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ABSTRACT 

The ricochet of eroding long rods, from steel targets, is investigated by a series of three-dimensional 
numerical simulations in explicit finite element code.  These are compared with the predictions of our 
analytical model and experimental results for ricochet.  This approach is different than the rigid body 
treatment by A. Tate.  Also it uses a new penetration velocity equation to predict critical ricochet angle.  
Critical ricochet angles were calculated for various impact velocities and strengths of the target plates in 
these approaches.  It was predicted that critical ricochet angle increases with decreasing impact velocities 
and that higher ricochet angles were expected if higher strength target materials are employed.  New 
model’s results show a better agreement with numerical results and experiments, rather than Tate and 
Rosenberg models. 

Keywords : Critical ricochet angle, Long-rod, Analytical model, Numerical simulation. 

1.  INTRODUCTION 

The phenomenon of ricochet is an important consid-
eration in ballistics. While a large fraction of laboratory- 
generated ballistic data is gathered under idealized  
impact-conditions of normal incidence, the physical and 
mathematically probable reality is that virtually all bal-
listic impacts on the battlefield occur at some nontrivial 
level of impact obliquity (as measured from the target 
normal).  At low to moderate obliquity levels, the bal-
listic effect of the obliquity may only be that of an in-
creased line-of-sight target thickness of the target.  
However, depending upon the material properties of the 
rod and target, the geometry of the rod, the impact ve-
locity, and yaw, there will exist a critical angle of obliq-
uity at and beyond which the rod ricochets from the 
target surface. 

Ricochet has been a long studied phenomenon.  An 
excellent review of work in the area is provided as a 
chapter in Goldsmith’s review paper on projectile im-
pact [1].  Much of the research in ricochet centers is on 
compact projectiles or on rigid projectiles.  A much 
smaller fraction of the work is focused on medium- and 
long-rod ricochet, where a different phenomenology 
often manifests itself. 

Radiographic evidence and hydrocode simulation of 
long-rod ricochet was presented by Jonas and Zukas [2] 
in 1978.  With experimental radiography and corrobo-
rating hydrocode simulation, they demonstrate how the 
rod can form at the impact site (stationary with respect 

to the target) and deflect the rod from a rigid target sur-
face.  As the intention of Jonas and Zukas was to 
demonstrate a hydro code modeling capability, no ana-
lytical modeling or analysis was offered. 

In 1979, Tate [3] developed an early model for the 
ricochet of rods, in which the cylindrical rod (of square 
cross-section) responds as a rigid body away from the 
eroding tip.  Tate’s model allows the local erosive de-
formation of the rod in the immediate vicinity of the 
impact.  The asymmetric forces acting on this deform-
ing rod tip are evaluated to ascertain their capacity to 
induce a rotation sufficient to bring about ricochet dur-
ing the limited time before the rod tip becomes fully 
engaged in the target.  While the model permits local 
deformation at the rod's tip, affecting the line of action 
of the interaction force, ricochet is judged to occur only 
if the remainder of the rod is adequately rotated, in a 
rigid fashion about its center of gravity, so as to produce 
a net linear velocity in the rod tip parallel to the target 
surface.  Tate’s approach produces an analytical ex-
pression for the target obliquity angle θcrit, beyond 
which ricochet is predicted to occur.  The expression 
for it is given as 

Tate model: 
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where ρp is the rod’s density, V is the striking velocity of 
the rod, Yp is the yield strength of the rod, L and D are 
the rod’s length and diameter, respectively, and U is the 
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initial penetration velocity of the rod into the target.  
Note that the need for the penetration velocity U as in-
put to the model requires an auxiliary calculation from a 
ballistic penetration model, such that U, in addition to 
the rod variables already listed, becomes a function of 
the target resistance and the target density. 

One of the drawbacks of the Tate ricochet model is 
its failure to predict ricochet for the rigid-rod (i.e., U = 
V) scenario, because of the method used to calculate the 
line of action of the interaction force.  Further, because 
of the model’s requirement to ricochet by way of rigid- 
rod rotation, ricochet becomes increasingly improbable 
as the rod length is increased. 

Jonas and Zukas [2], Senf et al. [4] showed in 1981 
how the ricocheting rod can form a deformable shape at 
the impact site to deflect the rod from a rigid target sur-
face.  Such observations provided additional evidence 
that, even in the absence of erosion, a rigid rod assump-
tion does not necessarily hold during the ricochet proc-
ess.  Like Jonas and Zukas, the intention of Senf et al. 
was to demonstrate hydrocode modeling capability, and 
so no additional analysis was offered. 

Reid et al. [5] began to address, with analysis, the 
notion of the plastic hinge, traveling down the rod’s 
length, but stationary with respect to the target surface.  
In their analysis, they simplified the problem to consider 
only the transverse bending forces, and were able to 
analogize the problem to one of a transverse impact on 
the free end of a cantilever beam. 

Johnson et al. [6] studied ricochet interactions of 
plasticine (modeling clay) rods and targets.  Based 
upon predictions from Tate’s ricochet model [3], John-
son et al. limited their testing to impact obliquities 
above 75°.  Photographic records of their testing reveal 
rod behavior similar to that reported by Jonas and Zukas 
[2], Senf et al. [4]. 

By 1983, several of the authors previously examining 
the ricochet problem combined efforts to produce new 
results.  The work of Johnson et al. [7] continued with 
the impact of plasticine rods, this time upon rigid targets, 
with new analysis brought to bear on the problem.  The 
impact velocities were very low and impact obliquities 
were restricted to angles below 60°.  Their work seems 
to focus more on the related but distinct problem of rod 
buckling as the primary mode of deformation, rather 
than bending associated with ricochet deflection. 

Rosenberg et al. [8] revisited the ricochet problem in 
1989.  They acknowledge adapting many of Tate’s [3] 
original premises, concerning the origins of the asym-
metric force that acts upon the eroding tip of the im-
pinging rod.  However, the key point of departure for 
Rosenberg et al. is in assuming that the interaction force 
acts only upon the mass actively engaging the target, 
and not upon the wholly remaining rigid rod as Tate 
assumed.  Thus, in the Rosenberg model, the interac-
tion force acts to linearly deflect rod-tip material in the 
transverse direction, rather than acting to apply a rota-
tional moment upon the rigid rod, as in the Tate ricochet 
model. 

Rosenberg model 
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where Rt is the target resistance.  Like Tate’s model, 
the Rosenberg model’s need for the penetration velocity 
U as input demands a further calculation that requires, 
in addition to those variables listed, knowledge of the 
rod strength Yp and the target density.  The model was 
shown to have good prediction ability for L / D = 10 
tungsten (WA) rods launched against rolled homogene-
ous armor targets at striking velocities between 600 and 
1400m/s and target obliquities between 55° and 75°. 

The interaction methodology of Rosenberg et al.  
however, calculates the force interaction based upon a 
virgin, long-rod striking an erodible (but as yet un-  
deformed) target.  Thus, it would seem that the meth-
odology should only offer a prediction as to what hap-
pens to the initial flux of rod material against the target.  
Once the initial tip of rod is deflected, for example, the 
geometric “initial conditions” of the remaining rod and 
gouged target surface are no longer in harmony with the 
model’s assumptions.  Such a situation indicates that 
the model would be unable to predict observed cases 
wherein the rod’s tip is sloughed off via ricochet fol-
lowed by the remaining rod shank establishing penetra-
tion.  And like Tate’s model from which it is derived, 
the methodology breaks down under conditions in 
which the rod remains rigid (i.e., when U = V), because 
of the manner in which the interaction force’s line of 
action is calculated. 

More recent studies of the ricochet phenomenon fo-
cus on spherical projectiles [9], rigid projectiles [10], 
computational methods [11], or else touch on ricochet 
only peripherally as part of a larger examination [12,13].  
None of these studies offer additional analytical model-
ing insight into the phenomenology of medium- and 
long-rod ricochet. 

2.  MODEL CONSTRUCT 

We adopt Rosenberg’s arguments concerning the 
source of the asymmetric force acting on the tip of the 
long rod as it engages the oblique target.  This interac-
tion is shown in Fig. 1. which is taken from Rosenberg’s 
work [8]. 

As in [8] we assume that the tip of the rod is eroding 
according to Rosenberg’s theory [8]. and that the cross 
section of the rod is square, in order to simplify the 
analysis.  Thus the same relations can be derived for 
the angle ψ (see Fig. 1) and the length (S) of the eroding 
tip [8]. 

 sinS tg
x

⋅ ψ
= ψ  (3) 
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Fig. 1 The asymmetric interaction between rod and 

target some time after impact (from [8]) 

The force ( f ) which acts on the eroding surface is 
responsible for the bending of the rod and for its rico-
chet.  Rosenberg assumed that the magnitude of this 
force depends on the pressure which the target exerts on 
the projectile.  Thus, used the strength parameter RT 
for the target. and wrote for the force f : 

 Tf R S D= ⋅ ⋅  (4) 

where S·D is the area of the eroding surface of the rod.  
Only the vertical component of f is of interest (f sinψ) 
and the time is needed for the whole tip of the rod to 
reach the target is tm = D tgβ / V.  Thus, the vertical 
impulse imparted by the asymmetrical force ( f ) to the 
tip of the rod is: 
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The relevant mass, on which the vertical impulse acts, 
is smaller than the mass of the tip (ρpD3tgβ) by the 
amount of the eroded mass which is equal to 
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of the rod tip is:  
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Using momentum conservation we get from Eqs. (3) 
and (4): 
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Where VT is the vertical velocity imparted by the 
asymmetrical force ( f ) to the tip of the rod (Fig 2).  
Form Eq. (7) we get: 
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T

T
P
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 (8) 

In spite of Rosenberg method we use a new approach 
for penetration velocity as below: 

 
Fig. 2  The velocity vectors of the rod 

First step considered here is the development of a re-
lationship between erosion rate, l , and the instantane-
ous velocity of the un-deformed portion of the rod v.  
For a cylindrical penetrator of length L and diameter D, 
the greater the instantaneous velocity of the rod, the 
higher the erosion rate.  Therefore, it seems appropri-
ate to assume that erosion rate, l , is proportional to this 
velocity.  Employing this concept, the following rela-
tion is assumed between v and l: [18] 

 l v= −α  (9) 

where α is one of the incompressibility of material 
properties.  α introduce the ratio of erosion rate and 
projectile velocity and can be represent as /l ν .  As 
this parameter is closely dependent to material proper-
ties and impact velocity and it is not dependent to pro-
jectile or target geometry, this is a useful parameter to 
investigate the long-rod penetration phenomena.  
Therefore with changing the projectile geometry, the 
need to make an additional experimental set up to obtain 
to the α is remove.  The other reason may be the fact 
that, the parameter α is simplified in hypervelocity re-
gion. 

Using the above assumption along with kinematic 
relationships about long-rod penetration:   

 ( )l u v= −  (10) 

results in: 

 (1 )u v= −α  (11) 

Equation (11) is a relation between u and v if the de-
pendency of α on material properties is established. 

At this point it is appropriate to attempt to determine 
what type of a relationship should exist between u and v.  
The objective is to develop a mathematical relationship 
based on the physics of the problem as follows: 

1. At hyper velocities the relationship between u and v 
should be independent of the strength properties of 
the target and penetrator.  (Classical jet penetration 

formula P

T

Z L ρ
=

ρ
; Where ρp and ρT are projectile 

and target density that shown in Figs. 3 and 4). 
2. At low velocities the relationship between u and v 

should depend on the strength properties of the im-
pacting materials. 
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Fig. 3 Schematic of rod in penetration process (a) 
plastic portion X and undeformed portion L-X 
(b) penetration into target to a depth Z 

 
Fig. 4 Schematic diagram of mass transfer from the 

undeformed to the plastic portion of the rod 

3. Since ( )l v u= − − , the higher the difference between 
v and u, the higher the erosion rate.  For a given 
material, higher erosion rate corresponds to higher 
impact velocity.  This translates into the fact that, at 
higher values of impact velocity v, the difference 
between v and u will be higher.  At the same time, 
at low impact velocity, the erosion rate is expected 
to be low and the difference between v and u de-
creases. 

4. In an impact situation, u is expected to depend on 
the ultimate yield strength of the target and penetra-
tor.  That is, u will be lower if the tensile strength 
of the target material is high (imposing more resis-
tance to penetration) and it will be higher if the ten-
sile strength of the projectile is high (all other condi-
tions unchanged).  This is because a high strength 
penetrator tends to behave more like a rigid body 
and consequently penetrate deeper into the target. 

Considering the above generalities, at hypervelocity 
the relation between u and v takes the following form:   

 

1 T

P

vu =
⎛ ⎞ρ

+ ⎜ ⎟ρ⎝ ⎠

 (12) 

This relationship is obtained if fluid behavior is as-
sumed for the colliding materials (negligible structural 
resistive forces) and the momentum equation is applied 
as follows: 

 2 2( )P Tv u uρ − = ρ  (13) 

Solving Eq. (13) for u will result in Eq. (12).  Now, at 
hypervelocity there are two relationships between u and 

v, Eq. (12), and relation assumed previously, Eq. (11).  
Comparing these two equations we obtain:  

 (1 )

1 T

P

vv −α =
⎛ ⎞ρ

+ ⎜ ⎟ρ⎝ ⎠

 (14) 

From which an expression for α can be obtained as 

 
1

λ
α =

λ +
 (15) 

where λ is the square root of the ratio of the density of 
the target to the density of the penetrator 

 T

P

⎛ ⎞ρ
λ = ⎜ ⎟ρ⎝ ⎠

 (16) 

Equation (15) is valid at hypervelocity only and does 
not apply at low impact velocity.  This term can be 
thought of as a limit as impact velocity becomes very 
high, 

 lim
1v→∞

λ
α =

λ +
 (17) 

It was already pointed out that at low velocity, 
strength parameters play a significant role and the rela-
tion between u and v should depend on these parameters.  
After considering a great number of possibilities to ar-
rive at a strength dependent expression between these 
two variables, the following exponential relation was 
developed for α.  Furthermore, the results of many test 
cases are expressed in relation 18 as an exponential 
function with the help of curve fitting method: 
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where γ is the ratio of the target ultimate strength to that 
of the penetrator 
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The properties of this exponential expression are as 
follows: 

1. At hypervelocity the exponential part of the expres-
sion for α goes to zero and the relation between u 
and v becomes independent of the strength proper-
ties of the materials and reduces to the classical den-
sity law 

 1  
1

u vλ⎡ ⎤= −⎢ ⎥+ λ⎣ ⎦
 (20) 

2. At lower velocity the effect of the strength terms 
become pronounced as v decreases.  The value of α 
increases as the difference between v and u de-
creases corresponding to the fact that at low velocity 
the erosion rate becomes smaller.  The relationship 
between u and v in this situation is 
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Equation (21) corresponds to all the guidelines indicated 
previously and is considered to be a valid expression 
relating u and v.  This equation also indicates that u is 
always less than or equal to v as expected and the inter-
nal consistency of the problem is sustained. 

From Eqs. (8) and (21) we get: 
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Figure 2 shows the two velocity vectors of the rod 
and one can easily show that ricochet occurs if  
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 (23) 

This relation shows a better agreement with test data, 
because it has additional term rather than Rosenberg’s 
model. 

3.  NUMERICAL ANALYSIS 

A full three-dimensional explicit finite element 
analysis with Lagrangian formulation based on the 
principle of virtual work and the central difference time 
integration scheme [14,15] was carried out to investi-
gate the ricochet problem.  Since theoretical and 
mathematical foundations for the explicit finite element 
analysis are well established [14,15] and are widely 
adopted to solve the problem of high-strain-rate defor-
mations [16], the lengthy derivation of the equations for 
the numerical analysis is not repeated here.  A general- 
purpose explicit finite element analysis code was used 
for the numerical calculations. 

Figure 5 shows a typical finite element model used in 
the numerical analysis.  The model consists of a rectan-
gular oblique target plate and a cylindrically shaped pro-
jectile with blunt nose shape that is initially located 1mm 
away from the target.  Only half of the whole geometry 
was modeled due to the inherent symmetry of the model 
along the x-direction of the coordinate as shown in Fig. 5.  
The length and diameter of the projectiles chosen for the 

numerical analysis were 75 and 7mm, respectively, giving 
an L/D ratio of 10.7.  Impact velocities of the projectiles 
were varied from 1000 to 2000m/s with an increment of 
250m/s.  Target plates modeled are l50mm long, 40mm 
wide and 6.25mm thick.  Obliquity of the plates was var-
ied from 3° to 25° with intervals of 1°.  Typical 
eight-node linear brick elements with reduced integration 
were used for meshing as shown in Fig. 3.  Material 
properties were applied to the model by assigning appro-
priate material properties to the pre-defined projectile and 
target element sets, i.e., properties of WHA to the projec-
tile element set and properties of the two types of high 
hardness steel, namely, RHA class 4 [17] and S-7 tool steel 
[18], to the target element set. 

In order to model a high-strain-rate mechanical re-
sponse of the projectile and the target materials, a com-
monly used constitutive equation, the Johnson-Cook Eq. 
[18], was used as it is known to describe high-velocity 
mechanical response of a number of metals fairly well 
[19].  This has the form 

 0
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( ) 1 1
m
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m r

T TB CLn
T T

⎡ ⎤⎛ ⎞ ⎛ ⎞ε −
σ = σ + ε + ⎢ − ⎥⎜ ⎟ ⎜ ⎟ε −⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
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where σ0 is the static yield strength, εp the effective 
plastic strain, ε the effective strain rate, 0ε the reference 
strain rate, T the temperature, Tr the room temperature, 
Tm the melting temperature and B, C, m and n are mate-
rial constants.  For the materials used in this study, 
these parameters were determined from separate ex-
periments (for RHA and WHA) or taken from Johnson 
and Cook (for S-7 tool steel) [18] and are shown in Ta-
ble 1 together with the basic physical properties re-
quired for the calculations. 

 
Fig. 5 Typical finite element mesh coordinate system 

used for the numerical study in this work 

Table 1 Material properties and constants for the 
Johnson-Cook model applied to the numerical 
model 

 WHA RHA S-7 
Shear modulus (GPa) 152.02 76.96 79.96 

ρ(kgm−3)  17000 7840 7750 
Specific heat (Jkg−1K−1) 134 477 477 

Tm (K)  1723 1809 1763 

σ0 (MPa)  1410 1160 1539 
B (MPa)  223.3 415.9 477 

n 0.11 0.28 0.18 
C 0.022 0.012 0.012 
m 1.0 1.0 1.0 
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The interaction between the projectile and the plate 
was simulated by a Lagrangian-Lagrangian contact al-
gorithm based on a slave-grid/master segment concept.  
This algorithm checks eventual penetration of slave- 
grids through master segments and applies constant 
forces to push them back.  Erosion of the projectile and 
the target was simulated through a so-called adaptive 
contact algorithm [20], which automatically updates 
contact definition between the interacting deformable 
bodies upon elimination of the elements when pre-set 
level of plastic strains, determined by a separate depth 
of penetration (DOP) calibration, are reached. 

4.  EXPERIMENTAL 

Experiments were carried out to verify the numerical 
results.  These results were used from last papers.  
The experimental set-up shown in Fig. 6 was used in 
last papers consists of three witness blocks (38mm thick 
RHA class 4), an oblique target plate (6.25mm thick 
RHA class 4), a velocity-measuring device and a solid 
propellant gun.  WHA projectiles with L / D ratios of 
10.7 (L = 75 and D = 7mm) were impacted at velocities 
of about 1000 and 1500ms−1.  The velocities of the 
projectiles were controlled by adjusting the amount of 
solid propellant charge.  The relations between the 
amount of the charge and the projectile velocities were 
calibrated in a preparatory experiment. 

 

 
Fig. 6 Schematic illustration of the experimental set- 

up for the observations of oblique impact of a 
long-rod projectile on a steel target plate per-
formed in this study 

5.  RESULTS AND DISCUSSION 

5.1 Post-Impact Behavior of the Projectile and the 
Target Plate 

Numerical results are graphically shown in Figs. 7 ~ 9 
in terms of the mesh deformation with the lapse of time 
to analyze the behavior of the WHA projectile and the 
RHA target with thickness comparable to the projectile 
diameter during the oblique impact.  When the projec-
tile impact velocity is 1000ms−1 and the target oblique 
angle is 10°, as in the case shown in Figs. 7(a) ~ 7(h), 
the projectile initially bends on impact (Fig. 7(a)).  
Subsequently, a plastic hinge is formed which remains 
at the initial point of impact with respect to a fixed co-
ordinate system (Eulerian) resulting in its relative 
backward motion along the x-direction of the coordinate 

system (Fig. 5) as the projectile progresses forward 
(Figs. 7(b) ~ 7(d)).  In the case being considered (θ = 
10°), where the oblique angle is lower than the critical 
ricochet angle, the target does not deform much and no 
significant erosion of the impacted surface is noticed 
whilst the front end (denoted as head hereinafter) of the 
projectile lifts from the target surface after sliding some 
distance and eventually the projectile bounces away 
(Figs. 7(e) ~ 7(h)).  Such behavior is yielded due to the 
asymmetric reaction force exerted from the contact area 
to the projectile, which is reportedly proportional to the 
area of the contact, target strength and oblique angle [8]. 

When the oblique angle of the target plate is in-
creased to 12° whilst keeping the impact velocity the 
same, the projectile shows somewhat different behavior.  
As shown in Figs. 8(a) ~ 8(d), it initially pushes the 
impacted area of the target inward following impact 
since the target plate is allowed. 

Whilst the head of the projectile tends to bounce back 
from the target due to the reaction force exerted from 
the contact area at the initial stage of the impact, its trail-
ing portion (denoted as tail hereinafter) tends to penetrate 
into the target along an almost identical trajectory of the 
initial impact (Fig. 8(e)).  Consequently, the front part 
ahead of the plastic hinge, which was bent and slid on the 
plate surface, bounces away whilst the rear part behind it 
penetrates into the deformed target forming a stretched 
section in the projectile and an impact crater in the target 
(Figs. 8(f) and 8(g)).  Indeed, the relatively thin de-
formable target plays a significant role in yielding such 
phenomena.  At the critical oblique angle, the tail also 
bounces away at a later time step before it completely 
perforates the target achieving critical ricochet (Fig. 8(h)).  
At this stage the elongation of the projectile becomes so 
severe that it results in the fragmentation of the projectile. 

In the case where the oblique angle is further in-
creased to 14° beyond the critical angle, as can be seen 
in Figs. 9(a) ~ 9(c), the initial behavior of the projectile 
and the target is similar to the case of critical ricochet 
shown in Figs. 8(a) ~ 8(d). 

However, unlike in the previous case, the tail part 
further progresses to penetrate into the target downward 
by eroding it (Figs. 9(e) and 9(f)), resulting in the frag-
mentation of the projectile due to extreme elongation as 
well as complete penetration (perforation) of the target 
as shown in Figs. 9(g) and 9(h). 

Understanding the physical nature of the above be-
havior of the projectile and the target can be supple-
mented by analyzing the changes in the projectile ve-
locities after impact, as has also been performed for 
normal penetration in the literature [21].  For this pur-
pose, post-impact changes in the horizontal (along the 
x-direction) and vertical (along the y-direction) veloci-
ties of head and tail of the projectile have been moni-
tored during the numerical calculations and the results 
are plotted in Figs. 10 to 15.  Before impact, the head 
and the tail move at the same initial velocity of 
1000ms−1 and there is no vertical velocity term.  For 
the case with relatively low oblique angle, e.g., θ = 10°, 
as shown in Figs. 10 and 11, the horizontal velocities of  
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Fig. 7 Numerical results showing the behavior of the WHA projectile and the RHA target when the oblique angle is 
10° and the impact velocity is 1000m/s 

 

Fig. 8 Numerical results showing the behavior of the WHA projectile and the RHA target when the oblique angle is 
12° and the impact velocity is 1000m/s 

 

Fig. 9 Numerical results showing the behavior of the WHA projectile and the RHA target when the oblique angle is 
14° and the impact velocity is 1000m/s 

 

RETRACTED
 



124   Journal of Mechanics, Vol. 25, No. 1, March 2009 

 
Fig. 10 Projectile head horizontal and vertical velocity 

(θ = 10°) 

 
Fig. 11 Projectile tail horizontal and vertical velocity 

(θ = 10°) 

 
Fig. 12 Projectile head horizontal and vertical velocity 

(θ = 12°) 

 
Fig. 13 Projectile tail horizontal and vertical velocity 

(θ = 12°) 

 
Fig. 14 Projectile head horizontal and vertical velocity 

(θ = 14°) 

 
Fig. 15 Projectile tail horizontal and vertical velocity 

(θ = 14°)

the head and the tail of the projectile after impact are 
kept almost identical, implying no significant axial 
strain, which prevents the projectile segmentation.  It 
can also be seen that the horizontal velocities did not 
decrease noticeably.  From this, it is inferred that the 
projectile does not encounter any significant resistance 
to its motion along the flight trajectory and that the im-
pact interaction of the projectile with the target does not 
cause any large-scale deformation of the target. 

Whilst there were only slight changes in the horizon-
tal velocities, vertical velocities of the head and the tail  
undergo noticeable changes during the impact process.  
As can be seen in Fig. 10, the vertical velocity of the 
head initially increases to about 300ms−1 and remains 
almost the same thereafter, which would be associated 
with sliding on the target surface and subsequent takeoff 
of the head shown in Figs. 7(a) ~ 7(h).  On the other 
hand, the vertical velocity of the tail is almost 0 until 
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about 80μs and then increases to about 550ms−1 at 
140μs.  This indicates that the impact of the head on 
the target does not cause any yawing force in the rear 
part of the projectile which is beyond the plastic hinge 
mentioned above.  Near-constant vertical tail velocity 
of 460ms−l after about 160μs would indicate the takeoff 
of the tail as shown in Figs. 7(f) and 7(h). 

However, where critical ricochet was achieved (θ = 
12° for the case considered herein), as shown in Fig. 12, 
the decrease in the horizontal velocity of the head with 
respect to time is more pronounced than in the previous 
case, indicating that the progress of the head is hindered 
more.  In particular, as shown in Fig. 13, the horizontal 
velocity of the tail decreases to almost 0 from about 
140μs, producing a velocity difference between the 
head and the tail of about 750ms−1.  Such a large ve-
locity difference may cause large-scale deformation and 
therefore it would explain the stretching of the projectile 
shown in Fig. 8(g) followed by the segmentation of the 
projectile shown in Fig. 8(h).  At the same time, a 
sudden drop in the horizontal velocity of the tail be-
tween 100 and 150μs is believed to be related to the 
target cratering shown in Figs. 8(f) and 8(g), which 
could exert a high resistance to the advance of the tail.  
When critical ricochet is achieved, even though the im-
pact crater is formed on the target, this does not lead to 
target perforation.  This can be explained from the 
changes in the vertical velocities of the head and the tail 
shown in Figs. 12 and 13, where it can be seen that the 
head and the tail sequentially acquire positive, vertical 
velocity components.  They begin to take off from the 
target plate at about 0 and 150μs, respectively, indicat-
ing no further penetration of the target. 

A similar trend is obtained when the target oblique 
angle is further increased, e.g. θ = 14°, as shown in Figs. 
14 and 15 whilst two apparent differences are noticed.  
First, the horizontal velocity of the head, once it is de-
creased to about 700ms−1 at about 120μs, remains 
nearly constant implying that the flight of the head por- 

tion is no longer hindered by the target thereafter, 
probably due to the earlier segmentation of the projec-
tile.  In the previous case shown in Fig. 12, the head 
portion was connected to the tail portion through the 
elongated portion until the later time step so that the tail, 
still staying in the impact crater in the target, delayed 
the propagation of the head, which is represented as 
continuously decreasing velocity.  Second, the behav-
ior of the tail after segmentation is completely different: 
the vertical velocity of the tail decreases to a negative 
value of about −180ms−1 from about 150ms−1, which is 
then maintained almost constant after about 180μs.  
This indicates that the fragmented tail is heading 
downward, which would be responsible for the perfora-
tion of the target shown in Fig. 9(h). 

The ricochet behavior illustrated in Figs. 7(a) to 9(h) 
are also supported by the experimentation carried out 
herein.  Figure 16 shows the shape of the target plate 
and the witness block after the ricochet experiments.  
In this figure, the deformed shape of the plate is appar-
ent with an asymmetric elliptical perforation hole.  
Occurrence of ricochet can be judged by observing de-
formed and eroded surfaces of the target plate and 
penetration holes in the witness block.  When a projec-
tile impacted the target plate having oblique angles 
lower than some critical value, as can be seen in Figs. 
16(a) and 16(c), the ricochet process resulted in a long 
surface groove in the target plate formed by erosion, and 
in a single penetration crater on the witness block.  At 
an oblique angle slightly higher than the critical value, 
however, the projectile broke into two parts, resulting in 
a characteristic phenomenology in the target plate and 
the witness block shown in Figs. 16(b) and 16(d): there 
is an apparent groove (crater) followed by a single per-
foration hole in the target resulting from initial erosion 
and a subsequent penetration whilst two penetration 
holes are noticeable in the witness block, one over and 
the other below the white line in Figs. 16(b) and 16(d) 
where the edge of the target was located. 

 
(a)                     (b)                     (c)                     (d) 

Fig. 16  Photographs showing the results from ricochet experiment [16] 

 

RETRACTED
 



126   Journal of Mechanics, Vol. 25, No. 1, March 2009 

 
Fig. 17  Spark cinematography of a ricocheting rod projectile [4] 

 

The post-impact behavior of the deformable projec-
tile and the deformable target with finite thickness de-
scribed so far in general agrees qualitatively with what 
has been observed and predicted in the previous works 
in which ricochet occurred at un-deformable (and some-
times rigid) target surfaces.  However, as apparent in 
Figs. 7(a) to 9(h), the inward deformation of the target 
plate due to the finite thickness comparable to the pro-
jectile diameter is shown to assist the segmentation of 
the projectile, followed by the perforation of the target 
plate by the broken rear part of the projectile.  Such 
phenomena could be responsible for the difficulty of 
obtaining ricochet from relatively thin plates.   

Senf et al. [4] showed how the ricocheting rod can 
form a plastic hinge at the impact site to deflect the rod 
from a rigid target surface.  These test results (see Fig. 
17) are similar the FEM solution results as shown in Figs. 
7(a) to 9(h).  But in FEM solution the target plate is not 
rigid and it deflected more. 

5.2  Critical Ricochet Angles  

In accordance with the definition of ricochet men-
tioned in the introduction, changes in the critical rico-
chet angles were derived by analyzing the numerical 
results graphically in the manner described in last sec-
tion and were plotted as functions of impact velocities 
in Fig. 18 for the RHA target plate.  The ricochet angle 
curves shown in Fig. 18 were obtained from curve-  
fitting the numerical results as a first-order exponential 
decay function.  The fitted equations, their parameter 
values, and the statistical analysis of the fitted results are 
also reported in the figure.  The numerical results are 
confirmed with experimental results as shown in Fig. 18.  
In Fig. 18, the hollow circle markers indicate perforation 
of the RHA target plate by the long-rod projectile whilst 
the solid star markers indicate critical ricochet of the 
projectile.  It can be seen that there is good agreement 
between the two. 
The new developed model results on the critical rico-
chet angles are also compared with experimental, nu-
merical results and existing two-dimensional analytical 
models developed by Tate [3] and Rosenberg et al. [8], 
independently.  The critical ricochet angles based on 

these models have been calculated for a WHA long- rod 
projectile and a RHA target as functions of impact ve-
locities in Fig. 19.  Also shown are the corresponding 
numerical results.  It can be seen in the figure that the 
Tate model overestimates the critical ricochet angle for 
impact velocities higher than 1170ms−1 and vice versa for 
lower velocities.  Further, the slope of the Tate curve is 
different from the numerical one: the difference in the 
two curves becomes larger as the velocity of interest ei-
ther increases or decreases from 1170ms−1.  On the other 
hand, the model developed by Rosenberg et al. shows a 
similar trend to the numerical results, though the former 
overestimates the critical ricochet angles at all impact 
velocities. 

New model’s results show a better agreement with 
numerical results.  As shown Fig. 19, the difference 
between new analytical model prediction result and 
Rosenberg model result decrease up to 25%.  The re-
sults presented in this model, shifts to the experimental 
results, because: 
1. This method was more detailed parameters to calcu-

late the penetration velocity such as projectile den-
sity in comparing with Rosenberg analytical method. 

 
 

 

Fig. 18 Comparison of the numerically predicted criti-
cal ricochet angles for various velocities with 
the experimental results 
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Fig. 19 Comparison of the numerically determined 
critical ricochet angles for various velocities 
with those predicted from two dimensional 
analytic models of Tate [6] and Rosenberg et 
al. [7] and new method 

2. This method uses parameter α in calculating the 
critical ricochet angle, where α is based on the ex-
perimented results.  Therefore the results might be 
were accurate. 
Therefore new analytical model can be used as a 

practically useful guideline to estimate ricochet angles 
rather than existing two-dimensional analytical models 
developed by Tate [3] and Rosenberg et al. [8].   

About effects of the target strength we have:  
Whilst the RHA has been widely used as a primary 

armor material over decades, in some cases, stronger 
material such as high hardness armor (HHA) has also 
been adopted, though its use is limited due to lower 
toughness.  To investigate the effect of material 
strength on the ricochet angle, material constant terms 
in the Johnson-Cook model for S-7 tool steel, which has 
static yield strength and hardness similar to HHA pro-
duced by Thyssen Krupp AG, were taken from the lit-
erature [17] and applied to the numerical model.  The 
ricochet angles calculated for S-7 tool steel were plotted 
as a function of impact velocity in Fig. 20.  It can be 
seen that a higher ricochet angle is predicted for a given 
impact velocity if the target strength is increased. 

5.3  Summary and Conclusions 

Ricochet of a WHA long-rod projectile impacting on 
oblique, steel target plates with finite thickness was in-
vestigated numerically using a full, three-dimensional, 
explicit finite element method with the predictions of 
our analytical model.  Effects of the impact velocities 
of the projectiles and the hardness of the plates on the 
critical ricochet angle were considered. 

It was predicted in the numerical analysis that the 
projectile and the target behave in three different ways 
depending on the oblique angle of the target.  For a 
relatively low oblique angle, the impacted projectile bent 
and slid on the target surface to bounce away with very 
little velocity drop whilst no significant deformation of 

 
Fig. 20 Effect of target strength on the critical ricochet 

angles 

the target was predicted.  With increasing oblique angle, 
the projectile initially bent on impact but the target de-
formed substantially to arrest the tail portion of the target 
behind the plastic hinge.  This resulted in the projectile 
stretching between the head and the tail, which pulled the 
tail out of the target to achieve critical ricochet.  Seg-
mentation of the projectile then followed.  When the 
oblique angle was further increased, the projectile impact 
caused severe target cratering which played the role of 
guiding the tail portion of the projectile through the target 
resulting in perforation.  In this case the projectile broke 
before its head left the target.  Such behavior of the pro-
jectiles and the target plates predicted in this numerical 
study was supported by experimental observations of the 
deformed shape of the target plates and the penetration 
holes on the witness blocks.  The post-impact behavior 
of the deformable projectile and deformable target with 
finite thickness in this work in general agreed qualita-
tively with previous work based on un-deformable (and 
rigid) target surfaces.  However, the deformable target 
assisted the breakage of the projectile followed by the 
perforation of the plate by the broken rear part of the 
projectile. 

Critical ricochet angles were also derived from the 
numerical analysis and new model and from existing 
two-dimensional analytical models developed by Tate [3] 
and Rosenberg et al. [8].  As the other need many simu-
lations in each velocity to obtain the critical ricochet an-
gles, and also any change in geometry can lead to a new 
simulation, then this process is time-consuming subse-
quently, presenting a new analytical formulation might be 
of great importance to find the critical ricochet angle. 

In order to calculate the critical ricochet angle it has 
been only two analytical model (Tate and Rosenberg 
models).  As these two models usually overestimate 
the results comparing with test experimental setup; 
however, the others compare their results with these two 
analytical methods.  As the presented method predicts 
the results more accurately and the errors are reduced 
into 25%.  Then it can be a new analytical model to 
reach the better agreements.  Therefore new analytical 
model can be used as a useful method to predict critical 
ricochet angle in metal cases.   
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When the target hardness was considered the numeri-
cal results predicted that a higher ricochet angle can be 
obtained by employing harder target materials for a given 
impact velocity, which was appreciable at lower veloci-
ties in particular. 

NOMENCLATURE 
 β Critical ricochet angle 
 ρT Target’s density 
 ρP Projectile’s density 
 V Striking velocity of the rod 
 L Projectile length 
 D Projectile diameter 
U,u Projectile penetration velocity 
 YP Projectile resistance 
 RT Target resistance 
 S Length of the eroding tip of the projectile 

 ψ Rotations of the projectile eroding surface rela-
tive to the un-deformed projectile edge 

 x Projection of S in vertical direction (S.Cosψ) 
 t Time  
 f The force acts on the projectile 

m, m1, m2 Residual mass off the projectile, Projectile 
tip mass, Projectile eroded mass 

 VT Vertical velocity 
 l  Projectile erosion rate 

 ν Tail velocity (Instantaneous velocity of the un- 
deformed portion of the projectile) 

 α Coefficient ( l
v

α = − ) 

 λ Coefficient ( t

p

⎛ ⎞ρ
λ = ⎜ ⎟⎜ ⎟ρ⎝ ⎠

) 

 γ Coefficient ( t

p

Y
Y
⎛ ⎞

γ = ⎜ ⎟⎜ ⎟
⎝ ⎠

) 

 YT target ultimate strength 
 σ, σ0 Static yield strength ,flow stress 
εP, ε, ε0 Effective plastic strain, effective strain rate, 

refrence strain rate 
B, C, n, m Material constants in Johnson-Cook relation 
T, Tr, Tm Temperature, room temperature, melting 

temperature 
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