行政院國家科學委員會專題研究計畫 成果報告

邊界元素法求解板問題中退化尺度之研究

計畫類別：個別型計畫
計畫編號：
執行期間：年月日至年月日
執行單位：國立臺灣海洋大學河海工程學系暨研究所

計畫主持人：陳正宗
計畫參與人員：陳正宗、吳清森、沈文成、林建華

報告類型：精簡報告
處理方式：本計畫可公開查詢

中華民國 年 月 日
行政院國家科學委員會補助專題研究計畫

成果報告

邊界元素法求解板問題中退化尺度之研究

計畫類別：■ 個別型計畫 □ 整合型計畫
計畫編號：NSC －93－2211－E－019－010
執行期間： 93 年 8 月 1 日至 94 年 7 月 31 日

計畫主持人：陳正宗
共同主持人：陳桂鴻
計畫參與人員：吳清森、沈文成、林建華

成果報告類型（依經費核定清單規定繳交）：■ 精簡報告 □ 完整報告

本成果報告包括以下應繳交之附件：
□ 赴國外出差或研習心得報告一份
□ 赴大陸地區出差或研習心得報告一份
■ 出席國際學術會議心得報告及發表之論文各三份
□ 國際合作研究計畫國外研究報告書一份

處理方式：除產學合作研究計畫、提升產業技術及人才培育研究計畫、
列管計畫及下列情形者外，得立即公開查詢
□ 涉及專利或其他智慧財產權，□ 一年 □ 二年後可公開查詢

執行單位：

中華民國 94 年 10 月 31 日
1. Introduction

During the recent decades, BEM has been recognized as an effective approach in numerical analysis over than the FDM and FEM for some specific problems. But, there are some pitfalls imbedded in the BEM, e.g., the degenerate scale [9, 12] and fictitious frequency [14] regarding to the solvability of formulations. Many treatments were employed to overcome the rank-deficiency problem e.g., rigid body motion method [13], SVD updating technique [13], Burton and Miller concept [10]. It is well known that the special geometry size may result in a nonunique solution for potential problems, and the size is coined degenerate scale. It means that the term “scale” stems from the fact that degenerate mechanism depends on the geometry size used when the BEM is implemented. The degenerate scale problems (nonuniqueness) in BEM for potential problem [23] and plane elasticity [2, 17, 21, 22] have been done even for the plate problem (biharmonic equation) [18, 24] and numerical experiments have been performed [9]. Chen et al. [9, 12] have determined the degenerate scale for Laplace and Navier operators by using circulant and series expansion in terms of degenerate kernel for fundamental solutions [20]. For the degenerate scale of multiply-connected domain problems, Tomlinson et al. [30] and Mitra and Das [26] have solved for Laplace and biharmonic equations using BEM, respectively. In the recent work, Chen et al. [9] studied the degenerate scale for simply-connected and multiply-connected problems by using degenerate kernel and circulant in a discrete model for circular and annular cases. However, to the authors’ best knowledge, the skill of degenerate kernel has not been employed to study the degenerate scale problem of plate. This paper employs the degenerate kernel as a mathematical tool to study the degenerate scale problem of plate.

From the mathematical point of view, we solve harmonic problems by means of Green’s identity which leads to integral equations for the direct BEMs. This equation does not have a unique solution for certain boundary curves (Γ contour in [25]) and they are characterized by means of the logarithmic capacity [3, 19] (or transfinite bound-
ary, mapping radius, conformal radius). For a circle, the logarithmic capacity is equal to the radius. A rigorous study was proposed mathematically by Chudinovich and Costanda [4, 5, 6, 7, 8, 17] and Christiansen [3] for the plate problem (biharmonic equation) on the occurring mechanism of the degenerate scale. Although mathematicians [3] also encountered the nonunique problem in BIEM, the addressed BIEs are not the same as those used by the BEM researchers. Numerical difficulties due to nonuniqueness of solutions have been overcome by employing the necessary and sufficient boundary integral equation (NSBIE) and boundary contour method [27, 29]. In the other hand, engineers always used the BEM program as a black box. Therefore, they may not understand the possible failure of the method and may take risk when a degenerate scale occurs. We will fill the gap between the mathematicians and engineers and demonstrate how the degenerate scale problem occurs.

In this paper, the biharmonic operator instead of the Laplacian or Navier operator is considered. The static plate problem is solved by using the BIEM and BEM in the continuous and discrete models, respectively. In the conventional BEM for the Laplace and the Navier problems, we have proved the existence of one (Laplace) and two (Navier) degenerate scales when the geometry is special. Theoretical results for the degenerate scale of biharmonic operator for rectangles and triangles have been done by Costabel and Dauge [19]. Numerical results using the symmetric Galerkin BEM for ellipse and multiply connected problems were also given by Vodička and Mantić [31]. The fact that the number of degenerate scales for the Navier equation can be one or two was also found [19]. Engineers always do not take notice of the number of degenerate scales for the biharmonic problem. Since any two boundary integral equations in the plate formulation (essential and natural sets) can be chosen, six (C^2_0) approaches can be considered. We may wonder how many degenerate scales may appear in the BIEM and BEM for plate problems. By using the six options, we have different degenerate scales for each choice. In the discrete model, the series expansion in terms of degenerate kernel for the fundamental solution and circulant are employed to study the rank-deficiency problem in the influence matrix. The occurring mechanism of degenerate scale for simply-connected plate problems in each formulation is studied analytically by using the continuous and discrete models. Besides, the similar properties of degenerate scale between the membrane (Laplace) and plate (biharmonic) problems are examined. The nontrivial modes, rigid body mode and spurious mode, for the Laplace and biharmonic problems are studied. Finally, the number of degenerate scales for each boundary integral formulation is determined.

2. Dual boundary integral equations for simply-connected biharmonic problems

Consider the Kirchhoff plate [1] under distributed load $w(x)$ as shown in Fig.1, the governing equation is written as follows:

$$\nabla^4 u^*(x) = \frac{w(x)}{D}, \quad x \in \Omega, \quad (1)$$

where $u^*(x)$ is the lateral displacement, D is the flexural rigidity of the plate expressed as $D = \frac{Eh^3}{12(1-\nu^2)}$, in terms of Young’s modulus E, the Poisson ratio ν and the plate thickness h, Ω is the domain of the thin plate. For the boundary conditions of the clamped case, simply-supported case and free case, we have

$$u^*(x) = 0, \quad \theta^*(x) = 0, \quad x \in \Omega,$$

$$u^*(x) = 0, \quad m^*(x) = 0, \quad x \in \Omega,$$

$$m^*(x) = 0, \quad u^*(x) = 0, \quad x \in \Omega,$$

respectively, where B is the boundary, $\theta^*(x)$, $m^*(x)$ and $v^*(x)$ are the slope, normal moment and effective shear force, respectively. Since the governing equation contains the body force, the problem is reformulated to homogeneous PDE by using the splitting method as follows:

$$\nabla^4 u(x) = 0, \quad x \in \Omega, \quad (5)$$

and the essential boundary conditions are changed to

$$u(x) = \bar{u}(x), \quad \frac{\partial u(x)}{\partial n} = \bar{\theta}(x), \quad x \in \Omega. \quad (6)$$

The mixed-type boundary conditions are

$$u(x) = \bar{u}(x), \quad m(x) = \bar{m}(x), \quad x \in \Omega. \quad (7)$$

The natural boundary conditions are

$$m(x) = \bar{m}(x), \quad v(x) = \bar{v}(x), \quad x \in \Omega. \quad (8)$$

The operators of slope, normal moment and effective shear force are derived by

$$\theta(x) = K_{\theta, x}(u(x)) = \frac{\partial u(x)}{\partial n}, \quad (9)$$

$$m(x) = K_{m, x}(u(x)) = \nu \nabla^2 u(x) + (1 - \nu) \frac{\partial^2 u(x)}{\partial x^2}, \quad (10)$$

$$v(x) = K_{v, x}(u(x)) = \frac{\partial^2 u(x)}{\partial x^2}, \quad (11)$$

where $K_{\theta, x}(\cdot), K_{m, x}(\cdot)$ and $K_{v, x}(\cdot)$ mean the operators with respect to x; n and t are the normal vector and tangential vector, respectively.

2.1 Mathematical formulation for biharmonic problems using the dual boundary integral equations

The integral equations for the domain point of biharmonic problems can be derived from the Rayleigh-Green identity as follows [16]:

$$8\pi u(x) = \int_B \{-U(s, s) v(s) + \Theta(s, x) m(s) - M(s, x) \theta(s) + V(s, x) u(s)\} dB(s), \quad x \in \Omega, \quad (12)$$

$$8\pi \theta(x) = \int_B \{-U_\theta(s, x) v(s) + \Theta_\theta(s, x) m(s) - M_\theta(s, x) \theta(s) + V_\theta(s, x) u(s)\} dB(s), \quad x \in \Omega, \quad (13)$$

$$8\pi m(x) = \int_B \{-U_m(s, x) v(s) + \Theta_m(s, x) m(s) - M_m(s, x) \theta(s) + V_m(s, x) u(s)\} dB(s), \quad x \in \Omega, \quad (14)$$

$$8\pi v(x) = \int_B \{-U_v(s, x) v(s) + \Theta_v(s, x) m(s) - M_v(s, x) \theta(s) + V_v(s, x) u(s)\} dB(s), \quad x \in \Omega, \quad (15)$$
where s and x are the source and field points, respectively, U, Θ, M, V, U_0, Θ_0, M_0, V_0, U_m, Θ_m, M_m, V_m, U_v, Θ_v, M_v and V_v are the kernel functions which are listed in Appendix A by using the series expansion in terms of degenerate kernel. The kernel function $U(s, x)$ is the fundamental solution which satisfies

$$\nabla^2 U(x, s) = 8\pi\delta(x - s),$$

(16)

where $\delta(x - s)$ is the Dirac-delta function. Then, we can obtain the fundamental solution as follows:

$$U(x, s) = r^2\ln r,$$

(17)

where r is the distance between x and s ($r = |x - s|$). We choose the null-field integral equations to study the degenerate scale problem analytically. Once the field point x locates outside the domain, the null-field BIEs in Eqs.(12)-(15) yield

$$0 = \int_B\left(-U(s, x)v(s) + \Theta(s, x)u(s)\right) d\Gamma(s), x \in \Omega^c,$$

(18)

$$0 = \int_B\left(-U_0(s, x)v(s) + \Theta_0(s, x)m(s)\right) d\Gamma(s), x \in \Omega^c,$$

(19)

$$0 = \int_B\left(-U_m(s, x)v(s) + \Theta_m(s, x)m(s)\right) d\Gamma(s), x \in \Omega^c,$$

(20)

$$0 = \int_B\left(-U_v(s, x)v(s) + \Theta_v(s, x)m(s)\right) d\Gamma(s), x \in \Omega^c,$$

(21)

where Ω^c is the complementary domain. By using the series expansion in terms of degenerate kernel, the BIE for the “boundary point” is derived easily through the null-field integral equation without the jump and free terms. When the boundary is uniformly discretized into $2N$ constant elements, the linear algebraic equations of Eqs.(18)-(21) by moving the field point x close to the boundary B^+ are obtained as follows:

$$[U_{ij}]\{v_j\} + [M_{ij}]\{\theta_j\} = \{\Theta_{ij}\}\{m_j\} + \{V_{ij}\}\{u_j\},$$

(22)

$$[U_{ij}^c]\{v_j\} + [M_{ij}^c]\{\theta_j\} = \{\Theta_{ij}^c\}\{m_j\} + \{V_{ij}^c\}\{u_j\},$$

(23)

$$[U_{ij}^m]\{v_j\} + [M_{ij}^m]\{\theta_j\} = \{\Theta_{ij}^m\}\{m_j\} + \{V_{ij}^m\}\{u_j\},$$

(24)

$$[U_{ij}^v]\{v_j\} + [M_{ij}^v]\{\theta_j\} = \{\Theta_{ij}^v\}\{m_j\} + \{V_{ij}^v\}\{u_j\},$$

(25)

where $[U_{ij}]$, $[\Theta_{ij}]$, $[M_{ij}]$, $[V_{ij}]$, $[\theta_i]$, $[M_{ij}^c]$, $[V_{ij}^c]$, $[\Theta_{ij}^c]$, $[M_{ij}^m]$, $[V_{ij}^m]$, $[\Theta_{ij}^m]$, $[M_{ij}^v]$, $[V_{ij}^v]$, $[\Theta_{ij}^v]$ are the sixteen influence matrices with a dimension $2N \times 2N$, $\{u_j\}$, $\{\theta_j\}$, $\{m_j\}$ and $\{v_j\}$ are the vectors of boundary data with a dimension $2N \times 1$. After substituting the boundary condition, we expand the sixteen kernel functions into series form in terms of degenerate kernels [32] and substitute them into boundary integral formulation in the continuous and discrete models. To derive the degenerate scale analytically, a circular plate is demonstrated.

2.2 Existence of the degenerate scale for a circular plate — continuous model (BIEM)

For the clamped, simply-supported and free circular plates, we demonstrate the existence of degenerate scale by employing the BIEs in the continuous model. Since any two BIEs in the plate formulation (essential and natural sets) are chosen, six (C^2_2) options are considered. Although a circular case lacks generality, it leads significant insight into the occurring mechanism of degenerate scale.

For the clamped plate, the moment and shear force, $m(s)$ and $v(s)$, are expanded into Fourier series as shown below:

$$m(s) = p_0^c + \sum_{n=1}^{\infty} (p_n^c \cos(n\theta) + q_n^c \sin(n\theta)), \quad s \in B,$$

(26)

$$v(s) = a_0^c + \sum_{n=1}^{\infty} (a_n^c \cos(n\theta) + b_n^c \sin(n\theta)), \quad s \in B,$$

(27)

where p_0^c, p_n^c, q_0^c, q_n^c, a_0^c and b_n^c are the undetermined Fourier coefficients for $m(s)$ and $v(s)$, θ is the angle on the circular boundary and the superscript c denotes the clamped case. By using the null-field integral equations of Eqs.(18) and (19), the clamped boundary conditions, $\overline{u}(s)$ and $\overline{\theta}(s)$, are substituted. By using the series expansion in terms of degenerate kernel and substituting the boundary densities in Eqs.(26) and (27) into the BIEs, we have

$$f_1^c(\phi) = -\int_0^{2\pi} U(s, x)[a_0^c + \sum_{n=1}^{\infty} (a_n^c \cos(n\phi) + b_n^c \sin(n\phi))] d\phi,$$

(28)

$$f_2^c(\phi) = -\int_0^{2\pi} U_0(s, x)[a_0^c + \sum_{n=1}^{\infty} (a_n^c \cos(n\phi) + b_n^c \sin(n\phi))] d\phi,$$

(29)

where f_1^c and f_2^c are the terms due to the specified boundary conditions. Moreover, f_1^c and f_2^c can be expressed in terms of Fourier series

$$f_1^c(\phi) = g_0^c + \sum_{n=1}^{\infty} [g_n^c \cos(n\phi) + h_n^c \sin(n\phi)],$$

(30)

$$f_2^c(\phi) = g_0^c + \sum_{n=1}^{\infty} [g_n^c \cos(n\phi) + h_n^c \sin(n\phi)],$$

(31)

where the coefficients g_0^c, g_n^c, h_n^c, g_n^c, q_n^c, h_n^c and q_n^c are all known. In this case, we have the $R = \rho = a$ for the direct BIEM and $d\bar{B}(s) = a d\theta$ for the circular plate with radius a. By employing the orthogonality condition of the Fourier bases, we construct the relations of the Fourier coefficients among a_n^c, b_n^c, p_n^c and q_n^c. Combining the two integral equations in Eqs.(28) and (29) and comparing with the coefficients, we assemble them into the matrix forms as shown below:

$$[SM_n^c]_{2 \times 2} \left\{ \begin{array}{c} a_m^c \\ p_m^c \end{array} \right\} = \left\{ \begin{array}{c} g_m^c \\ h_m^c \end{array} \right\}, \quad m = 0, 1, 2, 3, \ldots$$

(32)

$$[SM_n^c]_{2 \times 2} \left\{ \begin{array}{c} b_m^c \\ q_m^c \end{array} \right\} = \left\{ \begin{array}{c} h_m^c \\ a_m^c \end{array} \right\}, \quad m = 1, 2, 3, \ldots$$

(33)
of value e^{-1} is the degenerate scale. In other words, we encounter the nonunique solution in mathematics because the matrices of $[SM]_{1}^{2}$ and $[SM]_{2}^{2}$ may be singular. By the same way, the degenerate scale of the simply-supported and free plates can be derived in Table 1.

2.3 Existence of the degenerate scale for a circular plate — discrete model (BEM)

For the clamped case, Eqs (22) and (23) can be rewritten as

\[
\begin{align*}
\{f_{1}\} &= [-U]\{v\} + [\Theta]\{m\}, \\
\{f_{2}\} &= [-U_{0}]\{v\} + [\Theta_{0}]\{m\}.
\end{align*}
\]

(34) \quad (35)

By assembling Eqs.(34) and (35) together, we have

\[
[SM]_{c}\left\{ \begin{array}{c}
\nu \\
m
\end{array}\right\} = \left\{ \begin{array}{c}
f_{1}^{c} \\
\end{array}\right\}
\]

(36)

where

\[
[SM]_{c} = \left[\begin{array}{cc}
-U & \Theta \\
-U_{0} & \Theta_{0}
\end{array}\right]_{4N	imes 4N}.
\]

(37)

Since the rotation symmetry is preserved for a circular boundary with uniform nodes, the influence matrices for the discrete model are found to be circulants. Therefore, we have [32]

\[
det[SM]_{c} = \left\{ \begin{array}{c}
8\pi^{2}a^{4}[1 + \ln(a) + (\ln(a))^{2}], t = 0, \\
4\pi^{2}a^{4}[1 + \ln(a)], t = \pm 1, \\
-2\pi^{2}a^{4}\left[\frac{1}{\ln(a)}\right], t \geq 1
\end{array}\right\}_{l = \pm 2, \pm 3, \ldots, \pm (N - 1), \pm N}.
\]

(38)

According to the zero determinant of the $[SM]_{c}$ matrix, we examine the existence of the degenerate scales. For the case of $l = 0$ in Eq.(38), the term of $1 + \ln(a) + (\ln(a))^{2}$ is positive for any value of a. We obtain the possible degenerate scales and find the occurring mechanism of the degenerate scales in the discrete model by using the circulants for the circular plate. In the clamped case, we have the degenerate scale e^{-1} when $1 + \ln(a)$ approaches zero. The result of the Eq.(38) in the discrete model matches well in the continuous model. Similary, the degenerate scales of simply-supported and free plates can be determined without any difficulty.

2.4 Discussion on nonuniqueness and relation of degenerate scale between the Laplace and biharmonic equations

The existence of nonuniqueness in the solution of boundary value problems (BVPs) by means of various integral representation can be categorized to three types. One is that the rigid body solution is imbedded in the boundary integral formulation for the Neumann or traction problem. Another kind of nonuniqueness appears in plane BVP where a degenerate (critical) scale results in the zero eigenvalue of the influence matrix. The other kind of non-unique solutions occur when the hypersingular or traction BIE is applied especially for multiply-connected problems.

Let us focus on the relation between the degenerate scale problem in the Laplace and biharmonic problems subject to different boundary conditions. For the Laplace problem, the phenomenon of degenerate scale, $ln(a) = 0$, occurs when using the singular (UT) formulation to solve the Dirichlet problem as shown in Fig.2. The occurrence of the degenerate scale is mathematically realizable. But there are no degenerate scale for the Neumann problem when using the singular (UT) or hypersingular (LM) formulations. However, zero eigenvalue arises naturally due to the rigid body solution in physics. The outcome is physically realizable. For the biharmonic problem, we have the six boundary integral equations for the plate subject to three kinds of boundary conditions. We find that the mechanism of degenerate scale of the clamped and simply-supported cases of biharmonic problems are similar to those of the Dirichlet problem of Laplace equation. By employing the boundary integral equations for the two boundary conditions, the former five approaches result in degenerate scales and the last one ($m - v$ formulation) does not have any degenerate scales for constrained problems. This fact agrees with the result that LM formulation can solve the Dirichlet problem of Laplace equation without any difficulty since the determinant of the influence matrix is never zero [9, 11, 13]. For the free case, the results are similar to the Neumann problem for the Laplace equation. It is noted that there is a rigid body solution for the Laplace problem subject to the Neumann boundary condition. On the other hand, we have three rigid body modes of the biharmonic problem for the free case in both the continuous and discrete models.

3. Discussions for the number of degenerate scales

In Section 2, we have demonstrated the existence of the degenerate scales which depends on the formulations instead of the boundary conditions. Chen et al. [9] have solved the degenerate scale problem for the Laplace equation successfully as shown in Fig.2. Here, we discuss the number of the degenerate scales in each formulation for the clamped, simply-supported and free problems as shown in Table 1. We consider the fixed and simply-supported problems together since no degenerate scale occurs in the free case. For the $u - \theta$ formulation, we have only one degenerate scale with the radius a which approaches $e^{-1} (1 + \ln(a) = 0)$ for any value of the Poison ratio ν. We plot the graphs of contour form and 3-D view for $\nu (-1 < \nu \leq 0.5)$ and the radius $a (0 < a < 1.2)$ as shown in Fig.3(a). Let us consider the contour plot of $u - m$ formulation, we may have two or three degen-
erate scales when \(\nu \) is fixed in Fig.3(b). For the \(u - v \) and \(\theta - m \) formulations, we have one or two degenerate scales as shown in Figs.3(c) and (d), respectively. By using the \(\theta - v \) formulation, there is only one degenerate scale occurs when \(\nu \) is fixed in Fig.3(e). No degenerate scale occurs in the \(m - v \) formulation as shown in Table 2 and Fig.3(f). It is obvious to find that we have at least one degenerate scale and have three at most when using the boundary element method except the \(u - \theta \) formulation. Furthermore, we find that the occurring mechanism of degenerate scale depends on the Poisson ratio for the five formulations except \(u - \theta \) formulation. Briefly speaking, the \(m - v \) formulation is free of degenerate scale in sacrifice of using more complex kernels in a similar way of hypersingular formulation (LM equation) for the Laplace problem. From this study, we can predict the possible failure when using the BIEM/BEM to solve plate problems in advance.

4. Illustrative examples

Case 1:

According to the dual integral equations of Eqs.(18) and (21) to derive the analytical solution for the biharmonic problem in Fig.4 [28] as follows:

\[\nabla^4 u(x) = 0, \quad x \in \Omega \]

subject to the essential boundary conditions

\[u(x) = 0, \quad x \in B \]

\[\frac{\partial^2 u(x)}{\partial n^2} = \begin{cases} -1, & \theta_0 < \theta < \theta_1 \\ 0, & 0 < \theta < 2\pi + \theta_0 \end{cases} \quad x \in B \]

where \(\Omega \) is a circular domain with radius \(a \). The boundary densities of \(u(x) \) and \(\frac{\partial^2 u(x)}{\partial n^2} \) are expanded in terms of Fourier series

\[u(x) = g_0 + \sum_{m=1}^{\infty} (g_m \cos(m\phi) + h_m \sin(m\phi)), \]

\[\frac{\partial^2 u(x)}{\partial n^2} = g_0^* + \sum_{m=1}^{\infty} (g_m^* \cos(m\phi) + h_m^* \sin(m\phi)), \]

where the specified Fourier coefficients are

\[g_0 = g_m = h_m = 0, \]

\[g_0^* = \frac{1}{2\pi} (\theta_1 - \theta_0), \]

\[g_m^* = \frac{1}{m\pi} (\sin m\theta_1 - \sin m\theta_0), \]

\[h_m^* = \frac{1}{m\pi} (\cos m\theta_1 - \cos m\theta_0). \]

By utilizing the null-field integral equation in conjunction with Fourier series and the series expansion in terms of degenerate kernels for fundamental solutions, we can derive the series solution. For simplicity, we choose \(\theta_0 = \frac{\pi}{2} \) and \(\theta_1 = \frac{3\pi}{2} \). By substituting the density functions of Eqs.(26) and (27) and expanding the fundamental solution in terms of degenerate kernel into the null-field integral equations, \(u - \theta \) formulation, the Fourier coefficients for \(m(s) \) and \(v(s) \) in Eqs.(18) and (19) are obtained as shown below:

\[p_0 = \frac{-1 + \nu}{2a}, \]

\[p_1 = \frac{-2(\nu + 3)}{\pi a}, \]

\[p_m = \frac{-2(1 + 2m + \nu)}{m\pi a} \sin \frac{m\pi}{2}, \quad m = 2, 3, \ldots \]

\[a_0 = 0, \]

\[a_1 = \frac{-2(\nu + 3)}{\pi a}, \]

\[a_m = \frac{-2(2 + 2m + \nu)}{m\pi a} \sin \frac{m\pi}{2}, \quad m = 2, 3, \ldots . \]

After obtaining the boundary densities, we substitute them into the boundary integral equations to yield the series solution

\[u(\rho, \phi) = \frac{1}{8\pi} (2\pi(a - \rho^2) + \sum_{m=1}^{\infty} 8\rho^n (a^2 - \rho^2) \sin \frac{m\pi}{2} \cos(m\phi)). \]

(51)

For purpose of comparison, the series solution can also be derived by using the Trefftz method as follows [15]:

\[u(x) = a + b\rho^2 + \sum_{m=1}^{\infty} (c_m \rho^m \cos(m\phi) + d_m \rho^m \sin(m\phi)) \]

\[+ \sum_{m=1}^{\infty} (g_m \rho^{m+1} \cos(m\phi) + h_m \rho^{m+1} \sin(m\phi)), \]

\[\frac{\partial u(x)}{\partial n} = 2b\rho + \sum_{m=1}^{\infty} m(c_m \rho^{m-1} \cos(m\phi) + d_m \rho^{m-1} \sin(m\phi)) \]

\[+ \sum_{m=1}^{\infty} (m + 2)(g_m \rho^{m+1} \cos(m\phi) + h_m \rho^{m+1} \sin(m\phi)), \]

where the \(a, b, c_m, d_m, g_m \) and \(h_m \) are the unknown coefficients. By substituting Eqs.(52) and (53) into the boundary condition of Eq.(40), the unknown coefficients are obtained as

\[a = \frac{1}{4}, \]

\[b = -\frac{1}{4}, \]

\[c_m = \frac{1}{m\pi} \cos(m\pi) \sin \frac{m\pi}{2}, \]

\[g_m = -\frac{1}{m\pi} \cos(m\pi) \sin \frac{m\pi}{2}, \]

\[d_m = h_m = 0. \]

We have the field solution as follows:

\[u(x) = u(\rho, \phi) = \frac{1}{4} (1 - \rho^2) \]

\[- \sum_{m=1}^{\infty} \frac{1}{m\pi} \cos(m\pi) \sin \left(\frac{m\pi}{2} \right) \left(\rho^{m+2} \cos(m\phi) - \rho^m \cos(m\phi) \right). \]

(59)

Equation (59) are found to be the same to Eq.(51). It is interesting to find that the six Trefftz bases are all imbedded in the series expansion in terms of degenerate kernel for fundamental solutions [15].

The exact solution was obtained in a different way by Mills [28] as follows:

\[u(r, \theta) = \frac{1}{2\pi} (1 - r^2) \left[\frac{\gamma + \arctan \frac{1 + r}{1 - r}}{2} \tan \frac{\theta_1 - \theta}{2} \right. \]

\[- \frac{\arctan \frac{1 + r}{1 - r}}{2} \tan \frac{\theta_0 - \theta}{2} \]

where

\[\gamma = \{ 0, \theta_1 < \theta < \theta_0 + \pi \]

\[\theta_0 + \pi < \theta < \theta_1 + \pi. \]

(61)
We plot the results by using 20, 50 and 100 terms of the series-form solution of Eq.(51) and find that the series solution converges well to the exact solution of Eq.(60) as shown in Figs.7(a), (b), (c) and (d). It deserves to be mentioned that the degenerate scale occurs when $1 + \ln(a) = 0$ in the continuous and discrete models using the $u - \theta$ formulation. In this case, we do not observe the occurrence of the degenerate scale due to the zero coefficient of $a_0 = \frac{\gamma_0}{1+\ln(a)}$ in Eq.(48) when $m = 0$ even though $a = e^{-1}$. That is to say, we are fortunate to solve the problem free of encountering the degenerate scale problem due to the zero participation factor for the spurious mode [14].

Case 2:
Let us consider the biharmonic problem subject to the essential boundary condition as shown in Fig.6

$$u(x) = \begin{cases}
\frac{\beta - \theta}{\alpha - \epsilon} + 1, & \alpha - \epsilon < \theta < \alpha + \epsilon \\
\frac{\beta - \theta}{\alpha - \epsilon} + 1, & \beta - \epsilon < \theta < \beta + \epsilon \\
0, & \beta + \epsilon < \theta < \alpha - \epsilon
\end{cases} \quad (62)$$

$$\frac{\partial u(x)}{\partial n} = 0, \quad (63)$$

We choose $\alpha = \frac{\pi}{8}$, $\beta = \pi$, $\epsilon = \epsilon_1 = \frac{\pi}{3}$. By using the null-field integral equation ($u - \theta$ formulation) in conjunction with the series expansion in terms of degenerate kernel, we have

$$\begin{bmatrix} 2R^2(1 + ln(p)) + 2p^2 ln(p) & -4R(1 + ln(p)) \\
2R^2 + 2p(1 + 2ln(p)) & 4R \end{bmatrix} \begin{bmatrix} a_0 \\
p_0 \end{bmatrix} = \begin{bmatrix} 0 \\
0 \end{bmatrix}, \quad (64)$$

$$\begin{bmatrix} \rho(1 + 2ln(\rho)) + \frac{3\rho^2}{R^2} & -R\rho(1 + 2ln(p)) - \frac{R^3}{4\rho} \\
(3 + 2ln(p)) - \frac{3\rho^2}{R^2} & -R(3 + 2ln(p)) + \frac{R^3}{4\rho} \end{bmatrix} \begin{bmatrix} a_1 \\
p_1 \end{bmatrix} = \begin{bmatrix} 0 \\
0 \end{bmatrix}, \quad (65)$$

$$\begin{bmatrix} a_3 & a_4 \\
a_3 & a_4 \end{bmatrix} \begin{bmatrix} a_m \\
p_m \end{bmatrix} = \begin{bmatrix} 0 \\
0 \end{bmatrix}, \quad m = 2, 3, \ldots \quad (66)$$

$$a_1 = -(m - 1)R^3 + (m + 1)R\rho^2, \quad (67)$$

$$a_2 = (m + 2)(m - 1)R^2 - m(m + 1)\rho^2, \quad (68)$$

$$a_3 = m(m - 1)R^3 - (m - 2)(m + 1)R\rho^2, \quad (69)$$

$$a_4 = -m(m + 2)(m - 1)R^2 + m(m + 1)(m - 2)\rho^2. \quad (70)$$

For simplicity, the Poisson ratio is assumed to be $\nu = 0.3$. In Eq.(65), we find the occurrence of the degenerate scale when the radius a approaches $e^{-1} (1 + \ln(a) = 0)$ using the $u - \theta$ formulation. Similarly, the occurrence of degenerate scale when using the other five formulations is shown in Fig.7. Good agreement is made.

5. Conclusions
In this paper, we employed the null-field integral equation in conjunction with Fourier series and the series expansion in terms of degenerate kernel for fundamental solutions to derive the degenerate scales of plate problems. The continuous and discrete models were both considered by using the direct BIEM (continuous model) and direct BEM (discrete model), respectively. The occurrence of degenerate scales not only depends on the formulation that we choose but also on the Poisson’s ratio. The degenerate scales of the Laplace and biharmonic problems are also compared with. We have only one rigid body mode of Laplace equation when using the UT or LM formulation for the Neumann problem but have three rigid body modes of biharmonic equation using the six boundary integral formulations for the free problem. Furthermore, we have determined the number of degenerate scales in each formulation. For the former five boundary integral formulations, we have at least one degenerate scale and have three at most. Regarding to the $m - \nu$ formulation, the degenerate scales disappear for constrained problems but rigid body modes are present for free problems. That is to say, we can adopt it to solve the biharmonic equation without any risk of degenerate scales in sacrifice of more complex kernels.

References

Self-evaluation

This project was successfully and expected results were carried out. During the past year, many plenary, keynote and invited lectures in the international conference were delivered to give talks on the degenerate scale. Six SCI papers relating to the project were published as shown below. Until now, more than 300 articles have cited our NTOU/MSV work. For more details, please visit the web site of http://ind.ntou.edu.tw/msvlab/.

Table 1 Degenerate scales for different boundary condition in the continuous and discrete models using the boundary integral equation

<table>
<thead>
<tr>
<th>Formulations</th>
<th>Equation of the degenerate scale in the BEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>u, θ</td>
<td>$1 + \ln a = 0$</td>
</tr>
<tr>
<td>u, m</td>
<td>$(\nu - 1)(1 + 2 \ln a) - 2(1 + \nu)(1 + \ln a)^2 \left[\nu + \nu \ln a - \ln a\right] = 0$</td>
</tr>
<tr>
<td>u, v</td>
<td>$(1 + \ln a) (\nu - 4 - 2 \ln a + 2 \nu \ln a) = 0$</td>
</tr>
<tr>
<td>θ, m</td>
<td>$(1 + \ln a) \left[\nu(1 + \ln a) - \ln a - 2\right] = 0$</td>
</tr>
<tr>
<td>θ, v</td>
<td>$\nu(3 + 2 \ln a) - 2 \ln a = 0$</td>
</tr>
<tr>
<td>m, v</td>
<td>Never zero</td>
</tr>
</tbody>
</table>
Table 2 Relationship between the Laplace problem and biharmonic problem

<table>
<thead>
<tr>
<th></th>
<th>Laplace problem</th>
<th>Biharmonic problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Governing equation</td>
<td>$\nabla^2 u(x) = 0$</td>
<td>$\nabla^4 u(x) = 0$</td>
</tr>
<tr>
<td>Fundamental solution</td>
<td>$U(s, x) = \ln(r)$</td>
<td>$U(s, x) = r^2 \ln(r)$</td>
</tr>
<tr>
<td>Boundary condition</td>
<td>Dirichlet</td>
<td>Neumann</td>
</tr>
<tr>
<td></td>
<td>Clamped</td>
<td>Simply-supported</td>
</tr>
<tr>
<td></td>
<td>Free</td>
<td></td>
</tr>
<tr>
<td>Formulation</td>
<td>UT</td>
<td>LM</td>
</tr>
<tr>
<td></td>
<td>UT</td>
<td>LM</td>
</tr>
<tr>
<td></td>
<td>$C_2^4 = 6$ options</td>
<td>$C_2^4 = 6$ options</td>
</tr>
<tr>
<td></td>
<td>$u - \theta$</td>
<td>$u - m$</td>
</tr>
<tr>
<td>Degenerate scale</td>
<td>$\ln(a) = 0$</td>
<td>NA</td>
</tr>
<tr>
<td>Nontrivial mode</td>
<td>Mathematical realizable (spurious mode)</td>
<td>OK</td>
</tr>
</tbody>
</table>
Fig. 1 The Kirchhoff clamped plate under distributed load

Fig. 2 3D and contour plots for the degenerate scale in the continuous and discrete models for the Laplace equation
(The dotted line is the position that degenerate scales occur)
3D view
(a) u, θ formulation

3D view
(b) u, m formulation

3D view
(c) u, v formulation
Fig. 3 3D-plot and contour for the degenerate scale in the continuous and discrete models of biharmonic equation using the boundary integral equations

(x axis: radius a, y axis: Poisson ratio ν, z axis: $F(\nu,a)$)

(The dotted line denotes the position of the degenerate scales.)
Fig. 4 The chart of the biharmonic equation with the essential boundary condition (Case 1)

\[\nabla^4 u = 0 \]
\[\frac{\partial u}{\partial n} = 0 \]
\[\frac{\partial u}{\partial n} = -1 \]

(a) BIEM (M=20)
(b) BIEM (M=50)
(c) BIEM (M=100)
(d) Exact solution

Fig. 5 Contour plots of biharmonic fields using degenerate kernels and null-field integral equation

\[u(x) = \frac{1}{8\pi} (2\pi R^2 - 2\pi R^2 + 8\pi R^2 \cos \phi - 8\pi (R^4 - r^2) \sum_{n=1}^{M} \frac{m^2 - m^2}{m^2 + 1} \cos \theta \cos \phi) \]

\[u(r, \theta) = \frac{1}{2\pi} \left(r^2 \tan^{-1} \left(\frac{1+r - r^2}{1-r^2} \right) - \tan^{-1} \left(\frac{1+r^2}{1-r^2} \right) \right) \]
Fig. 6 Biharmonic problem (Case 2)
Fig. 7 Determinant versus the radius a using the BIEM/BEM for a circular plate problem ($\nu = 0.3$)