科技部補助

大專學生研究計畫研究成果報告

計	+重 ・・	邊界元在流力固力雙退化問題探討
名	稱	

執行計畫學生: 周彦廷 學生計畫編號: MOST 109-2813-C-019-011-E 研究期間: 109年07月01日至110年02月28日止,計8個月 指導教授:陳正宗

- 處理方式:本計畫可公開查詢
- 執 行 單 位 : 國立臺灣海洋大學河海工程學系
- 中華民國 110年03月31日

致謝

感謝科技部提供機會讓我能參與科技部大專生計畫編號 109-2813-C-019-011-E,在執行計畫這段時 間提供研究經費的資助,全心全意投入在此專題研究計畫上。在暑假期間參與NCTS 大學部學生 暑期研究計畫-使用分離核來談邊界元素法/邊界積分方程之秩降問題,在這兩個月的期間與老師及 同學有更頻繁的互動,對於科技部大專生計畫的執行有所助益,並獲得 NCTS 大專生計畫結業證 書,而此計畫之部分研究成果也獲得 TwSIAM 大學生組優良海報論文獎、入圍中國機械工程學會 第37 屆學術研討會並獲佳作。讓我在大四就有機會參加比賽,增進自己的見聞與視野。並感謝海 洋大學力學聲響振動實驗室軟硬體環境的提供,而陳正宗特聘講座教授以及研究室學長們在執行計 畫期間的指導,讓我在研究的路上更順利。從申請計畫案後到現在這一年的時間,感受自己有所成 長,體會到什麼是真正的研究,而甚麼又是研究的樂趣,這都是在課堂上所學不到的。而此計畫之 部分研究成果已被接受刊登在國際期刊 Engineering Analysis with Boundary Elements。這是身為一 個大學生的我不曾想過的事,再次感謝在這求學研究之路所有幫助過我的人,這一年多的時間是大 學中最充實且值得回味的光陰,也為我日後研究所之路的濫觴!

摘要

本計畫重點在探討流體通過不透水圓形/橢圓形/薄板結構物問題與孔洞/裂縫/夾雜/線夾雜受反平面力場作用問題之間的關聯性。理論解析採用邊界積分方程(BIEM)搭配分離核進行,分離核依結構物的形狀分別以圓座標及橢圓座標表示,邊界未知密度函數則以傳立葉級數展開表示。孔洞/裂縫/夾雜/線夾雜受反平面力場作用問題中的應力集中因子(SCF)及應力強度因子(SIF)是值得關心的議題,我們採用五個方法進行分析,包括以位移由邊界及域內逼近奇異點、以應力由邊界及域內逼近奇異點與J積分。由結果可看出,孔洞在反平面力場作用下,當無窮遠剪應力S與剪力模數µ的比值為1時,其解與流體通過不透水結構物問題的勢能場解相同。另外,我們也發現孔洞與夾雜問題的解之間具有互易關係。五種方法都獲得相同的SCF及SIF。

關鍵詞 反平面力場、不透水結構物、退化邊界、圓座標、橢圓座標

邊界元在流力與固力雙退化問題之探討

MOST 109-2813-C-019-011-E

目錄

致謝1
摘要2
1. 文獻回顧與探討4
2. 流體通過圓形、橢圓外形不透水結構物問題之速度場推導4
2.1. 問題描述
2.2. 求解流體通過橢圓形不透水結構物受初勢流場之速度場推導5
2.3. 求解流體通過橢圓形不透水結構物受初勢流場之速度場推導6
2.4. 求解流體通過不透水薄板受初勢流場之速度場推導8
3. 圓、橢圓孔洞/剛性夾雜受反平面力場之場解推導
3.1. 問題描述
3.2. 圓孔洞受反平面力場作用之場解推導9
3.3. 橢圓孔洞/線裂縫受反平面力場作用之場解推導10
3.4. 圓剛性夾雜受反平面力場作用之場解推導11
3.5. 橢圓剛性夾雜/線剛性夾雜受反平面力場作用之場解推導12
4. 應力集中因子及應力強度因子13
4.1. 圓孔洞/剛性夾雜之應力集中因子(Stress Concentration Factor), SCF13
4.2. 橢圓孔洞/剛性夾雜之應力集中因子(Stress Concentration Factor), SCF14
4.3. 線裂縫/剛性夾雜之應力強度因子(Stress Intensity Factor), SIF15
5. 結論
6. 参考文獻
7. 圖表

1. 文獻回顧與探討

過去許多學者對流體通過不透水結構物的勢能流問題進行相關探討,利用複變數(complex variables)可解析得到圓形、橢圓形和薄板周圍勢能流的變化[1]。利用複變數解析是目前解決此類問題的經典工具。Milne-Thomson [2]和 Mushtaq 等人[3]利用複變數推導出二維非旋流通過橢圓形結構物的解析解。在解析過程中還應用了循環矩陣和 Joukowski 轉換。然而,Hess 和 Smith [4]使用面板法(Panel method)研究了三維流體通過任意形狀結構體的勢能流變化。也有研究採用基本解法求解流體通過不透水結構物的二維和三維問題[5]。

在反平面力場下,孔洞或剛性夾雜周圍的應力集中係數(SCF)問題已經有很多研究者進行研究, 但大部分的解析解主要是針對無窮平面利用複變解析函數得到。Meguid 和 Gong [6]利用理論[7]和 實驗探討圓孔洞周圍的應力集中係數。利用彈性原理對矩形和菱形剛性夾雜周圍的應力集中係數進 行實驗[8]。此外還對含夾雜的砂漿試體進行了實際工程實驗[9]。本計畫中的固力問題,將以無限 彈性平面中含孔或夾雜的反平面力場問題為主。Chen 等[10]在平面彈力和反平面彈力問題中利用 保角映射討論 BIE 的退化尺度。Zou [11]研究有限但任意截面之等向性彈性體的 Eshelby 反平面力 場夾雜問題。Lubarda [12]重新研究圓孔和橢圓孔受反平面力場的解析解,並討論了應變能和 SCF。 Noda 和 Takase [13]採用體力法(body force method)考慮了所有缺口形狀的應力集中公式,他有舉一 個反平面剪力例題來解釋基本的想法。Honein 等[14]求解兩個任意圓孔或不同剪力模數剛性夾雜體 的反平面力場問題。他們引用了涉及複變勢能的 Möbius 變換來解析孔洞周圍的應力場。由於擴展 到兩個以上的孔洞在 Möbius 公式中可能有困難, NTOU / MSV 團隊[15]提出了一種半解析方法, 稱為零場積分公式來解決含多圓孔洞問題。關鍵想法是採用分離核與 BIE 來求解問題,並搭配自 適性觀察座標系統。儘管分離核在積分方程理論中扮演重要的角色,且可以得到一個自然的近似 值,但相較其他方法,它在工程問題中的使用似乎已經退居其次,例如 Golberg [16]所引用的 quadrature 和 collocation。在文獻中,只有少數研究者應用分離核來求解邊界值問題。Golberg [16] 指出了分離核在 BIE 和 BEM 中的威力,儘管 Galybin [17]利用分離核求解裂縫問題。從數學上講, 一旦分離核可以使用,積分方程不過是線性代數[18]。在這裡,我們將示範分離核是如何求解含有 圓孔和橢圓孔或剛性夾雜的反平面力場問題。Lee 和 Chen [19]首先提出橢圓座標的分離核,並結 合零場積分方法來處理反平面力場問題。然而,他們沒有討論單橢圓孔洞/圓孔洞和剛性夾雜的應 力集中係數。對於三維剛性夾雜問題, Noda 和 Hayashida [20]討論彎曲應力場下橢圓和橢圓夾雜之 間的相互作用。

然而在這麼多的文獻中,從來沒有人將流體通過不透水結構物問題(流力)與孔洞/夾雜受反平面力 場作用問題(固力)放在一起討論,本研究將針對這兩個問題,利用邊界積分方程搭配分離核進行理 論解析,透過解析過程探討流力與固力問題之間的具有何種連結關係。同時也探討孔洞與夾雜之間 的連結關係,最後將採用五種方法解析 SIF,包括以位移由邊界及域內逼近裂縫與線剛性夾雜尖 端、以應力由邊界及域內逼近裂縫與線剛性夾雜尖端與J積分。本計畫報告內容如下:流體通過圓 形、橢圓形、薄板不透水結構物的理論推導將呈現在第二節;第三節將說明圓形、橢圓形孔洞及剛 性夾雜受反平面力場作用與裂縫及線剛性夾雜受反平面力場作用的理論解析結果;應力集中因子及 應力強度因子則在第四節討論;最後是結論。

2 流體通過圓形不透水結構問題之勢能場推導

2.1 問題描述-流力 Neumann 問題

考慮理想流體流經不透水結構物,其控制方程式為

$$\nabla^2 \psi(x, y) = 0, \tag{1}$$

其中₩為速度勢。固定結構物的邊界條件為

$$\frac{\partial \psi}{\partial n} = 0, \tag{2}$$

其中 n 為域的單位法向量。由於勢流問題是由線性 PDE 控制的,因此可以應用疊加原理。勢流問題可分解為兩部分,如圖 1 所示。一部分是無物體的自由流,另一部分是有結構物的場。總勢能可

以給定為

$$\psi = \psi^{\infty} + \psi^M. \tag{3}$$

其中 ψ^{∞} 為流入勢能, ψ^{M} 為未知勢能。由於 ψ^{∞} 函數已給定,所以 x、y 方向的遠程流入量可得

$$x y 方向流入 \psi^{\infty} = y$$
 (4)

於
$$x$$
 方向流入 $\psi^{\infty} = x$ (5)

X和Y方向的速度勢可由以下公式獲得,分别是:

$$u = \frac{\partial \psi}{\partial x},\tag{6}$$

$$v = \frac{\partial \psi}{\partial y'}$$
(7)

2.2 求解流體通過橢圓形不透水結構物受初勢流場之速度場推導

基於勢理論,Laplace 問題的 BEM / BIEM 中的閉合型基本解為 $U(s,x) = \ln r$ 。利用核的可分離特性,通過將極座標中的源點和場點分離,可以將U(s,x)展開成一個退化形式,如下所示。

$$U(s,x) = \begin{cases} U^{i}(R,\theta;\rho,\phi) = \ln R - \sum_{m=1}^{\infty} \frac{1}{m} \left(\frac{\rho}{R}\right)^{m} \cos m(\theta-\phi), \ R \ge \rho, \qquad (a) \\ U^{e}(R,\theta;\rho,\phi) = \ln \rho - \sum_{m=1}^{\infty} \frac{1}{m} \left(\frac{R}{\rho}\right)^{m} \cos m(\theta-\phi), \ \rho > R, \qquad (b) \end{cases}$$

其中場點 $x = (\rho, \phi)$,源點 $s = (R, \theta)$,上標 "i"和 "e"分別表示內部 $(R \ge \rho)$ 和外部 $(\rho > R)$ 情況。 閉合型基本解的分離核如圖 2 所示。取相對於源點的法向導數- $\partial/\partial R$ 後,可以得到T(s, x),如下所示。

$$T(\mathbf{s}, \mathbf{x}) = \begin{cases} T^{i}(R, \theta; \rho, \phi) = -(\frac{1}{R} + \sum_{m=1}^{\infty} (\frac{\rho^{m}}{R^{m+1}}) \cos m(\theta - \phi)), \ R > \rho, \quad (a) \\ T^{e}(R, \theta; \rho, \phi) = \sum_{m=1}^{\infty} (\frac{R^{m-1}}{\rho^{m}}) \cos m(\theta - \phi), \ \rho > R, \quad (b) \end{cases}$$
(9)

Laplace 問題域點的積分公式可由格林第三定理得出。通過採用分離核,觀察點(場點)可以準確地 定位在實邊界上,而不需要面對奇異積分。因此,包括邊界點在內的傳統積分方程的表示可以改寫 為

$$2\pi\psi(x) = \int_{B} T^{e}(s,x)\psi(s)dB(s) - \int_{B} U^{e}(s,x)\frac{\partial\psi(s)}{\partial n_{s}}dB(s), \quad x \in D \cup B.$$
(10)

零場積分方程表示為

$$0 = \int_{B} T^{i}(s, x)\psi(s)dB(s) - \int_{B} U^{i}(s, x)\frac{\partial\psi(s)}{\partial n_{s}}dB(s), \quad x \in D^{c} \cup B.$$
(11)

需要注意的是,一旦選擇適當的分離核 $(U^{I} \stackrel{i}{\rightarrow} U^{e})$,式 (10) 和 (11) 就包含邊界點。為了得到總速度勢 ψ ,我們需要解決未知勢 ψ^{M} 。由於 ψ^{∞} 是在式 (4) 中給出的,所以沿圓形邊界圓形的勢能為

$$\psi^0(s) = R \sin\theta, \quad s \in B, \tag{12}$$

在極座標中。因此,我們可以很容易地得到它的法向導數如下。

$$\frac{\partial \psi^{\sigma}(s)}{\partial n_s} = -\frac{\partial \psi^{\sigma}(s)}{\partial R} = -\sin\theta, \tag{13}$$

和

$$\frac{\partial \psi^{M}(s)}{\partial n_{s}} = -\frac{\partial \psi^{0}(s)}{\partial n_{s}}, \ s \in B.$$
(14)

應用傅立葉展開法,沿圓形邊界的邊界資訊ψ^M(s)可以用以下方式表示

$$\psi^{M}(s) = a_{0} + \sum_{n=1}^{\infty} a_{n} \cos(n\theta) + \sum_{n=1}^{\infty} b_{n} \sin(n\theta), \quad 0 \le \theta < 2\pi,$$
(15)

其中 a_0 、 a_n 和 b_n 是待定的傅立葉級數的未知係數。將式(8a),(9a),(14)和(15)代入式(11),求 dB(s) = ad θ ,每次x定位在同軸的實邊界($\rho = a$)上,我們得到了

$$-2\pi a_0 - \sum_{n=1}^{\infty} a_n \pi \cos(n\phi) - \sum_{n=1}^{\infty} b_n \pi \sin(n\phi) = -a\pi \sin(\phi), \quad x(\rho,\phi) \in B.$$

$$(16)$$

其中a為圓形障礙物之半徑。經過比較基數, $1 \cdot \cos n\phi \pi \sin n\phi$ 的係數,我們得到了

$$a_n = 0, \qquad n = 0, 1, 2, 3, \cdots,$$

 $b_1 = a, \qquad n = 1, \qquad (17)$
 $b_n = 0, \qquad n \neq 1,$

因此,式(15)可以寫成

$$\psi^{M}(s) = a \sin\theta, \ s \in B.$$
(18)

將 (8b), (9b), (14) 和 (18) 式代入公式 (10) 中的 dB (s) = ad θ , 並沿軸向的實邊界 (R = a) 進行積分, 我們得到了

$$\psi^{M}(\rho,\phi) = \frac{a^{2}}{\rho} \sin\phi, \ x \in D.$$
(19)

將式(4)和式(19)代入式(3),可得總勢能為

$$\psi(\rho,\phi) = \rho \sin\phi + \frac{a^2}{\rho} \sin\phi = \left(1 + \frac{a^2}{\rho^2}\right)\rho \sin\phi$$
(20)

在極座標上得到總勢能。將式(20)代入式(6)和式(7),可以得到x和y方向的速度,即為 $(a)^2$

$$u = -\left(\frac{u}{\rho}\right)^2 2\cos(\phi)\sin(\phi), \tag{21}$$

$$v = 1 + \left(\frac{a}{\rho}\right)^2 (2\cos^2(\phi) - 1).$$
(22)

現在,我們考慮一個圓柱體在 x 方向的遠程流入下的式 (5), 在沒有圓柱體的情況下, 沿邊界的法向導數如下, y 方向的流入量

$$\frac{\partial \psi^{0}(s)}{\partial n_{s}} = -\frac{\partial \psi^{0}(s)}{\partial R} = -\cos\phi, \qquad (23)$$

依循上述的方式,x方向入流的總勢能可表示為:

$$\psi(\rho,\phi) = \rho \cos\phi + \frac{a^2}{\rho} \cos\phi = \left(1 + \frac{a^2}{\rho^2}\right)\rho \cos\phi.$$
(24)

通過客觀性規則,將式 (20) 中的 ϕ 替換為 $\phi + \pi/2$,可以得到式 (24)。 u 和 v的速度分別為

$$u = 1 + \left(\frac{a}{\rho}\right)^{2} (2\sin^{2}(\phi) - 1)$$
(25)

$$v = -\left(\frac{a}{\rho}\right)^2 2\cos(\phi)\sin(\phi). \tag{26}$$

利用分離核對 x 和 y 方向入流的勢流場和速度場的解析解如表一所示。表一中還包括了複變函數 (C.V.)的解析解。

2.3 求解流體通過橢圓形不透水結構物受初勢流場之速度場推導

考慮橢圓形圓柱體上的勢流,如圖3所示,其中D為定義域, D^c 為補域,B為邊界, $\xi = \xi_0$ 為常數, a為橢圓的半長軸,b為半短軸。根據可分離的特性,可以將橢圓座標中的源點和場點分離,將U(s,x)展開為分離形式,如下圖所示。

$$U(s,x) = \begin{cases} U^{i}(\xi_{s},\eta_{s};\xi_{x},\eta_{x}) = \xi_{s} + \ln\frac{c}{2} - \sum_{m=1}^{\infty} \frac{2}{m} e^{-m\xi_{s}} \cosh m\xi_{x} \cos m\eta_{x} \cos m\eta_{s} \\ -\sum_{m=1}^{\infty} \frac{2}{m} e^{-m\xi_{s}} \sinh m\xi_{x} \sin m\eta_{x} \sin m\eta_{s}, \quad \xi_{s} \ge \xi_{x}, \qquad (a) \end{cases} \\ U^{e}(\xi_{s},\eta_{s};\xi_{x},\eta_{x}) = \xi_{x} + \ln\frac{c}{2} - \sum_{m=1}^{\infty} \frac{2}{m} e^{-m\xi_{x}} \cosh m\xi_{s} \cos m\eta_{x} \cos m\eta_{s} \\ -\sum_{m=1}^{\infty} \frac{2}{m} e^{-m\xi_{x}} \sinh m\xi_{s} \sin m\eta_{x} \sin m\eta_{s}, \quad \xi_{s} < \xi_{x}, \qquad (b) \end{cases}$$

其中場點 $x = (\xi_x, \eta_x)$,源點 $s = (\xi_s, \eta_s)$, c 是兩個焦點之間的半距離,上標"i"和"e"分別表示 內部 $(\xi_s \ge \xi_x)$ 和外部 $(\xi_s < \xi_x)$ 情況。圖 4 中繪製了閉合形基本解的分離核表達式,以顯示由於源點 s 引起的徑向對稱場。取相對於源點的法向導數後,可以得到如下所示的T(s,x)。

$$T(s,x) = \begin{cases} T^{i}(\xi_{s},\eta_{s};\xi_{x},\eta_{x}) = \frac{1}{J(\xi_{s},\eta_{s})} \left(1 + 2\sum_{m=1}^{\infty} e^{-m\xi_{s}} \cosh m\xi_{x} \cos m\eta_{x} \cos m\eta_{s} + 2\sum_{m=1}^{\infty} e^{-m\xi_{s}} \sinh m\xi_{x} \sin m\eta_{x} \sin m\eta_{s}\right), \quad \xi_{s} > \xi_{x}, \qquad (a) \\ T^{e}(\xi_{s},\eta_{s};\xi_{x},\eta_{x}) = \frac{-1}{J(\xi_{s},\eta_{s})} \left(2\sum_{m=1}^{\infty} e^{-m\xi_{x}} \sinh m\xi_{s} \cos m\eta_{x} \cos m\xi_{s} + 2\sum_{m=1}^{\infty} e^{-m\xi_{x}} \cosh m\xi_{s} \sin m\eta_{x} \sin m\eta_{s}\right), \quad \xi_{s} < \xi_{x}. \qquad (b) \end{cases}$$

需要注意分母中有一雅可比項, $J(\xi_s, \eta_s) = c\sqrt{\cosh^2\xi_s \sin^2\eta_s + \sinh^2\xi_s \cos^2\eta_s}$ 。為了得到總勢能 ψ , 我們需要先導得未知勢能 $\psi^{M}(x)$ 。由於在式(4)中得到了於 y 方向流入 ψ^{∞} ,可以寫成

$$\psi^{\infty}(\xi_x,\eta_x) = c \ \sinh\xi_x \ \sin\eta_x,\tag{29}$$

在橢圓座標中。我們可以很容易地得到它的法向導數。

$$\frac{\psi^0(s)}{\partial n_s} = \frac{-1}{J(\xi_s, \eta_s)} c \, \cosh\xi_s \, \sin\eta_s \tag{30}$$

和∂ψ^M/∂n_s在邊上是 ∂ψ^M

$$\frac{\partial \psi^{M}(s)}{\partial n_{s}} = -\frac{\partial \psi^{0}(s)}{\partial n_{s}} = \frac{1}{J(\xi_{s}, \eta_{s})}c \cosh\xi_{s} \sin\eta_{s}, \quad s \in B$$
(31)

透過傅立葉展開,沿橢圓邊界($\xi_s = \xi_0$ 為常數)的指定邊界數據 $\psi^M(s)$ 可以用以下方式表示

$$\psi^{M}(s) = a_{0} + \sum_{n=1}^{n} a_{n} \cos(n\eta_{s}) + \sum_{n=1}^{n} b_{n} \sin(n\eta_{s}), \quad 0 \le \eta_{s} < 2\pi,$$
(32)

其中 a_0 , a_n 和 b_n 是待定的傅立葉項的未知係數。將式(27a), (28a), (31), (32)代入式(11), 對於 $dB(s) = J(\xi_s, \eta_s) d\eta_s$ 和 $\xi_s = \xi_0$, 對於橢圓結構體的邊界, 我們得到了

$$-2\pi a_0 - \sum_{n=1}^{\infty} 2\pi e^{-n\xi_0} \cosh \eta_0 \cosh \eta_x a_n - \sum_{n=1}^{\infty} 2\pi e^{-n\xi_0} \sinh \eta_x b_n$$

$$= -2\pi e^{-\xi_0} \sinh \xi_0 \sin \eta_x c \cosh \xi_0, \quad x \in D^c \cup B.$$

$$(33)$$

經過比較基底,1, cosnŋ_x和sinŋ_x的係數,我們得到了

$$\begin{array}{ll} a_n = 0, & n = 0, 1, 2, 3, \cdots, \\ b_1 = c \ cosh\xi_0, & n = 1, \\ b_n = 0, & n \neq 1. \end{array} \tag{34}$$

因此,式(32)可寫成

$$\psi^{M}(s) = c \cosh \xi_{0} \sin \eta_{s} \tag{35}$$

將式(27b),(28b),(31)和(35)代入式(10),在橢圓的實邊界($\xi_s = \xi_0$)上進行積分,可得

$$\psi^{M}(\xi_{x},\eta_{x}) = c \ e^{\xi_{0}-\xi_{x}}\cosh\xi_{0} \ \sin\eta_{x}$$
(36)

將式(29)和式(36)代入式(3),我們得到了總勢能場。

$$\psi(\xi_x, \eta_x) = c \left(\sinh \xi_x + e^{\xi_0 - \xi_x} \cosh \xi_0 \right) \sin \eta_x \tag{37}$$

對於橢圓障礙物在 x 方向的遠程流入下,在沒有橢圓障礙物的勢能場中,沿邊界的法向導數給定為:

$$\frac{1}{\eta_{n_s}} = \frac{1}{J(\xi_s, \eta_s)} c \quad \sinh\xi_s \quad \cos\eta_s, \ s \in B,$$
(38)

按照類似的步驟, x 方向流入的總勢能場可以表示為:

$$\psi(\xi_x, \eta_x) = c \left(\cosh \xi_x + e^{\xi_0 - \xi_x} \sinh \xi_0 \right) \cos \eta_x \tag{39}$$

現在,我們考慮流過斜的橢圓結構體的勢流場。採用xy和xy來xx,一個觀測系統來描述斜橢圓和流入。 兩個座標的變換關係為

$$\begin{cases} x \\ y \end{cases} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{cases} \bar{x} \\ \bar{y} \end{cases}$$
 (40)

其中α為流入角。將xī和yī用橢圓座標替換到式(40)中,我們可以得到

$$\begin{cases} c \cos \alpha & -\sin \alpha \\ sin \alpha & \cos \alpha \end{cases} \begin{cases} c \cosh \xi_x \cos \eta_x \\ c \sinh \xi_x \sin \eta_x \end{cases}$$
(41)

將式(41)代入式(4),式(29)的遠端流入式變為

$$\begin{cases} x \\ y \end{cases} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{cases} c & \cosh \xi_x & \cos \eta_x \\ c & \sinh \xi_x & \sin \eta_x \end{cases}$$
(42)

可以得到邊界上的法向導數,如下圖所示。

$$\frac{\partial \psi^{\alpha}(s)}{\partial n_s} = \frac{1}{J(\xi_s, \eta_s)} c(\sinh \xi_s \ \cos \eta_s \ \sin \alpha + \cosh \xi_s \ \sin \eta_s \ \cos \alpha), \ s \in B.$$
(43)

式(43)是通過式(31)和式(38)採用疊加技術得到的。因此,勢能場的解可以寫為

$$b^{M}(\xi_{x},\eta_{x}) = c \ e^{\xi_{0} - \xi_{x}}(\cosh\xi_{0} \ \sin\eta_{x} \ \cos\alpha + \sinh\xi_{0} \ \cos\eta_{x} \ \sin\alpha). \tag{44}$$

將式(42)和式(44)代入式(3),則可得到總勢位能

v

$$\psi(\xi_x, \eta_x) = c\left(\left(\sinh\xi_x + e^{\xi_0 - \xi_x}\cosh\xi_0\right)\sin\eta_x\cos\alpha + \left(\cosh\xi_x + e^{\xi_0 - \xi_x}\sinh\xi_0\right)\cos\eta_x\sin\alpha\right). \tag{45}$$

速度可以用以下方式得到

$$u = \frac{u'_x \sin\alpha + u'_y \cos\alpha}{(\sinh\xi_x \cos\eta_x)^2 + (\cosh\xi_x \sin\eta_x)^{2'}}$$
(46)

$$=\frac{v_y'\cos\alpha + v_x'\sin\alpha}{(\sinh\xi_x\cos\eta_x)^2 + (\cosh\xi_x\sin\eta_x)^{2'}}$$
(47)

此處

$$u'_{x} = \sinh^{2}\xi_{x} + \sin^{2}\eta_{x} + e^{\xi_{0} - \xi_{x}} \sinh\xi_{0} \left(e^{\xi_{x}} \sin^{2}\eta_{x} - \sinh\xi_{x} \right), \tag{48}$$

$$u'_{y} = -(e^{\xi_{0}} \cosh \xi_{0} \sin \eta_{x} \cos \eta_{x}), \tag{49}$$

(50)

$$v'_{x} = -\sinh\xi_{0}e^{\varsigma_{0}}\sin\eta_{x}\cos\eta_{x'},$$

$$v'_{y} = \sinh^{2}\xi_{x} + \sin^{2}\eta_{x} + e^{\xi_{0}-\xi_{x}}\cosh\xi_{0}(e^{\xi_{x}}\cos^{2}\eta_{x} - \cosh\xi_{x}).$$
(51)

2.4 求解流體通過不透水薄板受初勢流場之速度場推導

由於薄板問題是橢圓形結構體的特殊情況,我們可以通過設置 $\xi_0 = 0$ 來解決這個問題。有兩種方法可以採用。一種是預先設定的 $\xi_0 = 0$,但需要使用到對偶邊界元。另一種是在最後階段設置 $\xi_0 = 0$ 為橢圓結構體的總勢能場。在這裡,橢圓結構體的總勢能場由式(45)得到。通過設置 $\xi_0 = 0$,式(45)

被簡化為。

$$\psi(\xi_x, \eta_x) = c\left(\left(\sinh\xi_x + e^{-\xi_x}\right)\sin\eta_x \ \cos\alpha + \cosh\xi_x \ \cos\eta_x \ \sin\alpha\right) \tag{52}$$

通過設置 *ξ*₀ = 0 在不同階段得到的薄板的流入量的解析解,同樣的式(46)和式(47)中的兩個分量的速度可以表示為

$$u = \frac{u_x'' \sin \alpha + u_y'' \cos \alpha}{(\sinh \xi_x \cos \eta_x)^2 + (\cosh \xi_x \sin \eta_x)^{2'}}$$
(53)

$$v = \frac{v_x^* \sin \alpha + v_y^* \cos \alpha}{(\sinh \xi_x \cos \eta_x)^2 + (\cosh \xi_x \sin \eta_x)^{2'}}$$
(54)

分别為

$$u_x'' = \sinh^2 \xi_x + \sin^2 \eta_x \tag{55}$$

$$u_y'' = -\sin\eta_x \cos\eta_x \tag{56}$$

$$v_x^{\prime\prime} = \mathbf{0},\tag{57}$$

$$v_y'' = \sinh^2 \xi_x + 1 - e^{-\xi_x} \cosh \xi_x.$$
(58)

3 圓、橢圓孔洞/剛性夾雜受反平面力場之場解推導

3.1 問題描述-固力 Neumann 及 Dirichlet 問題

反平面力場問題的位移如下

$$(u_x, u_y, u_z) = (0, 0, w(x, y)),$$
(59)

其中 w 為出平面位移,為 x 和 y 的函數。而剪應變如下 $\varepsilon = \frac{1}{2} \frac{\partial w}{\partial w}, \varepsilon = \frac{1}{2} \frac{\partial w}{\partial w},$

$$\mathcal{E}_{xz} = \frac{1}{2} \frac{\partial \mathcal{H}}{\partial x}, \quad \mathcal{E}_{yz} = \frac{1}{2} \frac{\partial \mathcal{H}}{\partial y}, \quad (60)$$

和對應的應力遵守虎克定律,即

$$\sigma_{xz} = 2\mu\varepsilon_{xz}, \sigma_{yz} = 2\mu\varepsilon_{yz}, \tag{61}$$

其中μ為剪力模數。因此,平衡方程簡化為

$$\frac{\partial \sigma_{xz}}{\partial x} + \frac{\partial \sigma_{yz}}{\partial y} = 0, \tag{62}$$

可以用公式(60)和(61)將其改寫為位移w,如下所示

$$\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} = \nabla^2 w = 0.$$
(63)

現考慮無限彈性體中的孔洞/剛性夾雜反平面力場($\sigma_{y_z}^{\infty} = S \cdot \sigma_{x_z}^{\infty} = 0$)作用下,孔洞的邊界條件為

$$t(\mathbf{x}) = \frac{\partial w}{\partial n} = 0, \, \mathbf{x} \in B,\tag{64}$$

剛性夾雜的邊界條件為

$$u(\mathbf{x}) = 0, \, \mathbf{x} \in B. \tag{03}$$

(65)

其中n為邊界單位向外法向量。

3.2 圓孔洞受反平面力場作用之場解推導

剪應力和無窮遠處的位移為

$$\sigma_{yz}^{\infty} = S, |y| \to \infty \cdot u^{\infty} = \frac{Sy}{\mu}, |y| \to \infty$$
(66)

透過疊加原理,總位移被分解為兩部分,如圖 5 所示。分別為無限平面中的剪切荷載引起的位移場 u^{∞} ,以及無限平面中圓孔洞引起的位移場 u^{M} 。總位移量可以表示為

$$u_z = u^\infty + u^M \tag{67}$$

當選擇適當的分離核,式(10)和式(11)的場點皆可座落在真實問題的邊界上。為了獲得總位移uz, 我們先求解未知位移u^M(x)。由於在式(66)中給出u[®],無限平面內沿圓形邊界的位移為

$$u^{0}(\mathbf{s}) = \frac{S}{\mu} R \sin \theta, \, \mathbf{s} = (R, \theta) \in B,$$
(68)

在邊界上的法向導微t⁰和t^M,可表示為

$$t^{0}(\mathbf{s}) = \frac{\partial u^{0}(\mathbf{s})}{\partial \mathbf{n}_{\mathbf{s}}} = -\frac{\partial u^{0}(\mathbf{s})}{\partial R} = -\frac{S}{\mu}\sin\theta, \, \mathbf{s} = (R,\theta) \in B,$$
(69)

$$t^{M}(\mathbf{s}) = -t^{0} = \frac{S}{\mu} \sin \theta, \, \mathbf{s} = (R, \theta) \in B,$$
(70)

透過傅立葉級數展開,沿著圓形邊界的特定邊界資訊u^M(s)可以表示為

$$u^{M}(\mathbf{s}) = a_{0} + \sum_{n=1}^{\infty} a_{n} \cos n\theta + \sum_{n=1}^{\infty} b_{n} \sin n\theta, 0 \le \theta < 2\pi, \mathbf{s} = (R, \theta) \in B,$$
(71)

其中 a_0, a_n 和 b_n 為待定的傅立葉級數未知係數,將等式(8a)、(9a)、(70)和式(71)代入到式(11)中,其中 $dB(s) = ad\theta(R = a)$, x 在圓孔洞的真實邊界($\rho = a$)上,可得

$$-2\pi a_0 - \sum_{n=1}^{\infty} \pi \cos(n\phi) a_n - \sum_{n=1}^{\infty} \pi \sin(n\phi) b_n = -a\pi \sin(\phi) \frac{S}{\mu}, \mathbf{x} = (\rho, \phi) \in D^c \cup B,$$
(72)

因為已經選擇了一個適當的分離核,其中 x 也可以在真實邊界上。比較基底 1、 cos n f 和 sin n f 的 係數後,我們得到

$$a_n = 0, \qquad n = 0, 1, 2, 3, \cdots,$$

 $b_1 = \frac{S}{\mu}a, \qquad n = 1,$
 $b_n = 0, \qquad n \neq 1.$
(73)

因此,式(71)可以寫成

$$u^{M}(\mathbf{s}) = \frac{S}{\mu} a \sin \theta, \, \mathbf{s} = (R, \theta) \in B.$$
(74)

將式(8b)、(9b)、(70)和式(74)代入到式(10)中,當 $dB(s) = ad\theta$ 且沿著圓孔洞的實邊界積分可得

$$u^{M}(\rho,\phi) = \frac{S}{\mu} \frac{a^{2}}{\rho} \sin\phi, \mathbf{x} = (\rho,\phi) \in D.$$
(75)

將式(66)和式(75)代入式(67)中,我們得到總位移

$$u_{z}(\rho,\phi) = \frac{S}{\mu}\rho(1 + \frac{a^{2}}{\rho^{2}})\sin\phi.$$
 (76)

極座標表示的總位移可以在公式(76)中獲得。當圓形孔洞受反平面力場($\sigma_{xz}^{\infty} = 0$ and $\sigma_{xz}^{\infty} = S$)作用下,如圖 6 所示,透過將 ϕ 替換成 $\phi + \pi/2$ 可得到總位移

$$u_{z}(\rho,\phi) = \frac{S}{\mu}\rho(1 + \frac{a^{2}}{\rho^{2}})\cos\phi.$$
(77)

式(24)的結果與式(45)相同由此可知流體通過不透水結構物問題與孔洞受反平面力場作用問題為相同的數學模型,當S/µ=1時可得出一樣的場解。不同之處為固力較關注於位移場解,流力較關注於勢流場,之後橢圓外型及斜線外型皆以固力例題為例。

3.3 橢圓孔洞/線裂縫受反平面力場作用之場解推導

現在考慮橢圓形孔洞受反平面力場($\sigma_{yz}^{\infty} = S \cdot \sigma_{xz}^{\infty} = 0$).作用,如圖 7 所示, $B \in \xi = \xi_0$ 為常數的橢圓 邊界, $a \in$ 橢圓半長軸, $b \in$ 橢圓半短軸。由於在等式(66)中給出 u^{∞} 。在無限平面內沿橢圓邊界的 位移為

$$u^{0}(\mathbf{s}) = \frac{S}{\mu} c \sinh \xi_{s} \sin \eta_{s}, \mathbf{s} = (\xi_{s}, \eta_{s}) \in B,$$
(78)

在橢圓座標中。對式(78)進行法向微分後,可得 t^0 和 t^M 如下

$$t^{0}(\mathbf{s}) = \frac{\partial u^{0}(\mathbf{s})}{\partial \mathbf{n}_{\mathbf{s}}} = -\frac{1}{J_{s}} \frac{\partial u^{0}(\mathbf{s})}{\partial \xi_{s}} = -\frac{S}{J_{s}\mu} c \cosh \xi_{s} \sin \eta_{s}, \mathbf{s} = (\xi_{s}, \eta_{s}) \in B,$$
(79)

$$t^{M}(\mathbf{s}) = -t^{0} = \frac{S}{J_{s}\mu} c \cosh \xi_{s} \sin \eta_{s}, \mathbf{s} = (\xi_{s}, \eta_{s}) \in B.$$
(80)

透過傅立葉級數展開,沿橢圓邊界($\xi_s = \xi_0$ 為常數)的未知邊界資訊 $u^M(s)$ 可以表示為

$$u^{M}(\mathbf{s}) = a_{0} + \sum_{n=1}^{\infty} a_{n} \cos n\eta_{s} + \sum_{n=1}^{\infty} b_{n} \sin n\eta_{s}, 0 \le \eta_{s} < 2\pi, \mathbf{s} = (\xi_{s}, \eta_{s}) \in B,$$
(81)

其中 a_0 , a_n 和 b_n 為待定的傅立葉級數未知係數。將式(29a), (30a), (80)和(81)代到(11)中,對於 $dB(s) = J(\xi_s, \eta_s)d\eta_s$ ($\xi_s = \xi_0$), x 在橢圓孔洞的真實邊界($\xi_x = \xi_0$)上,我們得到

$$-2\pi p_{0} - \sum_{n=1}^{\infty} 2\pi e^{-n\xi_{0}} \cosh n\xi_{0} \cos n\eta_{x} p_{n} - \sum_{n=1}^{\infty} 2\pi e^{-n\xi_{0}} \sinh n\xi_{0} \sin n\eta_{x} q_{n}$$

$$= -2\pi \frac{S}{\mu} c e^{-\xi_{0}} \sinh \xi_{0} \cosh \xi_{0} \sin \eta_{x}, \qquad \mathbf{x} = (\xi_{x}, \eta_{x}) \in B,$$
(82)

比較基底 1、 $\cos n\eta_x$ 和 $\sin n\eta_y$ 的係數後,可得

$$\begin{cases} p_n = 0, & n = 0, 1, 2, \cdots, \\ q_1 = \frac{S}{\mu} c \cosh \xi_0, & n = 1, \\ q_n = 0, & n = 2, 3, \cdots. \end{cases}$$
(83)

因此,式 (81)可以寫成

$$u^{M}(\mathbf{s}) = \frac{S}{\mu} c \cosh \xi_{0} \sin \eta_{s}, \mathbf{s} = (\xi_{s}, \eta_{s}) \in B.$$
(84)

將式(29b), (30b), (80)和(84)代入到(10)中, $dB(\mathbf{s}) = J(\xi_s, \eta_s) d\eta_s$, 沿著橢圓孔洞的真實邊界($\xi_s = \xi_0$)積分, 可得

$$u^{M}(\xi_{x},\eta_{x}) = \frac{S}{\mu} c e^{-\xi_{x}} \sin \eta_{x} \cosh \xi_{0}(\cosh \xi_{0} + \sinh \xi_{0}), \mathbf{x} = (\xi_{x},\eta_{x}) \in D.$$

$$(85)$$

將式(66)和式(85)疊加,我們得到總位移

$$u_{z}(\xi_{x},\eta_{x}) = \frac{S}{\mu}c\sin\eta_{x}(\sinh\xi_{x} + e^{\xi_{0}-\xi_{x}}\cosh\xi_{0}).$$
(86)

考慮橢圓形孔洞受無窮遠反平面力場($\sigma_{x}^{\infty}=0$ 、 $\sigma_{x}^{\infty}=S$).作用,如圖 8 所示,我們按照一樣的解析流程,可得到總位移

$$u_{z}(\xi_{x},\eta_{x}) = \frac{S}{\mu} c \cos \eta_{x} (\cosh \xi_{x} - e^{\xi_{0} - \xi_{x}} \sinh \xi_{0}).$$
(87)

最後將 <0 設成 O 可得出線裂縫受反平面力場作用之場解為。

$$u_{z}(\xi_{x},\eta_{x}) = \frac{S}{\mu}c\cos\eta_{x}\cosh\xi_{x}.$$
(88)

3.4 圆剛性夾雜受反平面力場作用之場解推導

在無限彈性體含剛性夾雜的情況下,總位移的求解過程與孔洞相同,僅邊界條件變為 Dirichlet。考慮在遠端反平面剪切應力 ($\sigma_{yz}^{\infty} = S \cdot \sigma_{xz}^{\infty} = 0$) 下無限彈性體中的圓形剛性夾雜物,如圖 9 所示。 Dirichlet 邊界條件為

$$u(\mathbf{x}) = 0, \, \mathbf{x} \in B. \tag{89}$$

剪應力和無限遠處位移分別為

$$\sigma_{yz}^{\infty} = S, |y| \to \infty \, \text{for} \, u^{\infty} = \frac{Sy}{\mu}, |y| \to \infty, \tag{90}$$

u[∞]在等式(66)中給出,無限平面中沿圓形邊界的位移為

$$u^{0}(\mathbf{s}) = \frac{S}{\mu} R \sin \theta, \, \mathbf{s} = (R, \theta) \in B,$$
(91)

在極座標中,沿圓形邊界的特定邊界條件u^M(S)為

$$u^{M}(\mathbf{s}) = -u^{0}(\mathbf{s}) = -\frac{S}{\mu}R\sin\theta, \, \mathbf{s} = (R,\theta) \in B,$$
(92)

透過應用傅立葉展開式,未知邊界密度 $t^{M}(\mathbf{S})$ 可以表示為

$$t^{M}(\mathbf{s}) = a_{0} + \sum_{n=1}^{\infty} a_{n} \cos n\theta + \sum_{n=1}^{\infty} b_{n} \sin n\theta, \ 0 \le \theta < 2\pi, \ \mathbf{s} = (R, \theta) \in B,$$
(93)

其中 a_0, a_n 和 b_n 為待定的傅立葉級數未知係數。將等式(8a),(9a),(92)和(93)代入到(11)中,對於 $dB(\mathbf{s}) = ad\theta$ (R = a) x 在圓孔洞的真實邊界($\rho = a$)上,可得

$$2\pi a \ln a \, a_0 - \sum_{n=1}^{\infty} \frac{1}{n} a\pi \cos(n\phi) \, a_n + \sum_{n=1}^{\infty} \frac{1}{n} a\pi \sin(n\phi) \, b_n = \frac{S}{\mu} a\pi \sin(\phi),$$

$$\mathbf{x} = (\xi_x, \eta_x) \in B,$$
(94)

比較基底 1、 $\cos n\phi$ 和 $\sin n\phi$ 的係數後,可得

$$(2 \ln a)a_0 = 0, \quad n = 0, a_n = 0, \qquad n = 1, 2, 3, \cdots, b_1 = \frac{S}{\mu}, \qquad n = 1, b_n = 0, \qquad n = 2, 3, \cdots.$$
 (95)

在等式(95)中,當 lna≠0時a₀可以被定義且可以是任意數,然而若 a 等於 1,就會導致退化尺度發生。此為 BEM / BIEM 中退化尺度的問題。因此,將式(95)代入式(93)可以寫成

$$t^{M}(\mathbf{s}) = \frac{S}{\mu} \sin \theta, \, \mathbf{s} = (R, \theta) \in B.$$
(96)

將等式(8b), (9b), (92)和(96)代入到式(10)中,對於 $dB(s) = ad\theta$,沿著真實邊界(R = a)積分

$$u^{M}(\rho,\phi) = -\frac{S}{\mu} \frac{a^{2}}{\rho} \sin\phi, \mathbf{x} = (\rho,\phi) \in D.$$
(97)

將式(66)和式(97)代入式(67)中,得到

$$u_{z}(\rho,\phi) = \frac{S}{\mu}\rho(1-\frac{a^{2}}{\rho^{2}})\sin\phi.$$
(98)

當圓形剛性夾雜在不同方向 $(\sigma_{y_z}^{\infty} = 0, \sigma_{x_z}^{\infty} = S)$.,如圖 10所示,透過替換 $\phi \not i \phi \phi + \pi/2$,可得到

$$u_{z}(\rho,\phi) = \frac{S}{\mu}\rho(1 - \frac{a^{2}}{\rho^{2}})\cos\phi.$$
(99)

3.5 橢圓剛性夾雜/線剛性夾雜受反平面力場作用之場解推導

考慮橢圓外形剛性夾雜受無窮遠反平面力場 $(\sigma_{yz}^{\infty} = S \cdot \sigma_{xz}^{\infty} = 0)$.作用,如圖 11 所示, u^{∞} 在式(66)給出,無限平面中沿橢圓形邊界的位移為

$$u^{0}(\mathbf{s}) = \frac{S}{\mu} c \sinh \xi_{s} \sin \eta_{s}, \, \mathbf{s} = (\xi_{s}, \eta_{s}) \in B,$$
(100)

在橢圓座標中,沿橢圓形邊界的特定邊界條件u^M(s)得到

$$u^{M}(\mathbf{s}) = -u^{\mathbf{0}}(\mathbf{s}) = -\frac{S}{\mu}c \sinh \xi_{s} \sin \eta_{s}, \mathbf{s} = (\xi_{s}, \eta_{s}) \in B,$$
(101)

透過傅立葉級數展開,未知邊界密度 $t^{M}(s)$ 可以表示為

$$t^{M}(\mathbf{s}) = \frac{1}{J_{s}}(a_{0} + \sum_{n=1}^{\infty} a_{n} \cos n\eta_{s} + \sum_{n=1}^{\infty} b_{n} \sin n\eta_{s}), 0 \le \eta_{s} < 2\pi, \mathbf{s} = (\xi_{s}, \eta_{s}) \in B,$$
(102)

其中 a_0, a_n 和 b_n 為待定的傅立葉級數未知係數。將等式(29a), (30a), (101)和(102)代入到式(11)中,對於 $dB(\mathbf{s}) = J(\xi_s, \eta_s) d\eta_s$ ($\xi_s = \xi_0$), **x**在橢圓孔洞的真實邊界($\xi_s = \xi_0$)上,可得

比較基底 1、 $\cos n\eta_r$ 和 $\sin n\eta_r$ 的係數後,可得

$$\begin{cases} (\xi_0 + \ln \frac{c}{2})a_0 = 0, & n = 0, \\ a_n = 0, & n = 1, 2, 3, \cdots, \\ b_1 = -\frac{S}{\mu}c \sinh \xi_0, & n = 1, \\ b_n = 0, & n = 2, 3, \cdots. \end{cases}$$
(104)

式(104)中,當 ξ_0 + ln(c/2) ≠ 0 時 a_0 可以是任意數,當a+b=2,就會導致非唯一解的問題,此為 BEM / BIEM 中退化尺度的問題在此不特別討論。因此,將式(104)代入式(102)可以寫成

$$t^{\mathcal{M}}(\mathbf{s}) = \frac{-1}{J_s} \frac{S}{\mu} c \sinh \xi_0 \sin \eta_s, \, \mathbf{s} = (\xi_s, \eta_s) \in B$$
(105)

將等式(29b), (30b), (101)和(105)代入到式(10)中,對於 $dB(\mathbf{s}) = J(\xi_s, \eta_s)d\eta_s$,沿著真實邊界($\xi_s = \xi_0$) 積分,可得

$$u^{M}(\xi_{x},\eta_{x}) = -\frac{S}{\mu}c \ e^{\xi_{0}-\xi_{x}} \sin \eta_{x} \sinh \xi_{0}, \mathbf{x} = (\xi_{x},\eta_{x}) \in D.$$

$$(106)$$

將式(66)和式(106)代入式(67)中,我們得到總位移

$$u_{z}(\xi_{x},\eta_{x}) = \frac{S}{\mu} c \sin \eta_{x} (\sinh \xi_{x} - e^{\xi_{0} - \xi_{x}} \sinh \xi_{0}).$$
(107)

考慮橢圓形孔洞受無窮遠反平面力場 $(\sigma_{yz}^{\infty} = 0, \sigma_{xz}^{\infty} = S)$.在不同方向上作用,如圖 12 所示,我們得 到總位移

$$u_{z}(\xi_{x},\eta_{x}) = \frac{S}{\mu}c\cos\eta_{x}(\cosh\xi_{x} - e^{\xi_{0}-\xi_{x}}\cosh\xi_{0}).$$
(108)

同樣地,將 50 設成 0 可得出線剛性夾雜受反平面力場作用之場解為

$$u_z(\xi_x,\eta_x) = \frac{S}{\mu}c\cos\eta_x \sinh\xi_x.$$
(109)

4 孔洞及剛性夾雜例題

4.1 圓裂縫/剛性夾雜之應力集中因子(Stress Concentration Factor), SCF

由於在上一節中得到了總的位移,因此可以簡單地導得應力。應力集中因子定義為

$$SCF = \frac{\left|\sqrt{(\sigma_{xz})^2 + (\sigma_{yz})^2}\right|}{\sigma^{\infty}} = \frac{|\tau|}{\sigma^{\infty}},$$
(110)

其中, τ 為沿孔或剛性夾雜物邊界的縱向剪應力, σ° 為遠程剪力。利用極座標的分離核轉化為總場的分析位移。卡式座標分量在極座標(ρ, ϕ)下表示為

$$x = \rho \cos \phi, \tag{111}$$

$$y = \rho \sin \phi. \tag{112}$$

我們按照一般公式,對於圓孔在反平面作用 $\sigma_{yz}^{\infty} = S, \sigma_{xz}^{\infty} = 0$,式(110)可得

$$SCF = \frac{\left| \mu \sqrt{\left(\frac{\partial u_z}{\partial \rho} \cos(\phi) - \frac{\sin(\phi)}{\rho} \frac{\partial u_z}{\partial \phi}\right)^2 + \left(\frac{\partial u_z}{\partial \rho} \sin(\phi) + \frac{\cos(\phi)}{\rho} \frac{\partial u_z}{\partial \phi}\right)^2}{\sigma^{\infty}} \right|}{\sigma^{\infty}}.$$
(113)

將式(66)和式(76)代入式(113)中的 $\rho = a$, $\phi = 0$ 或 π 時出現兩個最大 SCF。

$$SCF = \frac{\left|2S\cos(\phi)\right|}{S} = 2.$$
(114)

對於受反平面力場 $\sigma_{yz}^{\infty} = 0, \sigma_{xz}^{\infty} = S$ 作用的情況,兩個最大的 SCF 出現在 $\phi = \frac{1}{2}\pi \operatorname{or} \frac{3}{2}\pi$ 時,為

$$SCF = \frac{|2S\sin(\phi)|}{S} = 2.$$
 (115)

式(114)和式(115)分別顯示了圓孔洞受反平面作用 $\sigma_{y_z}^{\infty} = S, \sigma_{x_z}^{\infty} = 0$ 和 $\sigma_{y_z}^{\infty} = 0, \sigma_{x_z}^{\infty} = S$ 下的 SCF。對於 反平面作用 $\sigma_{y_z}^{\infty} = S, \sigma_{x_z}^{\infty} = 0$,下的圓剛性夾雜物,類似的發生在 $\phi = \frac{1}{2}\pi \operatorname{or} \frac{3}{2}\pi$ 的最大 SCF。

$$SCF = \frac{\left|2S\sin(\phi)\right|}{S} = 2,$$
(116)

對於受反平面力場 $\sigma_{yz}^{\infty} = 0, \sigma_{xz}^{\infty} = S$ 作用的情況,兩個最大的 SCF 出現在 $\phi = 0$ or π 時,為

$$SCF = \frac{\left|2S\cos(\phi)\right|}{S} = 2,$$
(117)

4.2 橢圓裂縫/剛性夾雜之應力集中因子(Stress Concentration Factor), SCF

卡式座標分量在橢圓座標(ξ,η)下表示為

$$x = c \cosh \xi \cos \eta, \tag{118}$$

$$y = c \sinh \xi \sin \eta, \tag{119}$$

其中,c 是兩個焦點之間的半距離, ξ =常數的曲線是 F 孔洞或剛性包涵體的橢圓邊界, η =常數的曲線是具有相同焦點的雙曲線的一部分。因此,在式(110)中,橢圓孔的 SCF 由以下公式得到

$$\sigma_{xz} = \mu \left(h_1 \frac{\partial u_z}{\partial \xi_x} - h_2 \frac{\partial u_z}{\partial \eta_x} \right) = \frac{-S \cos \eta_x \sin \eta_x}{\left(\sinh \xi_x \cos \eta_x\right)^2 + \left(\cosh \xi_x \sin \eta_x\right)^2},$$
(120-a)

$$\sigma_{yz} = \mu \left(h_2 \frac{\partial u_z}{\partial \xi_x} + h_1 \frac{\partial u_z}{\partial \eta_x} \right) = \frac{S \cosh \xi_x \sinh \xi_x}{\left(\left(\sinh \xi_x \cos \eta_x \right)^2 + \left(\cosh \xi_x \sin \eta_x \right)^2 \right)},$$
(120-b)

$$SCF = \frac{\left| \mu \sqrt{\left(h_1 \frac{\partial u_z}{\partial \xi_x} - h_2 \frac{\partial u_z}{\partial \eta_x}\right)^2 + \left(h_2 \frac{\partial u_z}{\partial \xi_x} + h_1 \frac{\partial u_z}{\partial \eta_x}\right)^2}}{\sigma^{\infty}} \right|,$$
(120-c)

其中
$$h_1 = \frac{\sinh \xi_x \cos \eta_x}{c\left(\left(\sinh \xi_x \cos \eta_x\right)^2 + \left(\cosh \xi_x \sin \eta_x\right)^2\right)},$$
 和 $h_2 = \frac{\cosh \xi_x \sin \eta_x}{c\left(\left(\sinh \xi_x \cos \eta_x\right)^2 + \left(\cosh \xi_x \sin \eta_x\right)^2\right)}$ 。將式(66)
和式(86)代入式(120-c)中,對於 $\xi = \xi_x$,我們可以得到

和式(86)代入式(120-c)中,對於 $\xi_x = \xi_0$,我們可以得到

$$SCF(\eta_x) = \sqrt{\frac{2e^{2\xi_0}\cos^2\eta_x}{\cosh 2\xi_0 - \cos 2\eta_x}},\tag{121}$$

將
$$\eta_x = 0 \text{ or } \pi$$
代入式(121)中,當 $\xi_0 = \tanh^{-1}(\frac{b}{a}) = \frac{1}{2}\ln(\frac{a+b}{a-b}),$ 可得

$$SCF = \frac{2}{1-e^{-2\xi_0}} = 1 + \frac{1}{k},$$
(122)

其中k = b/a是橢圓的長寬比。相似地當加載為 $\sigma_{yz}^{\infty} = 0, \sigma_{xz}^{\infty} = S,$ 對於 $\xi_x = \xi_0$ 的關係,可得

$$SCF(\eta_x) = \sqrt{\frac{2e^{2\xi_0}\sin^2\eta_x}{\cosh 2\xi_0 - \cos 2\eta}},$$
 (123)

將
$$\eta_x = \frac{\pi}{2} \text{ or } \frac{3\pi}{2}$$
代入式(121),當 $\xi_0 = \tanh^{-1}(\frac{b}{a}) = \frac{1}{2}\ln(\frac{a+b}{a-b})$,可得

$$SCF = \frac{2}{1+e^{-2\xi_0}} = 1+k.$$
(124)

式(122)和式(124)分別顯示橢圓孔洞在反平面作用 $\sigma_{yz}^{\infty} = S, \sigma_{xz}^{\infty} = 0$ 和 $\sigma_{yz}^{\infty} = 0, \sigma_{xz}^{\infty} = S$ 下的SCF。對於橢圓夾雜在反平面作用 $\sigma_{yz}^{\infty} = S, \sigma_{xz}^{\infty} = 0,$ 下,最大SCF為2,當 $\xi_0 = \tanh^{-1}(\frac{b}{a}) = \frac{1}{2}\ln(\frac{a+b}{a-b}),$ 出現在 $\eta_x = \frac{\pi}{2}$ 或 $\frac{3\pi}{2}$

$$SCF = \frac{2}{1 + e^{-2\xi_0}} = 1 + k.$$
(125)

對於反平面作用 $\sigma_{yz}^{\infty} = 0, \sigma_{xz}^{\infty} = S$ 下,最大 SCF 為 2,當 $\xi_0 = \tanh^{-1}(\frac{b}{a}) = \frac{1}{2}\ln(\frac{a+b}{a-b}),$ 出現在 $\eta_x = 0$ or π ,

$$SCF = \frac{2}{1 - e^{-2\xi_0}} = 1 + \frac{1}{k}.$$
 (126)

4.3 線裂縫/剛性夾雜之應力強度因子(Stress Intensity Factor), SIF

應力強度因子(SIF)用參數 K 來表示,它是破壞力學中最基本、最有用的參數之一。描述了線裂縫/ 線剛性夾雜的尖端處的應力強度,與 Paris 模型[Paris and Erdogan, 1963]有關,採用模擬裂縫的尺度。在這裡,我們重點討論模式Ⅲ。模式Ⅲ是反平面(撕裂)的情況,寫成 K_Ⅲ,通常定義為

$$K_{III} = \lim_{\varepsilon \to 0} \frac{\mu \, u_z \sqrt{\pi}}{\sqrt{2\varepsilon}} = S \sqrt{\pi a},\tag{127}$$

利用位移,或

$$K_{III} = \lim_{\varepsilon \to 0} \sqrt{2\pi\varepsilon} \ \sigma(\varepsilon, 0) = S\sqrt{\pi a}, \tag{128}$$

通過使用應力,其中 ε 是線裂縫/線剛性夾雜物尖端附近對距離取極限,分別由邊界或從內域逼近, a 是長度。設置 $\eta_x = 0$ 沿徑向軸線軸的場解,如圖 13 所示。另一個是來自邊界點,沿邊界設置 $\xi_{xors} = 0$, 則如圖 14 所示。如表二所示,反平面力場($\sigma_{yz}^{\infty} = S \cdot \sigma_{xz}^{\infty} = 0$)下單裂縫和反平面力場($\sigma_{yz}^{\infty} = S \cdot \sigma_{xz}^{\infty} = 0$) 下單線剛性夾雜。因此,我們只需要確定反平面力場 ($\sigma_{yz}^{\infty} = S \cdot \sigma_{xz}^{\infty} = 0$)下的裂縫和反平面力場 ($\sigma_{yz}^{\infty} = 0 \cdot \sigma_{xz}^{\infty} = S$)下的線剛性夾雜的 SIF。我們先考慮總位移。

方法1:位移法

(a) 內場的資訊:

對於表二中所示的反平面力場($\sigma_{yz}^{\infty}=0$ and $\sigma_{zz}^{\infty}=S$)下的剛性線夾雜,表二中的相應總位移為

設
$$\eta_x = 0$$
後的 $u_z(\xi_x, 0) = \frac{S}{\mu}a\sinh\xi_x,$ (129)

式(126)可以寫成

$$x = a \cosh \xi. \tag{130}$$

因此,可得

$$\sinh \xi_x = \sqrt{\left(\frac{x}{a}\right)^2 - 1}.$$
(131)

要了解x=a尖端附近位移的漸近行為,請參考公式(129)

$$\lim_{x \to a} \sqrt{\left(\frac{x}{a}\right)^2 - 1} = \lim_{x \to a} \frac{1}{a} \sqrt{x + a} \sqrt{x - a}.$$
(132)

類似地通過將 $x = a + \varepsilon$ 設為漸近行為,我們有

$$\lim_{x \to a} \frac{1}{a} \sqrt{x + a} \sqrt{x - a} = \lim_{\varepsilon \to 0} \frac{\sqrt{2\varepsilon a}}{a}.$$
(133)

因此,在裂縫尖端附近的位移的漸近行為可得

$$u_z(\varepsilon) = \frac{S}{\mu} \sqrt{2a\varepsilon}.$$
(134)

將式(134)代入式(127),我們可以得到

$$K_{III} = S\sqrt{\pi a}.$$
(135)

(b)邊界密度資訊:

表二給出了剛線性夾雜情況下的結果。例如,我們有邊界應力

設
$$\xi_x = 0$$
後的 $u_z(0, \eta_x) = \frac{S}{\mu}a\sin\eta_x,$ (136)

式(126)可寫成

$$x = a \cos \eta. \tag{137}$$

因此,可得

$$\sin \eta_x = \sqrt{1 - \left(\frac{x}{a}\right)^2}.$$
(138)

為了了解在x=a時,尖端附近的位移的漸近行為,式(138)可以得到:

$$\lim_{x \to a} \sqrt{1 - \left(\frac{x}{a}\right)^2} = \lim_{x \to a} \frac{1}{a} \sqrt{a + x} \sqrt{a - x}.$$
(139)

通過設置 $x=a-\varepsilon$ 的漸進行為,可得

$$\lim_{x \to a} \frac{1}{a} \sqrt{a + x} \sqrt{a - x} = \lim_{\varepsilon \to 0} \frac{\sqrt{2a}}{a} \sqrt{\varepsilon}.$$
(140)

因此,等式(134)可以改寫為

$$u_z(\varepsilon) = \frac{Sa}{\mu} \frac{\sqrt{2a}}{a} \sqrt{\varepsilon} = \frac{S\sqrt{2a\varepsilon}}{\mu}.$$
(141)

通過式(141)代入式(127),可得

$$K_{III} = S\sqrt{\pi a}.$$
 (142)

公式(135)和(142)可看出,兩種不同方式的總位移產生的 SIF 值相同[Sun 和 Jin 2011; Wang 等 1986]。

方法二:應力法。

(a)內部場的資訊。

依循同樣程序,考慮反平面力場($\sigma_{yz}^{\infty}=0$ 、 $\sigma_{xz}^{\infty}=S$)作用下裂縫的應力場,如表三所示,相應的應力為:

設
$$\eta_x = 0$$
後的 $\sigma_{yz}(\xi_x, 0) = \frac{S\cosh\xi_x}{\sinh\xi_x},$ (143)

將式(130)和式(131)代入式(143),可得

$$\frac{\cosh \xi_x}{\sinh \xi_x} = \frac{x}{a\sqrt{\left(\frac{x}{a}\right)^2 - 1}}.$$
(144)

通過在 x = a 處展開式(144), 可得

$$\lim_{x \to a} \frac{x}{a\sqrt{\left(\frac{x}{a}\right)^2 - 1}} = \lim_{x \to a} \frac{x}{\sqrt{x + a}\sqrt{x - a}}.$$
(145)

通過設置 $x = a + \varepsilon$ 為漸變行為,可得

$$\lim_{x \to a} \frac{x}{\sqrt{x+a}\sqrt{x-a}} = \lim_{\varepsilon \to 0} \frac{\sqrt{a}}{\sqrt{2\varepsilon}}.$$
(146)

因此,可得裂縫尖端附近的應力場的漸近行為

$$\sigma_{yz}(\varepsilon,0) = S \frac{\sqrt{a}}{\sqrt{2\varepsilon}}.$$
(147)

將式(147)代入式(128),可得

$$K_{III} = S\sqrt{\pi a}.$$
(148)

如表三所示,在反平面力場($\sigma_{_{yz}}^{^{\infty}}=0$ 、 $\sigma_{_{xz}}^{^{\infty}}=S$)作用下,對於線剛性夾雜問題,相應的應力為:

設
$$\eta_x = 0$$
後的 $\sigma_{xz}(\xi_x, 0) = \frac{S\cosh\xi_x}{\sinh\xi_x},$ (149)

由於式(145)中的函數與式(139)相同,同樣可得

$$K_{III} = S\sqrt{\pi a}.$$
(150)

式(148)和(150)顯示,通過沿徑向軸線設置 $\eta_{xors} = 0$,從內場解得到的應力與[Sun 和 Jin 2011; Wang 等 1986]中提到的 SIF 相同。

邊界密度的資料。

表二給出了線剛性夾雜問題下的結果。例如,可得邊界應力

設
$$\xi_x = 0$$
後的 $\sigma_{yz}(0, \eta_x) = \frac{S \cos \eta_x}{\sin \eta_x},$ (151)

將式(137)和式(138)代入式(151),可得

$$\frac{\cos\eta_x}{\sin\eta_x} = \frac{x}{a\sqrt{1-\left(\frac{x}{a}\right)^2}}$$
(152)

通過在x=a處擴展式(152),可得

$$\lim_{x \to a} \frac{x}{a\sqrt{1-\left(\frac{x}{a}\right)^2}} = \lim_{x \to a} \frac{x}{\sqrt{a-x}\sqrt{a+x}}.$$
(153)

通過設置 $x=a-\varepsilon$ 為漸近行為,可得

$$\lim_{x \to a} \frac{x}{\sqrt{a - x}\sqrt{a + x}} = \lim_{\varepsilon \to 0} \frac{\sqrt{a}}{\sqrt{2\varepsilon}}.$$
(154)

因此,裂缝尖端附近的應力場的漸近行為,可得

$$\sigma_{yz}(0,\varepsilon) = S \frac{\sqrt{a}}{\sqrt{2\varepsilon}}.$$
(155)

將式(155)代入式(128),我們還可以得到

$$K_{III} = S\sqrt{\pi a}.$$
(156)

對於反平面力場 $(\sigma_{yz}^{\infty} = S \cdot \sigma_{xz}^{\infty} = 0)$ 下的裂縫情況,如表二所示,對應的應力為:

設
$$\xi_x = 0$$
後的 $\sigma_{xz}(0, \eta_x) = -\frac{S\cos\eta_x}{\sin\eta_x},$ (157)

由於式(157)中的函數與式(151)相同,同樣可得

$$K_{III} = S\sqrt{\pi a}.$$
(158)

由公式(156)和(158)可看出,通過沿邊界設置 $\xi_{xors} = 0$ 的應力數據也可以生成 SIF,如[Sun 和 Jin 2011; Wang 等 1986]中所述。此外,還可以使用邊界密度來確定相同的 SIF。對於裂縫,我們有

$$\tau = \frac{\mu}{h} \frac{\partial u_z}{\partial \eta_x},\tag{159}$$

在橢圓座標中 $h=c\sqrt{\sinh^2(\xi_x)+\sin^2(\eta_x)}$ 。對於線剛性夾雜,使用法向導數並乘以 μ ,可得

$$\tau = \frac{\mu}{h} \frac{\partial u_z}{\partial \xi_x},\tag{160}$$

在橢圓座標中。因此,可以通過以下方法確定裂縫和線剛性夾雜的 SIF 值

$$K_{III} = \lim_{\varepsilon \to 0} \sqrt{2\pi\varepsilon} \ \tau. \tag{161}$$

表四是反平面力場下的裂縫和線剛性夾雜的 T 和 SIF。剛性夾雜的 SIF 值。我們的計算公式比一般 方法的計算公式簡單,以線剛性夾雜或裂縫受不同方向作用的邊界上切向導數和法向導數來表示, 如表五所示。

方法3:J-積分

在前兩種方法中,我們使用了應力強度因子的概念,它關注的是裂縫尖端附近的內部或邊界應力和 位移場[Irwin 1957]。裂縫的成長是由裂縫尖端附近的局部應力場決定的。在裂縫成長過程中,材 料的斷裂行為由能量變化來描述,即所謂的能量釋放率。然而,線性彈性破壞力學(LEFM)也可以 用能量法來研究。對於線性彈性材料,可以認為能量和應力場的方法是等價的。在破壞力學中, Rice[Rice 1968a, b]首先從裂縫成長的勢能變化推導出 J-積分。J-積分理論對線性和非線性彈性材料 都是成立的。Rice[Rice 1968a]的 J 積分定義為:

$$J = \int_{\Gamma} W dy - \int_{\Gamma} T_i \frac{\partial u_i}{\partial x} d\Gamma = \int_{\Gamma} (W n_x - T_i \frac{\partial u_i}{\partial x}) d\Gamma, \qquad (162)$$

其中, Γ 是沿J積分計算的路徑, $W = \frac{\sigma_{ij}\varepsilon_{ij}}{2}$ 是線性彈性材料的應變能量密度, n_x 是外單位法向量**n** 在 x 方向的分量, u_i 是位移的 i^{th} 分量, $T_i = \sigma_{ij}n_j$ 是沿 Γ 的牽引力,分別對於反平面問題,不變量的 剪切應變由以下公式表示。

$$\varepsilon_{xz} = \frac{1}{2} \frac{\partial u_z}{\partial x}, \quad \varepsilon_{yz} = \frac{1}{2} \frac{\partial u_z}{\partial y}, \quad (163)$$

和相應的應力遵守虎克定律為

$$\sigma_{xz} = 2\mu\varepsilon_{xz}, \sigma_{yz} = 2\mu\varepsilon_{yz}, \tag{164}$$

其中μ為剪切模數。因此,應變能密度由以下公式表示

$$W = \sigma_{xz}\varepsilon_{xz} + \sigma_{yz}\varepsilon_{yz} = \frac{\sigma_{xz}^2 + \sigma_{yz}^2}{2\mu}.$$
(165)

將式(153)代入式(154),可得

$$\frac{\sigma_{xz}}{\mu} = \frac{\partial u_z}{\partial x}, \quad \frac{\sigma_{yz}}{\mu} = \frac{\partial u_z}{\partial y}.$$
(166)

現在,考慮反平面力場($\sigma_{yz}^{\infty} = S \cdot \sigma_{xz}^{\infty} = 0$)下一個裂縫,如圖 15(a)所示。選擇一沿橢圓形曲線的路徑,如圖 16 所示。將式(120-a)和式(120-b)代入式(165)中,應變能量密度可寫為

$$W = \frac{S^2 c^2}{2\mu} \left(\frac{\sinh^2 \xi_x + \cos^2 \eta_x}{J_x^2}\right),$$
 (167)

分母中有雅可比項 $J(\xi_x, \eta_x) = J_x = c\sqrt{\cosh^2 \xi_x \sin^2 \eta_x + \sinh^2 \xi_x \cos^2 \eta_x}$ 。路徑 Γ_2 向外單位法向量**n**的分量為

$$n_x = \frac{\sinh \xi_x \cos \eta_x}{\sqrt{\left(\sinh \xi_x \cos \eta_x\right)^2 + \left(\cosh \xi_x \sin \eta_x\right)^2}}, n_y = \frac{\cosh \xi_x \sin \eta_x}{\sqrt{\left(\sinh \xi_x \cos \eta_x\right)^2 + \left(\cosh \xi_x \sin \eta_x\right)^2}}.$$
(168)

式(168)也可以寫成

$$n_x = \frac{b\cos\eta_x}{J_x}, \ n_y = \frac{a\sin\eta_x}{J_x}.$$
 (169)

將式(120-a)、(120-b)和(169)代入 $T_i = \sigma_{ij}n_j 中, 牽引力為:$

$$T_z = \sigma_{xz} n_x + \sigma_{yz} n_y = \frac{Sc}{J_x} \sinh \xi_x \sin \eta_x.$$
(170)

將式(120-a)、(167)、(168)、(170)和(171)代入式(162)中,可以得到半橢圓路徑 Γ_2 的 J-積分。

$$J_{\Gamma_{2}} = \int_{\Gamma_{2}} \frac{S^{2}}{2\mu} \frac{b \cos \eta_{x}}{J_{x}} \left(\frac{c^{2} + J_{x}^{2}}{J_{x}^{2}} \right) J_{x} d\eta_{x} = \int_{-\pi/2}^{\pi/2} \frac{S^{2}b}{2\mu} \left(\frac{c^{2} \cos \eta_{x}}{J_{x}^{2}} + \cos \eta_{x} \right) d\eta_{x}$$

$$= \frac{S^{2}c}{\mu} \tan^{-1} (1/\sinh \xi_{1}) + \frac{S^{2}b}{\mu}.$$
(171)

路徑 Γ_1 和 Γ_3 的外單位法向量n的分量是

$$n_x = -1, \ n_y = 0.$$
 (172)

因此,路徑Γ₁和Γ₃的牽引力為

$$T_{z} = \sigma_{xz}n_{x} + \sigma_{yz} n_{y} = -\frac{Sc^{2}\sin\eta_{x}\cos\eta_{x}}{J_{x}^{2}}(-1) + \frac{Sc^{2}\sinh\xi_{x}\cosh\xi_{x}}{J_{x}^{2}}(0)$$

$$= \frac{Sc^{2}\sin\eta_{x}\cos\eta_{x}}{J_{x}^{2}} = \frac{S\sin\eta_{x}\cos\eta_{x}}{(\cosh^{2}\xi_{x}\sin^{2}\eta_{x} + \sinh^{2}\xi_{x}\cos^{2}\eta_{x})}.$$
(173)

將 $\eta_x = -\frac{\pi}{2}$ 和 $\eta_x = \frac{\pi}{2}$ 分別代代入式(165)和式(171)中的路徑 Γ_1 和 Γ_3 ,可以得到應變能量密度和牽引力。

$$W = \frac{S^2}{2\mu} \frac{\sinh^2 \xi_x}{\cosh^2 \xi_x},\tag{174}$$

$$T_z = 0. \tag{175}$$

將式(174)和(175)代入公式(162)中, $dy = c \cosh \xi_x \sin \eta_x d\xi_x$ 對路徑 $\Gamma_1 \approx \Gamma_3$ 的 J-積分, 可得

$$J_{\Gamma_{1}} = \int_{\Gamma} W dy = \int_{\Gamma_{1}} \frac{S^{2}}{2\mu} \frac{\sinh^{2} \xi_{x}}{\cosh^{2} \xi_{x}} \left(-c \cosh \xi_{x} d\xi_{x} \right) = \int_{0}^{\xi_{1}} -\frac{S^{2}c}{2\mu} \frac{\sinh^{2} \xi_{x}}{\cosh \xi_{x}} d\xi_{x}$$

$$= \frac{S^{2}c}{2\mu} \left(\tan^{-1}(\sinh \xi_{1}) - \sinh(\xi_{1}) \right) = \frac{S^{2}c}{2\mu} \tan^{-1}(\sinh \xi_{1}) - \frac{S^{2}b}{2\mu},$$

$$J_{\Gamma_{3}} = \int_{\Gamma} W dy = \int_{\Gamma_{3}} \left(\frac{S^{2}}{2\mu} \frac{\sinh^{2} \xi_{x}}{\cosh^{2} \xi_{x}} \right) \left(c \cosh \xi_{x} d\xi_{x} \right) = \int_{\xi_{1}}^{0} \frac{S^{2}c}{2\mu} \frac{\sinh^{2} \xi_{x}}{\cosh \xi_{x}} d\xi_{x}$$

$$= \frac{S^{2}c}{2\mu} \left(\tan^{-1}(\sinh \xi_{1}) - \sinh \xi_{1} \right) = \frac{S^{2}c}{2\mu} \tan^{-1}(\sinh \xi_{1}) - \frac{S^{2}b}{2\mu},$$
(176)

式(176)顯示, Γ_1 和 Γ_3 對 J-積分貢獻的權重相同。因此,可以得到路徑 Γ 的 J-積分為

$$J = J_{\Gamma_{1}} + J_{\Gamma_{2}} + J_{\Gamma_{3}} = \frac{S^{2}c}{\mu} \tan^{-1}(\sinh\xi_{1}) - \frac{S^{2}b}{\mu} + \frac{S^{2}c}{\mu} \tan^{-1}(1/\sinh\xi_{1}) + \frac{S^{2}b}{\mu}$$

$$= \frac{S^{2}c}{\mu} (\tan^{-1}(\sinh\xi_{1}) + \tan^{-1}(1/\sinh\xi_{1})) = \frac{S^{2}\pi c}{2\mu},$$
(177)

其中c=a,式(177)可以改寫為

$$J = \frac{S^2 \pi a}{2\mu} = \frac{K_{III}^2}{2\mu}.$$
 (178)

式(178)得到了[Gdoutos et al 2003; Banks-Sills 2003; Sun and Jin 2011]中提到的結果。我們可以將相同作法擴展到反平面力場($\sigma_{y_2}^{\infty} = 0$ 、 $\sigma_{x_2}^{\infty} = S$)下一個線剛性夾雜。表六顯示了裂縫與線剛性夾雜之 J-積分的比較,結果與卡式座標下 J-積分的一般推導結果相同。

5 結論

本計畫使用邊界積分方程搭配分離核理論解析流力及固力兩類問題,分離核則採用自適性座標展開。流力問題以流體通過圓形、橢圓形與薄板不透水結構問題為代表,固力問題則以圓形與橢圓形之孔洞與剛性夾雜受反平面剪力作用問題做為代表,藉由將橢圓座標中的 $\xi = 0$ 即可得到裂縫與線剛性夾雜問題的解,本文同時對 SCF 與 SIF 進行討論。由結果可知,孔洞在反平面剪力場作用下,當無窮遠剪應力 S 與剪力模數µ的比值為 1 時,其解與流體通過不透水結構物問題的解相同。 在理論解析過程也看到,夾雜受剪力作用例題會有退化尺度的產生,孔洞例題則無退化尺度產生。 經由柯西-黎曼關係式驗證,孔洞受 σ_{yz}^{yx} 剪力作用與剛性夾雜受 σ_{xx}^{yx} 剪力作用,其 SCF 具有互易性, 且最大值為 2。本研究採用五種方法解析 SIF,包括以位移由邊界及域內逼近裂縫與線剛性夾雜尖 端、以應力由邊界及域內逼近裂縫與線剛性夾雜尖端與 J 積分,其結果一致皆為S $\sqrt{\pi a}$ 。

6 參考文獻

- [1] C. A. Brebbia, J. J. Connor, Advances in boundary elements : field and fluid flow solutions, Computational Mechanics, 1989.
- [2] L. M. Milne-Thomson, Theoretical hydrodynamics, 5th ed., Macmillan, New York, 1968.
- [3] M. Mushtaq, S. Nazir, N. A. Shah, G. Muhammad, Calculation of potentia flow around an elliptic cylinder using boundary element method, JMSME. Vol. 5, pp. 37-51, 2010.
- [4] J. L. Hess, A. M. O. Smith, Calculation of nonlifting potential flow about arbitrary three-dimensional bodies, JSR, Vol. 8, pp. 22-44, 1964.
- [5] D. L. Young, C.K. Chou, C.W. Chen, J.Y. Lai, D.W. Watson, Method of fundamental solutions for three-dimensional exterior potential flows, JEM, Vol. 142, 04016080, 2016.
- [6] S. A. Meguid, S. X. Gong, Stress concentration around interacting circular holes: a comparison between theory and experiments, EFM, Vol. 44, pp. 247-256, 1993.
- [7] N. I. Muskhelishvili, Some basic problems of the mathematical theory of elasticity, Noordhoff, Leyden, 1953.
- [8] D, isseroni, F. D. Corso, S. Shahzad, D. Bigoni, Stress concentration near stiff inclusions: Validation of rigid inclusion model and boundary layers by means of photoelasticity, EFM, Vol. 121-122, pp. 87-97, 2014.

https://doi.org/10.1016/j.engfracmech.2014.03.004

- [9] Y. Setiawan, B. S. Gan, A. L. Han, Modeling of the ITZ zone in concrete: Experiment and numerical simulation, CC, Vol. 19, pp. 647-655, 2017. https://doi.org/10.12989/cac.2017.19.6.647
- [10] Y. Z. Chen, X. Y. Lin, Z. X. Wang, Evaluation of the degenerate scale for BIE in plane elasticity and antiplane elasticity by using conformal mapping, EABE, Vol. 33(2), pp. 147-158, 2009. https://doi.org/10.1016/j.enganabound.2008.05.007
- [11] W. N. Zou, Y. G. Lee, He QC, Inclusions inside a bounded elastic body undergoing anti-plane shear, MMS, Vol. 23(4), pp. 1-18, 2017. https://doi.org/10.1177/1081286516681195
- [12] V. A. Lubarda, On the circumferential shear stress around circular and elliptical holes, AAM, Vol. 85(2), pp. 223-235, 2015. https://doi.org/10.1007/s00419-014-0915-1
- [13] N. A. Noda, Y. Takase, Stress concentration formula useful for all notch shape in a round bar (comparison between torsion, tension and bending), IJF, Vol. 28, pp. 151-163, 2006. https://doi.org/10.1016/j.ijfatigue.2005.04.015.
- [14] E. Honein, T. Honein, G. Herrmann, On Two Circular Inclusions in Harmonic Problems, QAM, Vol. 50, pp. 479–499, 1992. https://doi.org/10.1090/qam/1178429.
- [15] J. T. Chen, A. C. Wu, Null-Field approach for the multi-inclusion problem under antiplane shears, JAM, Vol. 74(3), pp. 469-487, 2006. https://doi.org/10.1115/1.2338056.
- [16] M. A. Golberg, Solution Methods for Integral Equation. Plenum Press, New York, 1978.
- [17] A. N. Galybin, Formation of cracks on compressing an unbounded brittle body with a circular opening, JAMM, Vol. 49, pp. 797-799, 1985. https://doi.org/10.1016/0021-8928(85)90021-8
- [18] J. A. Cochran, Applied Mathematics: Principles, Techniques, and Applications, Wadsworth Pub Co, U.S.A. 1982.
- [19] Y. T. Lee, J. T. Chen, Null-field approach for the antiplane problem with elliptical holes and/or inclusions, CB, Vol. 44, pp. 283-294, 2013. https://doi.org/10.1016/j.compositesb.2012.05.025
- [20] N. A. Noda, Hayashida H Interaction between elliptical and ellipsoidal inclusions under bending stress fields, AAM, Vol. 70, pp. 612-624, 2000.

https://doi.org/10.1007/s004190000093

- [21] H. K. Hong and J. T. Chen, Derivations of Integral Equations of Elasticity, JOEM. ASCE, Vol. 114, No.6, pp. 1028-1044, 1988.
- [22] S. X. Gong and S. A. Meguid, A General treatment of the elastic field of an elliptical inhomogeneity under antiplane shear, JAM, Vol. 59, No. 2S, pp. S131-S135, 1992.
- [23] J. T. Chen, J. H. Kao, Y. L. Huang, S. K. Kao, On the stress concentration factor of circular/elliptic hole and rigid inclusion under the remote anti-plane shear by using degenerate kernels, AAM, Vol. 91, pp. 1133–1155, 2021.
- [24] Y. L. Huang, Study on the double-degeneracy mechanism in the BIEM for anti-plane shear problems, Master's thesis, 2020.
- [25] C. Q. Ru and P. Schiavone, On the elliptic inclusion in anti-plane shear, MMS, Vol. 1, pp.327-333, 1996.
- [26] V. A. Lubarda, On the circumferential shear stress around circular and elliptical holes, AAM, Vol. 85, pp. 223–235, 2015.
- [27] C. K. Chao and T. Y. Heh, Thermoelastic interaction between a hole and an elastic circular inclusion, AIAAJ, Vol. 37, pp. 475–481, 1999.
- [28] C. T. Sun and Z. Jin, Fracture mechanics, Academic press, 2011.
- [29] A. F. Liu, Mechanics and Mechanisms of Fracture: An Introduction, ASM International, 2005.
- [30] J. T. Chen, J.H. Kao, S.K. Kao, Y. L. Huang, Y. T. Chou, 2021, On the path independence and invariant of the J-integral for a slant crack and rigid-line inclusion using degenerate kernels and the dual BEM, EABE, Vol. 126, pp. 169-180, 2021.
- [31] J. T. Chen, J. H. Kao, Y. L. Huang, S. K. Kao, Study on the stress intensity factor and the double-degeneracy mechanism in the BEM/BIEM for anti-plane shear problems, TAFM, Vol.112, 102830, 2021.

7.圖表

表一 通過圓形的不同流入方向的勢能場和速度的解析解。

數學模型	$\psi^{\infty} = \mathbf{x} \qquad \mathbf{y}$ $\mathbf{\nabla}^{2}\psi = 0 \qquad \mathbf{a} \qquad \mathbf{x}$ $\frac{\partial\psi}{\partial n} = 0$	$\nabla^2 \psi = 0$ $\frac{\partial \psi}{\partial n} = 0$ $\psi^{\infty} = y$
分離核	$U(s, \mathbf{x}) = \begin{cases} \ln R - \sum_{m=1}^{\infty} \frac{1}{m} \left(\frac{\rho}{R}\right)^m \cos[m(\theta - \phi)], & \mathbf{R} \ge \rho \\ \\ \ln \rho - \sum_{m=1}^{\infty} \frac{1}{m} \left(\frac{R}{\rho}\right)^m \cos[m(\theta - \phi)], & \mathbf{R} < \rho \end{cases}$	$T(s, x) = \left(\frac{\partial U}{\partial n_s}\right) = \begin{cases} -\left(\frac{1}{R} + \sum_{m=1}^{\infty} \frac{\rho^m}{R^{m+1}} cos[m(\theta - \phi)]\right), & R > \rho \\ + \sum_{m=1}^{\infty} \frac{R^{m-1}}{\rho^m} cos[m(\theta - \phi)], & R < \rho \end{cases}$
遠程潛在流場ψ [∞] (ρ,φ)	ρcos(φ)	$\rho sin(\phi)$
圓柱體在無限平面不透水問題	a^2	a^2
的勢流 ^{ψ^M}	$\frac{1}{\rho} cos(\phi)$	$\frac{1}{\rho}sin(\phi)$
總勢能場 $\psi = \psi^{\infty} + \psi^{M}$	$\left(1+\left(\frac{a}{\rho}\right)^2\right)\rho \ \cos(\phi)$	$\left(1+\left(\frac{a}{\rho}\right)^2\right)\rho \ sin(\phi)$
x方向的速度 $u = \frac{\partial \psi}{\partial \rho} \cos(\phi) - \frac{1}{\rho} \frac{\partial \psi}{\partial \phi} \sin(\phi)$	$1 + \left(\frac{a}{\rho}\right)^2 (2sin^2(\phi) - 1)$	$-\left(\frac{a}{\rho}\right)^2 2cos(\phi)sin(\phi)$
y 方向速度 $v = \frac{\partial \psi}{\partial \rho} \sin(\phi) + \frac{1}{\rho} \frac{\partial \psi}{\partial \phi} \cos(\phi)$	$-\left(\frac{a}{\rho}\right)^2 2\cos(\phi)\sin(\phi)$	$1 + \left(\frac{a}{\rho}\right)^2 \left(2\cos^2(\phi) - 1\right)$
解析函數 <i>f(z)</i> 、(CV)	$\left(z+\frac{a^2}{z}\right)$	$\left(z - \frac{a^2}{z}\right)$
實部(Re)或虛部(Im)	$Re(f(z)) = \left(1 + \left(\frac{a}{\rho}\right)^2\right)\rho \ \cos(\phi)$	$Im(f(z)) = \left(1 + \left(\frac{a}{\rho}\right)^2\right)\rho \ \sin(\phi)$

表二 反平面作用 $(\sigma_{yz}^{\infty} = 0 \text{ and } \sigma_{xz}^{\infty} = S)$ 和 $(\sigma_{yz}^{\infty} = S \text{ and } \sigma_{xz}^{\infty} = 0)$ 下的裂縫和線剛性夾雜的位移和應力 比較

		Crack	Rigid-line inclusion
Function	Figure	$\sigma_{yz}^{x} = 0$	$\sigma_{yz}^{\infty} = S$ $\oplus \bigoplus \bigoplus \bigoplus \bigoplus \bigoplus \bigoplus$ \square $ B \qquad u = 0$ $ B \qquad $
Giver	ı B.C.	Neumann $t(x) = \frac{\partial w}{\partial n} = 0, x \in B$	Dirichlet $u(x) = 0, x \in B$
Obtained boundary density		$u^M(0,\eta_s) = \frac{S}{\mu}a\cos\eta_s$	$t^{M}(0,\eta_{s})=0$
	$u_z(\xi_x,\eta_x)$	$rac{S}{\mu}c\cos\eta_x\cosh\xi_x$	$rac{S}{\mu}c\sin\eta_x\sinh\xi_x$
Total displacement	$u_z(0, \eta_x)$ (Boundary)	$\frac{S}{\mu}c\cos\eta_x$	0
	$u_z(\xi_x,0)$	$\frac{S}{\mu}c\cosh\xi_x$	0
	$\sigma_{xz}(\xi_x,\eta_x)$	$\frac{S\left(\cosh^{2}\xi_{x}-\cos^{2}\eta_{x}\right)}{\left(\sinh\xi_{x}\cos\eta_{x}\right)^{2}+\left(\cosh\xi_{x}\sin\eta_{x}\right)^{2}}$	0
Stress field σ_{xz}	$\sigma_{xz}(0,\eta_x)$ (Boundary)	S	0
	$\sigma_{xz}(\xi_x,0)$	S	0
Stress field σ_{yz}	$\sigma_{yz}(\xi_x,\eta_x)$	0	$\frac{S\left(\cosh^{2}\xi_{x}-\cos^{2}\eta_{x}\right)}{\left(\left(\sinh\xi_{x}\cos\eta_{x}\right)^{2}+\left(\cosh\xi_{x}\sin\eta_{x}\right)^{2}\right)}$
	$\sigma_{yz}(0,\eta_x)$ (Boundary)	0	S
	$\sigma_{yz}(\xi_x,0)$	0	S

		Grade	Digid line inclusion
		Crack	Rigid-line inclusion
Function	Figure	$\sigma_{yz}^{\infty} = S$ $\bigoplus \bigoplus \bigoplus \bigoplus \bigoplus \bigoplus \bigoplus \bigoplus$ $B \qquad t = 0$ $B \qquad t$	$\sigma_{yz}^{\infty} = 0$
Giver	n B.C.	Neumann $t(x) = \frac{\partial w}{\partial n} = 0, x \in B$	Dirichlet $u(x) = 0, x \in B$
Obtained boundary density		$u^M(0,\eta_s) = \frac{S}{\mu}a\sin\eta_s$	$t^{M}(0,\eta_{s}) = \frac{S}{\mu} \frac{\cos \eta_{s}}{\sin \eta_{s}}$
Total displacement	$u_z(\xi_x,\eta_x)$	$\frac{S}{\mu}a\sin\eta_x(\sinh\xi_x+e^{-\xi_x})$	$\frac{S}{\mu}a\cos\eta_x(\cosh\xi_x-e^{-\xi_x})$
	$u_z(0, \eta_x)$ (Boundary)	$\frac{S}{\mu}a\sin\eta_x$	0
	$u_z(\xi_x,0)$	0	$\frac{S}{\mu}a\sinh\xi_x$
Stress field σ_{xz}	$\sigma_{xz}(\xi_x,\eta_x)$	$\frac{-S\sin\eta_x\cos\eta_x}{\left(\sinh\xi_x\cos\eta_x\right)^2+\left(\cosh\xi_x\sin\eta_x\right)^2}$	$\frac{S \sinh \xi_x \cosh \xi_x}{\left(\sinh \xi_x \cos \eta_x\right)^2 + \left(\cosh \xi_x \sin \eta_x\right)^2}$
	$\sigma_{xz}(0,\eta_x)$ (Boundary)	$\frac{-S\cos\eta_x}{\sin\eta_x}$	0
	$\sigma_{xz}(\xi_x,0)$	0	$\frac{S\cosh\xi_x}{\sinh\xi_x}$
Stress field $\sigma_{_{yz}}$	$\sigma_{yz}(\xi_x,\eta_x)$	$\frac{S \sinh \xi_x \cosh \xi_x}{\left(\sinh \xi_x \cos \eta_x\right)^2 + \left(\cosh \xi_x \sin \eta_x\right)^2}$	$\frac{S\sin\eta_x\cos\eta_x}{\left(\sinh\xi_x\cos\eta_x\right)^2 + \left(\cosh\xi_x\sin\eta_x\right)^2}$
	$\sigma_{yz}(0,\eta_x)$ (Boundary)	0	$\frac{S\cos\eta_x}{\sin\eta_x}$
	$\sigma_{yz}(\xi_x,0)$	$\frac{S\cosh\xi_x}{\sinh\xi_x}$	0

表三 反平面作用 ($\sigma_{yz}^{\infty} = S$ and $\sigma_{xz}^{\infty} = 0$)和 ($\sigma_{yz}^{\infty} = 0$ and $\sigma_{xz}^{\infty} = S$)下的裂縫和線剛性夾雜的位移和應力 比較。

		Crack	Rigid-line inclusion
Figure		$\sigma_{yz}^{w} = S$ $\oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus$	$\sigma_{yz}^{\infty} = 0 \qquad \bigoplus \qquad \qquad$
Function		$ \begin{array}{c} $	$ \begin{array}{c} \bullet \\ \bullet \\ & \bullet \\ & \bullet \\ & \bullet \\ \bullet \\ \bullet \\ \bullet \\ & \sigma_{yz}^{\infty} = 0 \end{array} \begin{array}{c} \oplus \\ & \oplus \\ & \bullet \\ & \oplus \\ & \bullet $
	$\tau(0,\eta_x) = \sqrt{\sigma_{xz}^2 + \sigma_{yz}^2}$	$\frac{S\cos\eta_x}{\sin\eta_x}$	$\frac{S\cos\eta_x}{\sin\eta_x}$
τ	$\tau(\xi_x,0) = \sqrt{\sigma_{xz}^2 + \sigma_{yz}^2}$	$\frac{S\cosh\xi_x}{\sinh\xi_x}$	$\frac{S\cosh\xi_x}{\sinh\xi_x}$
	Normal derivative $\tau^{n}(0,\eta_{x}) = \frac{\partial u_{z}}{\partial n} = \frac{\mu}{h} \frac{\partial u_{z}}{\partial \xi_{x}} *$	0 (B. C.)	$\frac{S\cos\eta_x}{\sin\eta_x}$
	Normal derivative $\tau^{n}(\xi_{x},0) = \frac{\partial u_{z}}{\partial n} = \frac{\mu}{h} \frac{\partial u_{z}}{\partial \xi_{x}} *$	0	$\frac{S\cosh\xi_x}{\sinh\xi_x}$
	Tangent derivative $\tau^{m}(0,\eta_{x}) = \frac{\partial u_{z}}{\partial m} = \frac{\mu}{h} \frac{\partial u_{z}}{\partial \eta_{x}} *$	$\frac{S\cos\eta_x}{\sin\eta_x}$	0 (B. C.)
	Tangent derivative $\tau^{m}(\xi_{x},0) = \frac{\partial u_{z}}{\partial m} = \frac{\mu}{h} \frac{\partial u_{z}}{\partial \eta_{x}} *$	$\frac{S\cosh\xi_x}{\sinh\xi_x}$	0
SIF	$K_{III} = \lim_{\varepsilon \to 0} \frac{\mu u_z \sqrt{\pi}}{\sqrt{2\varepsilon}}$	$K_{III} = S\sqrt{\pi a}$	$K_{III} = S\sqrt{\pi a}$
	$K_{III} = \lim_{\varepsilon \to 0} \sqrt{2\pi\varepsilon} \left \sigma_{xz}(0, \eta_x) \right $ or $K_{III} = \lim_{\varepsilon \to 0} \sqrt{2\pi\varepsilon} \left \sigma_{xz}(\xi_x, 0) \right $	$K_{III} = S \sqrt{\pi a}$	$K_{III} = S\sqrt{\pi a}$
	$K_{III} = \lim_{\varepsilon \to 0} \sqrt{2\pi\varepsilon} \left \sigma_{yz}(0, \eta_x) \right $ or $K_{III} = \lim_{\varepsilon \to 0} \sqrt{2\pi\varepsilon} \left \sigma_{yz}(\xi_x, 0) \right $	$K_{III} = S\sqrt{\pi a}$	$K_{III} = S\sqrt{\pi a}$
	$K_{III} = \lim_{\varepsilon \to 0} \sqrt{2\pi\varepsilon} \tau(0,\eta_x) $ or $K_{III} = \lim_{\varepsilon \to 0} \sqrt{2\pi\varepsilon} \tau(\xi_x,0) $	$K_{III} = S\sqrt{\pi a}$	$K_{III} = S\sqrt{\pi a}$
	$K_{III} = \lim_{\varepsilon \to 0} \sqrt{2\pi\varepsilon} \left \tau^{n}(0, \eta_{x}) \right $ or $K_{III} = \lim_{\varepsilon \to 0} \sqrt{2\pi\varepsilon} \left \tau^{n}(\xi_{x}, 0) \right $	$K_{III} = S\sqrt{\pi a}$	$K_{III} = S\sqrt{\pi a}$
	$K_{III} = \lim_{\varepsilon \to 0} \sqrt{2\pi\varepsilon} \left \tau^m(0, \eta_x) \right $ or $K_{III} = \lim_{\varepsilon \to 0} \sqrt{2\pi\varepsilon} \tau^m(\xi_x, 0)$	$K_{III} = S\sqrt{\pi a}$	$K_{III} = S\sqrt{\pi a}$

表四 反平面剪力作用下的裂缝和線剛性夾雜的τ和 SIF 的比較。

表五 裂縫與線剛性夾雜在相反方向作用下的 Cauchy-Riemann 關係。

Anti-plane elasticity problem	Crack	Rigid-line inclusion
Figure	$\sigma_{\mu}^{*} = S$ $\bigoplus \bigoplus $	$\sigma_{yz}^{*} = 0$
Given B.C.	Neumann $t(x) = \frac{\partial w}{\partial n} = 0, x \in B$	Dirichlet $u(x) = 0, x \in B$
Total displacement $u_z(\xi_x, \eta_x)$	$\frac{S}{\mu}a\sin\eta_x(\sinh\xi_x+e^{-\xi_x})$	$\frac{S}{\mu}a\cos\eta_x(\cosh\xi_x-e^{-\xi_x})$
Stress $\sigma_{xz}(\xi_x, \eta_x)$	$\frac{-S\sin\eta_x\cos\eta_x}{\left(\sinh\xi_x\cos\eta_x\right)^2 + \left(\cosh\xi_x\sin\eta_x\right)^2}$	$\frac{S \sinh \xi_x \cosh \xi_x}{\left(\sinh \xi_x \cos \eta_x\right)^2 + \left(\cosh \xi_x \sin \eta_x\right)^2}$
Stress $\sigma_{yz}(\xi_x, \eta_x)$	$\frac{S \sinh \xi_x \cosh \xi_x}{\left(\sinh \xi_x \cos \eta_x\right)^2 + \left(\cosh \xi_x \sin \eta_x\right)^2}$	$\frac{S\sin\eta_x\cos\eta_x}{\left(\sinh\xi_x\cos\eta_x\right)^2 + \left(\cosh\xi_x\sin\eta_x\right)^2}$
Stress intensity factor (SIF) K_{III}	$K_{III} = S\sqrt{\pi a}$	$K_{III} = S\sqrt{\pi a}$
J-Integral	$\frac{S^2 a \pi}{2 \mu} = \frac{K_{III}^2}{2 \mu}$	$\frac{-S^2 a\pi}{2\mu} = \frac{-K_{III}^2}{2\mu}$

圖 3. 勢流通過橢圓形障礙物問題的分解。

(a)原始問題 (b)反平面剪力下之位移 (c)無限域之位移含圓孔洞 圖 5. 圓孔洞受反平面力場作用 $(\sigma_{y_z}^{\infty} = S \cdot \sigma_{x_z}^{\infty} = 0)$ 。

(a)原始問題 (b)反平面剪力下之位移 (c)無限域之位移含橢圓孔洞 圖 7. 橢圓孔洞/線裂縫受反平面力場作用 $(\sigma_{yz}^{\infty} = S \cdot \sigma_{xz}^{\infty} = 0)$ 。

(a)原始問題 (b)反平面剪力下之位移 (c)無限域之位移含圓孔洞 圖 10. 圓剛性夾雜受反平面力場作用 ($\sigma_{yz}^{\infty} = 0 \cdot \sigma_{xz}^{\infty} = S$)

原始問題 (b)反平面剪力下之位移 (c)無限域之位移含橢圓孔洞 圖 11. 橢圓剛性夾雜受反平面力場作用 ($\sigma_{yz}^{\infty} = S \cdot \sigma_{xz}^{\infty} = 0$)

(a)原始問題(b)反平面剪力下之位移 (c)無限域之位移含橢圓孔洞圖 12. 橢圓剛性夾雜受反平面力場作用 ($\sigma_{yz}^{\infty} = 0 \cdot \sigma_{xz}^{\infty} = S$)

圖 13. 通過沿徑向的徑向軸設置 $\eta_r = 0$,從場解獲得尖端附近漸變行為的觀察點。

圖 14. 通過沿邊界設置 $\xi_{xors}=0$,從邊界數據中獲得尖端附近漸變行為的觀察點。

