal direction at \(s\). For the interior point, \(t(x)\) is artificially defined. For example, \(t(x) = \frac{\partial u}{\partial x_i}\), if \(n(x) = (1,0)\) and \(t(x) = \frac{\partial u}{\partial x_2}\), if \(n(x) = (0,1)\) where \((x_1, x_2)\) is the coordinate of field point \(x\). The \(U(s, x)\), \(T(s, x)\), \(L(s, x)\) and \(M(s, x)\) represent the four kernel functions [3]

\[U(s, x) = \frac{-i\pi H_0^{(1)}(kr)}{2},\] \hspace{1cm} (4)

\[T(s, x) = \frac{\partial U(s, x)}{\partial n_x} = \frac{-ik\pi H_1^{(1)}(kr) y_i n_i}{2r},\] \hspace{1cm} (5)

\[L(s, x) = \frac{\partial U(s, x)}{\partial n_y} = \frac{ik\pi H_1^{(1)}(kr) y_i \bar{n}_i}{2r},\] \hspace{1cm} (6)

\[M(s, x) = \frac{\partial^2 U(s, x)}{\partial n_y \partial n_x} = \frac{-ik\pi}{2} \left[-k \frac{H_2^{(1)}(kr)}{r^3} y_i y_j n_i \bar{n}_j + \frac{H_1^{(1)}(kr)}{r} n_i \bar{n}_i \right],\] \hspace{1cm} (7)

where \(H_n^{(1)}(kr)\) is the \(n\)-th order Hankel function of the first kind, \(r = |x - s|\), \(y_i = s_i - x_i\), \(i^2 = -1\), \(n_i\) and \(\bar{n}_i\) are the \(i\)-th components of the outer normal vectors at \(s\) and \(x\), respectively. Eq. (2) and Eq. (3) are referred to singular and hypersingular boundary integral equation (BIE), respectively.
2.3 Null-field integral formulation in conjunction the degenerate kernel and Fourier series

By collocating x outside the domain ($x \in D^E$, complementary domain), we obtain the null-field integral equations as shown below [18]:

\[0 = \int_B T(s, x)u(s)dB(s) - \int_B U(s, x)t(s)dB(s), \quad x \in D^E \cup B, \quad (8) \]

\[0 = \int_B M(s, x)u(s)dB(s) - \int_B L(s, x)t(s)dB(s), \quad x \in D^E \cup B. \quad (9) \]

where the collocation point x can locate on the outside of the domain as well as B if kernels are substituted into proper degenerate kernels. Since degenerate kernels can describe the fundamental solutions in two regions (interior and exterior domain), the BIE for a domain point of Eqs. (2) and (3) and null-field BIE of Eqs. (8) and (9) can include the boundary point. In real implementation, the null-field point can be pushed on the real boundary since we introduce the expression of degenerate kernel for fundamental solutions. By using the polar coordinate, we can express $x = (\rho, \phi)$ and $s = (R, \theta)$. The four kernels, U, T, L and M can be expressed in terms of degenerate kernels as shown below [3]:

\[
U(s, x) = \begin{cases}
U^i(s, x) = -\frac{\pi i}{2} \sum_{m=0}^{\infty} \epsilon_m J_m(k\rho)H^{(i)}_m(kR) \cos(m(\theta - \phi)), & R \geq \rho \\
U^e(s, x) = -\frac{\pi i}{2} \sum_{m=0}^{\infty} \epsilon_m H^{(i)}_m(k\rho)J_m(kR) \cos(m(\theta - \phi)), & R > \rho
\end{cases} \quad (10)
\]

\[
T(s, x) = \begin{cases}
T^i(s, x) = -\frac{\pi ki}{2} \sum_{m=0}^{\infty} \epsilon_m J_m(k\rho)H^{(i)}_m(kR) \cos(m(\theta - \phi)), & R > \rho \\
T^e(s, x) = -\frac{\pi ki}{2} \sum_{m=0}^{\infty} \epsilon_m H^{(i)}_m(k\rho)J'_m(kR) \cos(m(\theta - \phi)), & R > \rho
\end{cases} \quad (11)
\]

\[
L(s, x) = \begin{cases}
L^i(s, x) = -\frac{\pi ki}{2} \sum_{m=0}^{\infty} \epsilon_m J'_m(k\rho)H^{(i)}_m(kR) \cos(m(\theta - \phi)), & R > \rho \\
L^e(s, x) = -\frac{\pi ki}{2} \sum_{m=0}^{\infty} \epsilon_m H^{(i)}_m(k\rho)J'_m(kR) \cos(m(\theta - \phi)), & R > \rho
\end{cases} \quad (12)
\]

\[
M(s, x) = \begin{cases}
M^i(s, x) = -\frac{\pi k^2 i}{2} \sum_{m=0}^{\infty} \epsilon_m J'_m(k\rho)H^{(i)}_m(kR) \cos(m(\theta - \phi)), & R \geq \rho \\
M^e(s, x) = -\frac{\pi k^2 i}{2} \sum_{m=0}^{\infty} \epsilon_m H^{(i)}_m(k\rho)J'_m(kR) \cos(m(\theta - \phi)), & R > \rho
\end{cases} \quad (13)
\]

where ϵ_m is the Neumann factor

\[
\epsilon_m = \begin{cases}
1, & m = 0 \\
2, & m = 1, 2, \ldots, \infty.
\end{cases} \quad (14)
\]

Since the potentials resulted from $T(s, x)$ and $L(s, x)$ are discontinuous cross the boundary, the potentials of $T(s, x)$ and $L(s, x)$ for $R \to \rho^+$ and $R \to \rho^-$ are different. This is the reason why $R = \rho$ is not included in the expression for the degenerate kernels of $T(s, x)$ and $L(s, x)$.
The analytical evaluation of the integrals for harmonic boundary distribution is listed in the Appendix and they are all non-singular. Besides, the limiting case to the boundary is also addressed. The continuous and jump behavior across the boundary is well captured by the Wronskian property of Bessel function \(J_m \) and \(Y_m \) bases

\[
W\left(J_m (kR), Y_m (kR) \right) = Y'_m (kR)J_m (kR) - Y_m (kR)J'_m (kR) = \frac{2}{\pi kR}
\]

(15)

as shown below

\[
\int_0^{2\pi} \left(T^I (s,x) - T^E (s,x) \right) \cos (m\theta) Rd\theta = 2\pi \cos (m\phi), \ x \in B,
\]

(16)

\[
\int_0^{2\pi} \left(T^I (s,x) - T^E (s,x) \right) \sin (m\theta) Rd\theta = 2\pi \sin (m\phi), \ x \in B,
\]

(17)

where \(T^I \) and \(T^E \) are the interior and exterior expressions for the \(T \) kernel in degenerate form. After employing Eqs. (16) and (17), Eq. (2) and Eq. (8) yields the same linear algebraic equation when \(x \) is exactly pushed on the boundary from the domain or the complementing domain. A proof for the Laplace case can be found [18].

In order to fully utilize the geometry of circular boundary, the potential \(u \) and its normal flux \(t \) can be approximated by employing the Fourier series. Therefore, we obtain

\[
u(s) = a_0 + \sum_{n=1}^{\infty} (a_n \cos n\theta + b_n \sin n\theta), \ s \in B
\]

(18)

\[
\tau(s) = p_0 + \sum_{n=1}^{\infty} (p_n \cos n\theta + q_n \sin n\theta), \ s \in B
\]

(19)

where \(a_0, a_n, b_n, p_0, p_n \) and \(q_n \) are the Fourier coefficients and \(\theta \) is the polar angle which is equally discretized. Eqs. (8) and (9) can be easily calculated by employing the orthogonal property of Fourier series. In the real computation, only the finite \(P \) terms are used in the summation of Eqs. (18) and (19).

2.4 Adaptive observer system

Since the boundary integral equations are frame indifferent, i.e. rule of objectivity is obeyed. Adaptive observer system is chosen to fully employ the property of degenerate kernels. Fig. 2 shows the boundary integration for the circular boundaries. It is worthy noted that the origin of the observer system can be adaptively located on the center of the corresponding circle under integration to fully utilize the geometry of circular boundary. The dummy variable in the integration on the circular boundary is just the angle \((\theta) \) instead of the radial coordinate \((R) \). By using the adaptive system, all the boundary integrals can be determined analytically free of principal value.
2.5 Vector decomposition technique for the potential gradient in the hypersingular formulaion

Since hypersingular equation plays an important role for dealing with fictitious frequencies, potential gradient of the field quantity is required to calculate. For the eccentric case, the field point and source point may not locate on the circular boundaries with the same center except the two points on the same circular boundary or on the annular cases. Special treatment for the normal derivative should be taken care. As shown in Fig. 3 where the origins of observer system are different, the true normal direction \(\hat{e}_1 \) with respect to the collocation point \(x \) on the \(B_j \) boundary should be superimposed by using the radial direction \(\hat{e}_3 \) and angular direction \(\hat{e}_4 \). We call this treatment “vector decomposition technique”. According to the concept, Eqs. (12) and (13) can be modified as

\[
L(s, x) = \left\{ \begin{array}{ll}
\frac{-\pi ki}{2} \sum_{m=-\infty}^{\infty} J'_m(k \rho) H^{(1)}_m(k \rho) \cos(m(\theta - \phi)) \cos(\phi - \phi_j) \\
- \frac{m}{k \rho} J'_m(k \rho) H^{(1)}_m(k \rho) \sin(m(\theta - \phi)) \sin(\phi - \phi_j), R > \rho \\
\end{array} \right.
\]

\[
M(s, x) = \left\{ \begin{array}{ll}
\frac{-\pi ki}{2} \sum_{m=-\infty}^{\infty} H^{(1)}_m(k \rho) J'_m(k \rho) \cos(m(\theta - \phi)) \cos(\phi - \phi_j) \\
- \frac{m}{k \rho} J'_m(k \rho) H^{(1)}_m(k \rho) \sin(m(\theta - \phi)) \sin(\phi - \phi_j), R > \rho \\
\end{array} \right.
\]

2.6 Linear Algebraic Equation

In order to calculate the \(2P+1 \) unknown Fourier coefficients, \(2P+1 \) boundary points on each circular boundary are needed to be collocated. By collocating the null-field point exactly on the \(k \)th circular boundary for Eqs. (8) and (9) as shown in Fig. 4 (a), we have

\[
0 = \sum_{j=1}^{N} \int_{B_j} T(s, x_k) u(s) dB(s) - \sum_{j=1}^{N} \int_{B_j} U(s, x_k) u(s) dB(s), x_k \in D^k \cup B
\]

\[
0 = \sum_{j=1}^{N} \int_{B_j} M(s, x_k) u(s) dB(s) - \sum_{j=1}^{N} \int_{B_j} L(s, x_k) u(s) dB(s), x_k \in D^k \cup B
\]

where \(N \) is the number of circles. It is noted that the path is anticlockwise for the outer circle. Otherwise, it is clockwise. For the \(B_j \) integral of the circular boundary, the kernels of \(U(s, x) \),
\(T(s,x) \) and \(M(s,x) \) are respectively expressed in terms of degenerate kernels of Eqs. (10), (11), (20) and (21) with respect to the observer origin at the center of \(B_j \). The boundary densities of \(u(s) \) and \(t(s) \) are substituted by using the Fourier series of Eqs. (18) and (19), respectively. In the \(B_j \) integration, we set the origin of the observer system to collocate at the center \(c_j \) of \(B_j \) to fully utilize the degenerate kernel and Fourier series. By locating the null-field point on the real boundary \(B_k \) from outside of the domain \(D^{E_{\alpha}} \) in numerical implementation, a linear algebraic system is obtained

\[
[U]\{t\} = [T]\{u\} \quad (24)
\]

\[
[L]\{t\} = [M]\{u\} \quad (25)
\]

where \([U], [T], [L]\) and \([M]\) are the influence matrices with a dimension of \(N \times (2P+1) \) by \(N \times (2P+1) \) and \([t]\) and \([u]\) denote the vectors for \(t(s) \) and \(u(s) \) of the Fourier coefficients with a dimension of \(N \times (2P+1) \) by 1. where, \([U], [T], [L], [M], \{u\}\) and \([t]\) can be defined as follows:

\[
[U] = [U_{\alpha\beta}] =
\begin{bmatrix}
U_{11} & U_{12} & \cdots & U_{1N} \\
U_{21} & U_{22} & \cdots & U_{2N} \\
\vdots & \vdots & \ddots & \vdots \\
U_{N1} & U_{N2} & \cdots & U_{NN}
\end{bmatrix}, \quad
[T] = [T_{\alpha\beta}] =
\begin{bmatrix}
T_{11} & T_{12} & \cdots & T_{1N} \\
T_{21} & T_{22} & \cdots & T_{2N} \\
\vdots & \vdots & \ddots & \vdots \\
T_{N1} & T_{N2} & \cdots & T_{NN}
\end{bmatrix}
\]

\[
[L] = [L_{\alpha\beta}] =
\begin{bmatrix}
L_{11} & L_{12} & \cdots & L_{1N} \\
L_{21} & L_{22} & \cdots & L_{2N} \\
\vdots & \vdots & \ddots & \vdots \\
L_{N1} & L_{N2} & \cdots & L_{NN}
\end{bmatrix}, \quad
[M] = [M_{\alpha\beta}] =
\begin{bmatrix}
M_{11} & M_{12} & \cdots & M_{1N} \\
M_{21} & M_{22} & \cdots & M_{2N} \\
\vdots & \vdots & \ddots & \vdots \\
M_{N1} & M_{N2} & \cdots & M_{NN}
\end{bmatrix}
\]

\[
\{u\} = \begin{bmatrix}
u_1 \\
u_2 \\
u_3 \\
\vdots \\
u_N
\end{bmatrix}, \quad
\{t\} = \begin{bmatrix}t_1 \\
t_2 \\
t_3 \\
\vdots \\
t_N
\end{bmatrix}
\]

\[
\{k\} = \begin{bmatrix}
k_{11} \\
k_{12} \\
k_{11} \\
\vdots \\
k_{N1}
\end{bmatrix}, \quad
\{k\} = \begin{bmatrix}k_{11} \\
k_{12} \\
k_{11} \\
\vdots \\
k_{N1}
\end{bmatrix}
\]

where the vectors \(\{u_k\}\) and \(\{t_k\}\) are in the form of \(\{a_0^k, a_1^k, b_1^k, \cdots, a_p^k, b_p^k\}^T\) and \(\{p_0^k, p_1^k, q_1^k, \cdots, p_p^k, q_p^k\}^T\); the first subscript “\(\alpha\)” (\(\alpha = 1,2,\ldots,N\)) in the \([U_{\alpha\beta}]\) denotes the index of the \(\alpha th\) circle where the collocation point is located and the second subscript “\(\beta\)” (\(\beta = 1,2,\ldots,N\)) denotes the index of the \(\beta th\) circle where the boundary data \(\{u_k\}\) or \(\{t_k\}\) are specified. \(N\) is the number of circular holes in the domain and \(P\) indicates the highest harmonic of truncated terms in Fourier series. The coefficient matrix of the linear algebraic system is partitioned into blocks, and each diagonal block \((U_{\alpha\beta}, p \ no \ sum)\) corresponds to the influence matrices due to the same circle of collocation and Fourier expansion. After uniformly collocating
the point along the αth circular boundary, the sub-matrix can be written as

$$
\begin{bmatrix}
U_{\alpha \beta}^{0c}(\phi_1) & U_{\alpha \beta}^{1c}(\phi_1) & U_{\alpha \beta}^{1x}(\phi_1) & \cdots & U_{\alpha \beta}^{Pc}(\phi_1) & U_{\alpha \beta}^{Ps}(\phi_1) \\
U_{\alpha \beta}^{0c}(\phi_2) & U_{\alpha \beta}^{1c}(\phi_2) & U_{\alpha \beta}^{1x}(\phi_2) & \cdots & U_{\alpha \beta}^{Pc}(\phi_2) & U_{\alpha \beta}^{Ps}(\phi_2) \\
U_{\alpha \beta}^{0c}(\phi_3) & U_{\alpha \beta}^{1c}(\phi_3) & U_{\alpha \beta}^{1x}(\phi_3) & \cdots & U_{\alpha \beta}^{Pc}(\phi_3) & U_{\alpha \beta}^{Ps}(\phi_3) \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
U_{\alpha \beta}^{0c}(\phi_{2P}) & U_{\alpha \beta}^{1c}(\phi_{2P}) & U_{\alpha \beta}^{1x}(\phi_{2P}) & \cdots & U_{\alpha \beta}^{Pc}(\phi_{2P}) & U_{\alpha \beta}^{Ps}(\phi_{2P}) \\
U_{\alpha \beta}^{0c}(\phi_{2P+1}) & U_{\alpha \beta}^{1c}(\phi_{2P+1}) & U_{\alpha \beta}^{1x}(\phi_{2P+1}) & \cdots & U_{\alpha \beta}^{Pc}(\phi_{2P+1}) & U_{\alpha \beta}^{Ps}(\phi_{2P+1}) \\
\end{bmatrix}
$$

(29)

$$
\begin{bmatrix}
T_{\alpha \beta}^{0c}(\phi_1) & T_{\alpha \beta}^{1c}(\phi_1) & T_{\alpha \beta}^{1x}(\phi_1) & \cdots & T_{\alpha \beta}^{Pc}(\phi_1) & T_{\alpha \beta}^{Ps}(\phi_1) \\
T_{\alpha \beta}^{0c}(\phi_2) & T_{\alpha \beta}^{1c}(\phi_2) & T_{\alpha \beta}^{1x}(\phi_2) & \cdots & T_{\alpha \beta}^{Pc}(\phi_2) & T_{\alpha \beta}^{Ps}(\phi_2) \\
T_{\alpha \beta}^{0c}(\phi_3) & T_{\alpha \beta}^{1c}(\phi_3) & T_{\alpha \beta}^{1x}(\phi_3) & \cdots & T_{\alpha \beta}^{Pc}(\phi_3) & T_{\alpha \beta}^{Ps}(\phi_3) \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
T_{\alpha \beta}^{0c}(\phi_{2P}) & T_{\alpha \beta}^{1c}(\phi_{2P}) & T_{\alpha \beta}^{1x}(\phi_{2P}) & \cdots & T_{\alpha \beta}^{Pc}(\phi_{2P}) & T_{\alpha \beta}^{Ps}(\phi_{2P}) \\
T_{\alpha \beta}^{0c}(\phi_{2P+1}) & T_{\alpha \beta}^{1c}(\phi_{2P+1}) & T_{\alpha \beta}^{1x}(\phi_{2P+1}) & \cdots & T_{\alpha \beta}^{Pc}(\phi_{2P+1}) & T_{\alpha \beta}^{Ps}(\phi_{2P+1}) \\
\end{bmatrix}
$$

(30)

$$
\begin{bmatrix}
L_{\alpha \beta}^{0c}(\phi_1) & L_{\alpha \beta}^{1c}(\phi_1) & L_{\alpha \beta}^{1x}(\phi_1) & \cdots & L_{\alpha \beta}^{Pc}(\phi_1) & L_{\alpha \beta}^{Ps}(\phi_1) \\
L_{\alpha \beta}^{0c}(\phi_2) & L_{\alpha \beta}^{1c}(\phi_2) & L_{\alpha \beta}^{1x}(\phi_2) & \cdots & L_{\alpha \beta}^{Pc}(\phi_2) & L_{\alpha \beta}^{Ps}(\phi_2) \\
L_{\alpha \beta}^{0c}(\phi_3) & L_{\alpha \beta}^{1c}(\phi_3) & L_{\alpha \beta}^{1x}(\phi_3) & \cdots & L_{\alpha \beta}^{Pc}(\phi_3) & L_{\alpha \beta}^{Ps}(\phi_3) \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
L_{\alpha \beta}^{0c}(\phi_{2P}) & L_{\alpha \beta}^{1c}(\phi_{2P}) & L_{\alpha \beta}^{1x}(\phi_{2P}) & \cdots & L_{\alpha \beta}^{Pc}(\phi_{2P}) & L_{\alpha \beta}^{Ps}(\phi_{2P}) \\
L_{\alpha \beta}^{0c}(\phi_{2P+1}) & L_{\alpha \beta}^{1c}(\phi_{2P+1}) & L_{\alpha \beta}^{1x}(\phi_{2P+1}) & \cdots & L_{\alpha \beta}^{Pc}(\phi_{2P+1}) & L_{\alpha \beta}^{Ps}(\phi_{2P+1}) \\
\end{bmatrix}
$$

(31)

$$
\begin{bmatrix}
M_{\alpha \beta}^{0c}(\phi_1) & M_{\alpha \beta}^{1c}(\phi_1) & M_{\alpha \beta}^{1x}(\phi_1) & \cdots & M_{\alpha \beta}^{Pc}(\phi_1) & M_{\alpha \beta}^{Ps}(\phi_1) \\
M_{\alpha \beta}^{0c}(\phi_2) & M_{\alpha \beta}^{1c}(\phi_2) & M_{\alpha \beta}^{1x}(\phi_2) & \cdots & M_{\alpha \beta}^{Pc}(\phi_2) & M_{\alpha \beta}^{Ps}(\phi_2) \\
M_{\alpha \beta}^{0c}(\phi_3) & M_{\alpha \beta}^{1c}(\phi_3) & M_{\alpha \beta}^{1x}(\phi_3) & \cdots & M_{\alpha \beta}^{Pc}(\phi_3) & M_{\alpha \beta}^{Ps}(\phi_3) \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
M_{\alpha \beta}^{0c}(\phi_{2P}) & M_{\alpha \beta}^{1c}(\phi_{2P}) & M_{\alpha \beta}^{1x}(\phi_{2P}) & \cdots & M_{\alpha \beta}^{Pc}(\phi_{2P}) & M_{\alpha \beta}^{Ps}(\phi_{2P}) \\
M_{\alpha \beta}^{0c}(\phi_{2P+1}) & M_{\alpha \beta}^{1c}(\phi_{2P+1}) & M_{\alpha \beta}^{1x}(\phi_{2P+1}) & \cdots & M_{\alpha \beta}^{Pc}(\phi_{2P+1}) & M_{\alpha \beta}^{Ps}(\phi_{2P+1}) \\
\end{bmatrix}
$$

(32)

It is noted that the superscript “0s” in Eq. (29) disappears since $\sin(0\theta)=0$. And the element of $[U_{\alpha \beta}], [T_{\alpha \beta}], [L_{\alpha \beta}]$ and $[M_{\alpha \beta}]$ are defined as

$$
U_{\alpha \beta}^{n_m} = \int_{\theta} U(s_1, x_m) \cos(n\theta) R_1 d\theta_1, \quad n = 0, 1, 2, \ldots, P,
$$

(33)

$$
U_{\alpha \beta}^{n_m} = \int_{\theta} U(s_1, x_m) \sin(n\theta) R_1 d\theta_1, \quad n = 0, 1, 2, \ldots, P,
$$

(34)

$$
T_{\alpha \beta}^{n_m} = \int_{\theta} T(s_1, x_m) \cos(n\theta) R_1 d\theta_1, \quad n = 0, 1, 2, \ldots, P
$$

(35)

$$
T_{\alpha \beta}^{n_m} = \int_{\theta} T(s_1, x_m) \sin(n\theta) R_1 d\theta_1, \quad n = 0, 1, 2, \ldots, P
$$

(36)

$$
L_{\alpha \beta}^{n_m} = \int_{\theta} L(s_1, x_m) \cos(n\theta) R_1 d\theta_1, \quad n = 0, 1, 2, \ldots, P
$$

(37)
\[
L_{mn}^* = \int_{\mathcal{B}} L(s_{\cdot}, x_{\cdot}) \sin(n\theta_{\cdot}) R_{\cdot} \ d\theta_{\cdot}, \ n = 0, 1, 2, \ldots, P,
\]
\[
M_{mn}^* = \int_{\mathcal{B}} L(s_{\cdot}, x_{\cdot}) \cos(n\theta_{\cdot}) R_{\cdot} \ d\theta_{\cdot}, \ n = 0, 1, 2, \ldots, P
\]
\[
M_{mn}^{**} = \int_{\mathcal{B}} L(s_{\cdot}, x_{\cdot}) \cos(n\theta_{\cdot}) R_{\cdot} \ d\theta_{\cdot}, \ n = 0, 1, 2, \ldots, P
\]

where \(\phi_m \), \(m = 1, 2, \ldots, 2P+1 \) is the polar angle of the collocating points \(x_m \) around boundary. After obtaining the unknown Fourier coefficients, the origin of observer system is set to \(c_j \) in the \(B_j \) integration as shown in Fig. 4 (b) to obtain the interior potential by employing Eq. (2). The flowchart of the present method is shown in Fig. 5 and the difference with BEM is shown in Table 1.

3 Numerical results and discussion

Example 1. Nonuniform radiation problem for one radiator (Neumann boundary condition)

A non-uniform radiation problem from a sector of a cylinder is considered (Neumann boundary) as shown in Fig. 6. The analytical solution is
\[
u(r, \theta) = \frac{-2}{\pi k} \sum_{n=1}^{\infty} \frac{\sin na}{n} \frac{H_0^{(1)}(kr) H_0^{(1)}(ka)}{H_0^{(1)}(ka)} \cos n\theta, \ r \geq a, \ 0 \leq \theta \leq 2\pi
\]

We select \(\alpha = \pi/9 \) and \(ka = 1.0 \). Figure 7 shows the error analysis for the present method and BEM after comparing with the analytical solution. It can be found that the present method is superior to BEM. Figure 8 shows the contour plot for the real-part potential by using the analytical solution, BEM and present method. The analytical solution is obtained by using 15 terms in the series representations. By adopting the truncated Fourier series (P=15) in our formulation, the contour plot is obtained. Sixty-three constant elements are adopted in the dual BEM [?]. It is found that we can obtain the acceptable results by using fewer number of degrees of freedom in comparison with BEM results. The comparison seems unfair for the problems with circular boundaries. But the main gains of the present method are the exponential convergence and free of boundary layer effect where two references [19,20] can support this point.

Example 2 Scattering problem for one scatter (Dirichlet boundary condition)

For the scattering problem subject to the incident wave, this problem can be decomposed into two parts, (a) incident wave field and (b) radiation field, as shown in Fig. 9. By matching the boundary condition, the radiation boundary condition in part (b) is obtained as the minus quantity of incident wave function, e.g. \(t^R = -t^n \) for hard scatter or \(u^R = -u^n \) for soft scatter, respectively where the subscripts \(R \) and \(In \) mean radiation and incidence, respectively.
Plane wave scattering for a soft circular cylinder (Dirichlet boundary condition) is considered in Fig. 10. The analytical solution is

\[
u(r, \theta) = -\frac{J_n(ka)}{H_n^{(1)}(ka)} - H_n^{(1)}(kr) \cdot \sum_{n=1}^{\infty} \frac{J_n(ka)}{H_n^{(1)}(ka)} H_n^{(1)}(kr) \cos n\theta, \quad r \geq a, \quad 0 \leq \theta \leq 2\pi
\]

Figure 11 shows the error analysis for the present method and BEM. It can be found that the present result is superior to that of BEM. Large errors in the irregular case by using BEM are found. Figure 12 shows the contour plot for the real-part potential by using the analytical solution, BEM and the present method. The analytical solution is obtained by using fifteen terms in the series representations. By adopting the truncated Fourier series (P=15) in our formulation, the contour plot is obtained. Sixty-three constant elements are adopted in the dual BEM. Similarly, less degree of freedom is required in our formulation (31 points) to have the good accuracy after comparing with the data of BEM (63 elements) [3].

Example 3. Scattering problem for five scatters (Dirichlet boundary condition)

To demonstrate the generality of our approach for arbitrary number of radiators and scatters, plane wave scattering by five soft circular cylinders (Dirichlet boundary condition) is considered in Fig. 13. This problem was solved by using the multiple DtN approach [13]. In Fig. 14, irregular frequencies do not appear by using the present method but osculation of irregular frequencies occur by using BEM. Numerical instability of zero divided by zero in case of irregular values is overcome due to the semi-analytical nature of the present method [3,4]. Figures 15 and 16 show the contour plots of the real-part potential for \(k = \pi \) and \(k = 8\pi \), respectively. For the purpose of comparisons, we choose the data on the artificial boundary versus \(\theta \) with respect to each cylinder as show in Figs. 17 and 18. Good agreement is made. Regarding to calculation of the higher-order Hankel function, it may need special treatment. In this case, the maximum order is twenty. The computation using IMSL package for the higher-order Hankel function is feasible.

5 Conclusions

For the radiation and scattering problems with circular boundaries, we have proposed a BIEM formulation by using degenerate kernels, null-field integral equation and Fourier series in companion with adaptive observer systems and vector decomposition. This method is a semi-analytical approach for problems with circular boundaries since only truncation error in the Fourier series is involved. The method shows great generality and versatility for the problems with multiple scatters or radiators of arbitrary radii and positions. Neither hypersingular
formulation of Burton and Miller approach nor CHEEF method are required to overcome the fictitious frequencies. An acoustic problem of five scatters in the infinite plane was solved and the results were compared well with those of Grote and Kirsch.

References

Appendix: Analytical evaluation of the integrals for the kernels \((T(s,x) \text{ and } L(s,x)) \) and their limit across the boundary.

For \(n = 0 \)

\[
\begin{align*}
T^I (R, \theta; \rho, \phi) &= \sum_{m=0}^{\infty} k \frac{\pi}{2} \epsilon_m J_m (k \rho) \left[Y_m^\prime (k R) - i J_m^\prime (k R) \right] \cos \left(m (\theta - \phi) \right), R > \rho \\
T^E (R, \theta; \rho, \phi) &= \sum_{m=0}^{\infty} k \frac{\pi}{2} \epsilon_m J_m (k R) \left[Y_m (k \rho) - i J_m (k \rho) \right] \cos \left(m (\theta - \phi) \right), R < \rho
\end{align*}
\]

Orthogonal process

\[
\begin{align*}
\int_0^{2\pi} \left[\sum_{m=0}^{\infty} k \frac{\pi}{2} \epsilon_m J_m (k \rho) \left[Y_m^\prime (k R) - i J_m^\prime (k R) \right] \cos \left(m (\theta - \phi) \right) \right] \cos(n \cdot \theta) Rd\theta &= k R \pi^2 J_n (k \rho) \left[Y_n^\prime (k R) - i J_n^\prime (k R) \right], R > \rho \\
\int_0^{2\pi} \left[\sum_{m=0}^{\infty} k \frac{\pi}{2} \epsilon_m J_m (k \rho) \left[Y_m (k \rho) - i J_m (k \rho) \right] \cos \left(m (\theta - \phi) \right) \right] \sin(n \cdot \theta) Rd\theta &= 0, R > \rho \\
\int_0^{2\pi} \left[\sum_{m=0}^{\infty} k \frac{\pi}{2} \epsilon_m J_m^\prime (k R) \left[Y_m (k \rho) - i J_m (k \rho) \right] \cos \left(m (\theta - \phi) \right) \right] \cos(n \cdot \theta) Rd\theta &= k R \pi^2 J_n^\prime (k R) \left[Y_n (k \rho) - i J_n (k \rho) \right], R < \rho \\
\int_0^{2\pi} \left[\sum_{m=0}^{\infty} k \frac{\pi}{2} \epsilon_m J_m^\prime (k R) \left[Y_m (k \rho) - i J_m (k \rho) \right] \cos \left(m (\theta - \phi) \right) \right] \sin(n \cdot \theta) Rd\theta &= 0, R < \rho
\end{align*}
\]
\[
\text{Limit } \rho \to R \quad \text{for } n = 0 \\
\begin{align*}
T^I : \lim_{\rho \to R} \left[k R \pi^2 J_0 (k \rho) \left[Y'_0 (k R) - i J'_0 (k R) \right] \right] &= k R \pi^2 J_0 (k \rho) \left[Y'_0 (k R) - i J'_0 (k R) \right], \quad R > \rho \\
T^E : \lim_{\rho \to R} \left[k R \pi^2 J'_0 (k \rho) \left[Y_0 (k \rho) - i J_0 (k \rho) \right] \right] &= k R \pi^2 J'_0 (k \rho) \left[Y_0 (k \rho) - i J_0 (k \rho) \right], \quad R < \rho \\
\end{align*}
\]
for \(n \neq 0 \)
\[
\begin{align*}
T^I : \lim_{\rho \to R} \left[k R \pi^2 J_0 (k \rho) \left[Y'_0 (k R) - i J'_0 (k R) \right] \cos (n \phi) \right] &= k R \pi^2 J_0 (k \rho) \left[Y'_0 (k R) - i J'_0 (k R) \right] \cos (n \phi), \quad R > \rho \\
T^E : \lim_{\rho \to R} \left[k R \pi^2 J'_0 (k \rho) \left[Y_0 (k \rho) - i J_0 (k \rho) \right] \sin (n \phi) \right] &= k R \pi^2 J'_0 (k \rho) \left[Y_0 (k \rho) - i J_0 (k \rho) \right] \sin (n \phi), \quad R > \rho \\
T^E : \lim_{\rho \to R} \left[k R \pi^2 J'_0 (k \rho) \left[Y_0 (k \rho) - i J_0 (k \rho) \right] \cos (n \phi) \right] &= k R \pi^2 J'_0 (k \rho) \left[Y_0 (k \rho) - i J_0 (k \rho) \right] \cos (n \phi), \quad R < \rho \\
T^I : \lim_{\rho \to R} \left[k R \pi^2 J'_0 (k \rho) \left[Y_0 (k \rho) - i J_0 (k \rho) \right] \sin (n \phi) \right] &= k R \pi^2 J'_0 (k \rho) \left[Y_0 (k \rho) - i J_0 (k \rho) \right] \sin (n \phi), \quad R < \rho \\
\end{align*}
\]
(jump for \(R^- < \rho < R^+ \))
\[L(s, x) \text{ and } \int_0^1 L(s, x) t dB(t) \]

Degenerate kernel

\[
L(s, x) = \begin{cases}
L^1(R, \theta; \rho, \phi) = \sum_{m=0}^{\infty} \frac{k \pi}{2} e_m J_m(k \rho) [Y_m(k R) - i J'_m(k R)] \cos(m(\theta - \phi)), & R > \rho \\
L^2(R, \theta; \rho, \phi) = \sum_{m=0}^{\infty} \frac{k \pi}{2} e_m J_m(k \rho) [Y'_m(k R) - i J_m(k R)] \cos(m(\theta - \phi)), & R < \rho
\end{cases}
\]

Orthogonal process

for \(n = 0 \)

\[
L^1 : \begin{cases}
\int_0^{2\pi} \left[\sum_{m=0}^{\infty} \frac{k \pi}{2} e_m J_m(k \rho) [Y_m(k R) - i J'_m(k R)] \cos(m(\theta - \phi)) \right] \cos(0 \cdot \phi) Rd\theta = k R \pi^2 J'_m(k \rho) [Y'_m(k R) - i J_m(k R)], & R > \rho \\
\int_0^{2\pi} \left[\sum_{m=0}^{\infty} \frac{k \pi}{2} e_m J_m(k \rho) [Y_m(k R) - i J'_m(k R)] \sin(m(\theta - \phi)) \right] \sin(0 \cdot \phi) Rd\theta = 0, & R > \rho
\end{cases}
\]

\[
L^2 : \begin{cases}
\int_0^{2\pi} \left[\sum_{m=0}^{\infty} \frac{k \pi}{2} e_m J_m(k \rho) [Y'_m(k R) - i J_m(k R)] \cos(m(\theta - \phi)) \right] \cos(0 \cdot \phi) Rd\theta = k R \pi^2 J_m(k \rho) [Y_m(k R) - i J'_m(k R)], & R < \rho \\
\int_0^{2\pi} \left[\sum_{m=0}^{\infty} \frac{k \pi}{2} e_m J_m(k \rho) [Y'_m(k R) - i J_m(k R)] \sin(m(\theta - \phi)) \right] \sin(0 \cdot \phi) Rd\theta = 0, & R < \rho
\end{cases}
\]

for \(n \neq 0 \)

\[
L^1 : \begin{cases}
\int_0^{2\pi} \left[\sum_{m=0}^{\infty} \frac{k \pi}{2} e_m J_m(k \rho) [Y_m(k R) - i J'_m(k R)] \cos(m(\theta - \phi)) \right] \cos(n \cdot \phi) Rd\theta = k R \pi^2 J'_m(k \rho) [Y'_m(k R) - i J_m(k R)] \cos(n \phi), & R > \rho \\
\int_0^{2\pi} \left[\sum_{m=0}^{\infty} \frac{k \pi}{2} e_m J_m(k \rho) [Y_m(k R) - i J'_m(k R)] \sin(m(\theta - \phi)) \right] \sin(n \cdot \phi) Rd\theta = k R \pi^2 J_m(k \rho) [Y_m(k R) - i J'_m(k R)] \sin(n \phi), & R > \rho
\end{cases}
\]

\[
L^2 : \begin{cases}
\int_0^{2\pi} \left[\sum_{m=0}^{\infty} \frac{k \pi}{2} e_m J_m(k \rho) [Y'_m(k R) - i J_m(k R)] \cos(m(\theta - \phi)) \right] \cos(n \cdot \phi) Rd\theta = k R \pi^2 J_m(k \rho) [Y'_m(k R) - i J'_m(k R)] \cos(n \phi), & R < \rho \\
\int_0^{2\pi} \left[\sum_{m=0}^{\infty} \frac{k \pi}{2} e_m J_m(k \rho) [Y'_m(k R) - i J_m(k R)] \sin(m(\theta - \phi)) \right] \sin(n \cdot \phi) Rd\theta = k R \pi^2 J_m(k \rho) [Y'_m(k R) - i J'_m(k R)] \sin(n \phi), & R < \rho
\end{cases}
\]
Limit \(\rho \to R \) for \(n = 0 \)

\[
L^L : \lim_{\rho \to R^+} \left[kR\pi^2J_n'(k\rho) \left[Y_n(kR) - iJ_n(kR) \right] \right] = kR\pi^2J_n'(kR) \left[Y_n(kR) - iJ_n(kR) \right], \quad R > \rho
\]

\[
L^R : \lim_{\rho \to R^+} \left[kR\pi^2J_n'(k\rho) \left[Y'_n(k\rho) - iJ'_n(k\rho) \right] \right] = kR\pi^2J_n'(kR) \left[Y'_n(k\rho) - iJ'_n(k\rho) \right], \quad R < \rho
\]

for \(n \neq 0 \)

\[
L^L : \begin{cases}
\lim_{\rho \to R^+} \left[kR\pi^2J_n'(k\rho) \left[Y_n(kR) - iJ_n(kR) \right] \cos(n\phi) \right] = kR\pi^2J_n'(kR) \left[Y_n(kR) - iJ_n(kR) \right] \cos(n\phi), & R > \rho \\
\lim_{\rho \to R^+} \left[kR\pi^2J_n'(k\rho) \left[Y_n(kR) - iJ_n(kR) \right] \sin(n\phi) \right] = kR\pi^2J_n'(kR) \left[Y_n(kR) - iJ_n(kR) \right] \sin(n\phi), & R > \rho
\end{cases}
\]

\[
L^R : \begin{cases}
\lim_{\rho \to R^+} \left[kR\pi^2J_n'(k\rho) \left[Y_n'(k\rho) - iJ_n'(k\rho) \right] \cos(n\phi) \right] = kR\pi^2J_n'(kR) \left[Y_n'(k\rho) - iJ_n'(k\rho) \right] \cos(n\phi), & R < \rho \\
\lim_{\rho \to R^+} \left[kR\pi^2J_n'(k\rho) \left[Y_n'(k\rho) - iJ_n'(k\rho) \right] \sin(n\phi) \right] = kR\pi^2J_n'(kR) \left[Y_n'(k\rho) - iJ_n'(k\rho) \right] \sin(n\phi), & R < \rho
\end{cases}
\]

(jump for \(R^+ < \rho < R^- \))
Table 1 The difference between the present method and BEM

<table>
<thead>
<tr>
<th>Method</th>
<th>System</th>
<th>Auxiliary system</th>
<th>Coordinate system</th>
<th>Boundary integral</th>
<th>Formulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present method</td>
<td></td>
<td>Degenerate kernel</td>
<td>Adaptive observer system</td>
<td>No principal Value</td>
<td>Null-field integral equations</td>
</tr>
<tr>
<td>BEM</td>
<td></td>
<td>Fundamental solution</td>
<td>Fixed observer system</td>
<td>Principal values (CPV, RPV and HPV)</td>
<td>Boundary integral equation for boundary point</td>
</tr>
</tbody>
</table>

where RPV, CPV and HPV denote Riemann principle value, Cauchy principle value and Hardmard principle value.
Figure captions

(a) Problem statement for 2-D exterior radiators

(b) Problem statement for 2-D exterior scatters

Fig. 1 Problem statement
Fig. 2 Adaptive observer system.

Fig. 3 Vector decomposition for potential gradient in the hypersingular equation.
(a) Null-field integral equation. (x move to B from D^c)

\[(\nabla^2 + k^2)u(x) = 0, \forall x \in D\]

(b) Boundary integral equation for the domain point.

\[(\nabla^2 + k^2)u(x) = 0, \forall x \in D\]

Fig. 4 Boundary integral formulation
Helmholtz problems with circular boundaries

Null-field integral equation [Eq. (8) and (9)]

Expansion

Fundamental solution
Degenerate kernel [Eqs. (10), (11), (20) and (21)]

Circular boundary density
Fourier series [Eqs. (18) and (19)]

Adaptive observer system

Collocating to the null-field point and matching of B.C.

Algebraic system

Obtain unknown Fourier coefficients

BIE for the domain point [Eq. 2]

Fig. 5 The flowchart of the present method
Analytical solution:
\[u(r, \theta) = -\frac{2}{\pi k} \sum_{n=0}^{\infty} \sin n \alpha \frac{H_n^{(1)}(kr)}{H_n^{(1)}(ka)} \cos n \theta \]

\[(\nabla^2 + k^2)u(r, \theta) = 0, \ (r, \theta) \in D \quad \Gamma_{\infty} \]

\[t(a, \theta) = 0 \quad -\alpha < \theta < \alpha \]

Fig. 6 Nonuniform radiator problem (Neumann).

Fig. 7 The error analysis between the present method and BEM
Fig. 8 The contour plot for the real-part solutions by using different method.
Fig. 9 The decomposition of superposition of scattering problem into (a) incident wave field and (b) radiation field.
Analytical solution: \[u(r, \theta) = -\frac{J_0(ka)}{H_0^{(1)}(ka)} H_0^{(1)}(kr) - 2 \sum_{n=1}^{\infty} \frac{J_n(ka)}{H_n^{(1)}(ka)} H_n^{(1)}(kr) \cos n\theta \]

Fig. 10. Sketch of the scattering problem (Dirichlet condition) for a cylinder.

Fig. 11. The error analysis between the present method and BEM.
Fig. 12 The contour plot for the real-part solutions by different methods, $k = \pi$.

(a) Analytical solution (n=15)

(b) BEM (Element No.=63)

(c) Present method (P=15)
Fig. 13 The plane wave scattering by five circular cylinders with the center positions
((0, 0), (1.5, 1.5), (-1.5, 1.5), (-1.5, -1.5), (1.5, -1.5)) and the corresponding radii
(0.5, 0.4, 0.3, 0.6, 0.3), (1) $k = \pi$ and (2) $k = 8\pi$, incidence angle $\gamma = \frac{\pi}{8}$.

Fig. 14 The positions of irregular values using different methods of center circle.
Fig. 15 The contour plot of the real-part solutions of total field for $k = \pi$.

(a) $k = \pi$ (present method, $P=20$)

(b) $k = \pi$ (multiple DtN method, $N=50$)
Fig. 16 The contour plot of the real-part solutions of total field for $k = 8\pi$.

(a) $k = 8\pi$ (present method, $P=20$)

(b) $k = 8\pi$ (multiple DtN method, $N=50$)

Contour levels at $-2.5 + j \times 0.5^9, j=0,...,9$
Fig. 17 The real part of total field on the five artificial boundary components versus θ by using different methods for $k = \pi$.
Fig. 18 The real part of total field on the five artificial boundary components versus θ by using different methods for $k = 8\pi$.
Self-evaluation
1. According to our proposal, we have succeeded in solving problems of multiple radiators and scatters.
2. A keynote lecture of ICCES 2005 was delivered in India.
3. One SCI paper is now in revision,
4. For more details, please visit our web site of http://ind.ntou.edu.tw/~msvlab/.