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A systematic approach using the null-field integral equation in conjunction with the degenerate kernel is
employed to solve the multiple radiation and scattering problems. Our approach can avoid calculating the
principal values of singular and hypersingular integrals. Although we use the idea of null-field integral
equation, we can locate the point on the real boundary thanks to the degenerate kernel. The proposed
approach is seen as one kind of semi-analytical methods, since the error is attributed from the truncation
of spherical harmonics. Finally, the numerical examples including one and two spheres are given to verify
the validity of proposed approach.

� 2010 Elsevier Ltd. All rights reserved.
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E1. Introduction

It is well known that the boundary integral equation methods
(BIEMs) have been used to solve radiation and scattering problems
for many years. Theoretically and practically speaking, the impor-
tance of the integral equation in the solution for certain types of
boundary value problems is universally recognized. One of the
problems frequently addressed in BIEM/BEM is the problem of
irregular frequencies in boundary integral formulations for exterior
acoustics and water wave problems. These frequencies are not
physically realizable but are due to the numerical method, which
has non-uniqueness solutions at characteristic frequencies associ-
ated with the eigenfrequency of the interior problem. Burton and
Miller approach [1] as well as CHIEF technique [2] have been em-
ployed to deal with these problems.

Regarding the irregular frequency, a large amount of papers on
acoustics have been published. For example, numerical examples
for non-uniform radiation and scattering problems by using the
dual BEM were provided and the irregular frequencies were
detected and suppressed [3]. The non-uniqueness solution of
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radiation and scattering problems are numerically manifested in
a rank deficiency of the influence coefficient matrix in BEM [1].
In order to obtain the unique solution, several integral equation
formulations that provide additional constraints to the original
system of equations have been proposed. Burton and Miller [1]
proposed an integral equation that was valid for all wave numbers
by forming a linear combination of the singular integral equation
and its normal derivative. However, the calculation for the hyper-
singular integration is required. To avoid the computation of
hypersingularity, Schenck [2] used an alternative method, the
CHIEF method, which employs the boundary integral equations
by collocating the interior point as an auxiliary condition to make
up deficient constraint condition. Many researchers [4–6] applied
the CHIEF method to deal with the problem of fictitious frequen-
cies. If the chosen point locates on the nodal line of the associated
interior eigenproblem, then this method may fail. To overcome this
difficulty, Seybert and Rengarajan [4] and Wu and Seybert [5] em-
ployed a CHIEF-block method using the weighted residual formu-
lation for acoustic problems. On the contrary, only a few papers
on water wave for the non-uniqueness problem can be found.
Ohmatsu [7] presented a combined integral equation method
(CIEM), which was similar to the CHIEF-block method for acoustics
proposed by Wu and Seybert [5]. In the CIEM, two additional con-
straints for one interior point result in an overdetermined system
to insure the removal of irregular frequencies. An enhanced CHIEF
method was also proposed by Lee and Wu [6]. The main concern of
adiation and scattering problems by using the null-field integral equation
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Fig. 1. Sketch of multiple spheres.
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the CHIEF method is how many numbers of interior points are
required and where the positions should be located.

Recently, the appearance of irregular frequency in the method
of fundamental solutions was also theoretically proved and numer-
ically implemented [8]. However, as far as the present authors are
aware, only a few papers have been published to date reporting on
the efficacy of these methods in radiation and scattering problems
involving more than one vibrating body. By this way, Dokumaci
and Sarigül [9] discussed the fictitious frequency of radiation prob-
lem of two spheres. They used the surface Helmholtz integral
equation (SHIE) and the CHIEF method to examine the position
of fictitious frequency. However, some irregular frequencies were
not suppressed by using the CHIEF technique and further investi-
gation was required in their paper. In our formulation, we are also
concerned with the fictitious frequency especially for the multiple
spheres of scatters and radiators. We will employ the Burton and
Miller approach to avoid the CHIEF risk since hypersingularity
can be tackled easily.

For three-dimensional radiation and scattering problems, many
researchers have paid attention to solve the problems by using var-
ious approaches. Waterman [10] presented the T-matrix formula-
tion for acoustic scattering problem. Peterson and Ström [11]
extended the T-matrix approach to solve the problem with arbi-
trary number of scatterers. Liang and Lo [12] used the wave func-
tion method or so-called eigenfunction expansion method to
analyze the electromagnetic wave scattering with two spheres.
The wave function was expanded by the multipole expansion (or
called addition theorem) and a series-form solution was repre-
sented. Gaunaurd and Huang [13] also used the multipole expan-
sion to solve the problem, more detailed discussions were made
due to the use of asymptotic approximations. Rao and Raju [14]
used the method of moment to formulate the problem. The method
was based on the potential theory and can be seen as one kind of
indirect method.

In the recent years, Chen and his group used the null-field inte-
gral equation formulation in conjunction with degenerate kernel
and Fourier series to deal with many engineering problems with
circular boundaries, such as torsion bar [15], water wave [16],
Stokes flow [17], plate vibrations [18] and piezoelectricity prob-
lems [19]. They claimed that their approach has high accuracy of
exponential convergence and is one kind of semi-analytical ap-
proach. However, their applications only focused on two-dimen-
sional problems. A review article can be found in [20]. In this
paper, we would like to extend this idea to three-dimensional
problems.

In this paper, a systematic approach using the null-field integral
equation method in conjunction with the degenerate kernels is
employed to solve the radiation and scattering problems of multi-
ple spheres. By using the null-field integral equation instead of the
boundary integral equation, we can avoid calculating the principal
values of singular and hypersingular integrals. To fully utilize the
spherical geometry, the fundamental solutions and the boundary
densities are expanded by using degenerate kernels and spherical
harmonics, respectively. Although the concept of null-field integral
equation is used, the collocation point can be exactly located on
the real boundary after introducing the degenerate kernel. At the
same time, the singular and hypersingular integrals are
transformed to series sum free of calculation using the principal
value sense. The proposed approach is seen as one kind of semi-
analytical methods, since the error only stems from the truncation
of spherical harmonics. Regarding the nonunique problem (ficti-
tious frequency), the Burton and Miller method instead of the
CHIEF approach is used to eliminate the irregular frequency. Final-
ly, not only one-sphere but also two-spheres radiation and scatter-
ing problems are given to verify the validity of the proposed
approach.
Please cite this article in press as: Chen J-T et al. Analysis of mutiple-shepers r
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2. Problem statement and the present approach

2.1. Problem statement

The problem considered in this paper is the acoustic scattering
and radiation problems with multiple spheres. The problem is gov-
erned by the Helmholtz equation as follows:

ðr2 þ k2ÞuðxÞ ¼ 0; x 2 D; ð1Þ

where uðxÞ is the scalar velocity potential, r2 is the Lapalacian
operator, k and D denote the wave number and the domain of inter-
est, respectively. The sketch of multiple spheres is shown in Fig. 1.

2.2. Dual boundary integral equation formulation—the conventional
version

The dual boundary integral formulation for the domain point is
shown below:

uðxÞ ¼
Z

S
Tðs; xÞuðsÞdSðsÞ �

Z
S

Uðs; xÞtðsÞdSðsÞ; x 2 D; ð2Þ

tðxÞ ¼
Z

S
Mðs; xÞuðsÞdSðsÞ �

Z
S

Lðs; xÞtðsÞdSðsÞ; x 2 D; ð3Þ

where x and s are the field and source points, respectively, ‘‘S” is the
spherical surface, t(s) is the normal derivative on the source point,
and the kernel function U(s,x) is the fundamental solution which
satisfies

ðr2 þ k2ÞUðs; xÞ ¼ �dðx� sÞ; ð4Þ

where d is the Dirac-delta function. The other kernel functions can
be obtained as

Tðs; xÞ ¼ @Uðs; xÞ
@ns

; ð5Þ

Lðs; xÞ ¼ @Uðs; xÞ
@nx

; ð6Þ

Mðs; xÞ ¼ @
2Uðs; xÞ
@nx@ns

; ð7Þ

where nx and ns denote the outward normal vector at the field point
and the source point, respectively. If the collocation point x is on the
boundary, the dual boundary integral equations for the boundary
point can be obtained as follows:
adiation and scattering problems by using the null-field integral equation
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1
2

uðxÞ ¼ C:P:V :
Z

S
Tðs; xÞuðsÞdSðsÞ � R:P:V :

Z
S

Uðs; xÞtðsÞdSðsÞ;

x 2 B; ð8Þ
1
2

tðxÞ ¼ H:P:V :
Z

S
Mðs; xÞuðsÞdSðsÞ � C:P:V :

Z
S

Lðs; xÞtðsÞdSðsÞ;

x 2 B; ð9Þ

where R:P:V ; C:P:V and H:P:V are the Riemann principal value, the
Cauchy principal value and the Hadamard (or called Mangler) prin-
cipal value, respectively. By collocating x outside the domain, we
obtain the null-field integral equation as shown below:

0 ¼
Z

S
Tðs; xÞuðsÞdSðsÞ �

Z
S

Uðs; xÞtðsÞdSðsÞ; x 2 Dc; ð10Þ

0 ¼
Z

S
Mðs; xÞuðsÞdSðsÞ �

Z
S

Lðs; xÞtðsÞdSðsÞ; x 2 Dc; ð11Þ

where Dc denotes the complementary domain.

2.3. Dual null-field integral equation formulation—the present version

By introducing the degenerate kernels for the fundamental
solution, the collocation points can be located on the real boundary
free of facing singularity. Therefore, the representations of integral
equations including the boundary point can be written as

uðxÞ ¼
Z

S
Teðs; xÞuðsÞdSðsÞ �

Z
S

Ueðs; xÞtðsÞdSðsÞ; x 2 D [ S; ð12Þ

tðxÞ ¼
Z

S
Meðs; xÞuðsÞdSðsÞ �

Z
S

Leðs; xÞtðsÞdSðsÞ; x 2 D [ S; ð13Þ

and

0 ¼
Z

S
Tiðs; xÞuðsÞdSðsÞ �

Z
S

Uiðs; xÞtðsÞdSðsÞ; x 2 Dc [ S; ð14Þ

0 ¼
Z

S
Miðs; xÞuðsÞdSðsÞ �

Z
S

Liðs; xÞtðsÞdSðsÞ; x 2 Dc [ S; ð15Þ

once the interior ‘‘i” or exterior ‘‘e” kernel is expressed in terms of
an appropriate degenerate form. It is found that the collocation
point is categorized to three positions, domain (Eqs. (2) and (3)),
boundary (Eqs. (8) and (9)) and complementary domain (Eqs. (10)
and (11)) in the conventional formulation. After using the degener-
ate kernel for the null-field BIEM, both Eqs. (12) and (13) and Eqs.
(14) and (15) can contain the boundary point.
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O2.4. Expansions of the fundamental solution and boundary density

The fundamental solution as previously mentioned in Eq.(4) is

Uðs; xÞ ¼ e�ikr

4pr
; ð16Þ

where r � js� xj is the distance between the source point and the
field point and i is the imaginary number with i2 ¼ �1. To fully uti-
lize the property of spherical geometry, the mathematical tools,
degenerate (separable or finite rank) kernel and spherical harmon-
ics, are utilized for the analytical calculation of boundary integrals.

2.4.1. Degenerate (separable) kernel for fundamental solutions
In the spherical coordinate, the field point, x, and source point, s,

can be expressed as x ¼ ðq; h;/Þ and s ¼ ð�q; �h; �/Þ in the spherical
coordinates, respectively. By employing the addition theorem for
separating the source point and field point, the kernel functions,
Uðs; xÞ; Tðs; xÞ; Lðs; xÞ and Mðs; xÞ, are expanded in terms of degen-
erate kernel as shown below:
Please cite this article in press as: Chen J-T et al. Analysis of mutiple-shepers r
approach. Appl Acoust (2010), doi:10.1016/j.apacoust.2010.02.004
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Uðs; xÞ ¼

Uið�q; �h; �/;q; h;/Þ ¼ ik
4p
P1
n¼0
ð2nþ 1Þ

Pn
m¼0

em
ðn�mÞ!
ðnþmÞ!

Pm
n ðcos hÞPm

n ðcos �hÞjnðkqÞh
ð2Þ
n ðk�qÞ cos½mð�/� /Þ�;

�q P q;

Ueð�q; �h; �/;q; h;/Þ ¼ ik
4p
P1
n¼0
ð2nþ 1Þ

Pn
m¼0

em
ðn�mÞ!
ðnþmÞ!

Pm
n ðcos hÞPm

n ðcos �hÞjnðk�qÞhð2Þn ðkqÞ cos½mð�/� /Þ�;
�q < q;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð17Þ

Tðs; xÞ ¼

Tið�q; �h; �/;q; h;/Þ ¼ ik2

4p
P1
n¼0
ð2nþ 1Þ

Pn
m¼0

em
ðn�mÞ!
ðnþmÞ!

Pm
n ðcos hÞPm

n ðcos �hÞjnðkqÞh
0ð2Þ
n ðk�qÞ cos½mð�/� /Þ�;

�q > q;

Teð�q; �h; �/;q; h;/Þ ¼ ik
4p
P1
n¼0
ð2nþ 1Þ

Pn
m¼0

em
ðn�mÞ!
ðnþmÞ!

Pm
n ðcos hÞPm

n ðcos �hÞj0nðk�qÞhð2Þn ðkqÞ cos½mð�/� /Þ�;
�q < q;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð18Þ

Lðs; xÞ ¼

Lið�q; �h; �/; q; h;/Þ ¼ ik2

4p
P1
n¼0
ð2nþ 1Þ

Pn
m¼0

em
ðn�mÞ!
ðnþmÞ!

Pm
n ðcos hÞPm

n ðcos �hÞj0nðkqÞh
ð2Þ
n ðk�qÞ cos½mð�/� /Þ�;

�q > q;

Leð�q; �h; �/; q; h;/Þ ¼ ik2

4p
P1
n¼0
ð2nþ 1Þ

Pn
m¼0

em
ðn�mÞ!
ðnþmÞ!

Pm
n ðcos hÞPm

n ðcos �hÞjnðk�qÞh0ð2Þn ðkqÞ cos½mð�/� /Þ�;
�q < q;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð19Þ

Mðs; xÞ ¼

Mið�q; �h; �/;q; h;/Þ ¼ ik3

4p
P1
n¼0
ð2nþ 1Þ

Pn
m¼0

em
ðn�mÞ!
ðnþmÞ!

Pm
n ðcos hÞPm

n ðcos �hÞj0nðkqÞh
0ð2Þ
n ðk�qÞ cos½mð�/� /Þ�;

�q P q;

Með�q; �h; �/;q; h;/Þ ¼ ik3

4p
P1
n¼0
ð2nþ 1Þ

Pn
m¼0

em
ðn�mÞ!
ðnþmÞ!

Pm
n ðcos hÞPm

n ðcos �hÞj0nðk�qÞh0ð2Þn ðkqÞ cos½mð�/� /Þ�;
�q < q;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð20Þ

where the superscripts ‘‘i ” and ‘‘e” denote the interior and exterior
regions, jn and hð2Þn are the nth order spherical Bessel function of the
first kind and the nth order spherical Hankel function of the second
kind, respectively, Pm

n is the associated Lengendre polynomial and
em is the Neumann factor,

em ¼
1; m ¼ 0;
2; m ¼ 1;2; . . . ;1:

�
ð21Þ

It is noted that U and M kernels in Eqs. (17) and (20) contain the
equal sign of q ¼ �q while T and L kernels do not include the equal
sign due to discontinuity.
2.4.2. Spherical harmonics expansion for boundary densities
We apply the spherical harmonics expansion to approximate

the boundary density and its normal derivative on the surface of
sphere. Therefore, the following expressions can be obtained:

uiðsÞ ¼
X1
v¼0

Xv

w¼0

Ai
vwPw

v ðcos �hÞ cosðw�/Þ; s 2 Bi; ð22Þ

tiðsÞ ¼
X1
v¼0

Xv

w¼0

Bi
vwPw

v ðcos �hÞ cosðw�/Þ; s 2 Bi; ð23Þ

where Ai
vw and Bi

vw are the unknown spherical coefficients on
Biði ¼ 1;2; . . .Þ. However, only M finite number of truncated terms
for v is used in the real implementation.
adiation and scattering problems by using the null-field integral equation
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2.5. Adaptive observer system

Since the boundary integral equations are frame indifferent, i.e.
rule of objectivity is obeyed. Adaptive observer system is chosen to
fully employ the property of degenerate kernels. Fig. 2 shows the
boundary integration for the spherical boundaries. It is worthy of
noting that the origin of the observer system can be adaptively lo-
cated on the center of the corresponding circle under integration to
fully utilize the geometry of sphere. The dummy variable in the
integration on the surface are the angles (�h and �/). By using the
adaptive observer system, all the boundary integrals can be deter-
mined analytically through series sum instead of using the concept
of principal values.
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2.6. Linear algebraic equation

In order to calculate the PðP ¼ ðM þ 2ÞðM þ 1Þ=2Þ unknown
spherical harmonics, P boundary points on each spherical surface
are needed to be collocated. By collocating the null-field point ex-
actly on the kth spherical surface for Eqs. (14) and (15), we have

0 ¼
XN

j¼1

Z
Sj

Tiðs; xkÞuðsÞdSðsÞ �
XN

j¼1

Z
Sj

Uiðs; xkÞtðsÞdSðsÞ;

xk 2 Dc [ S; ð24Þ

0 ¼
XN

j¼1

Z
Sj

Miðs; xkÞuðsÞdSðsÞ �
XN

j¼1

Z
Sj

Liðs; xkÞtðsÞdSðsÞ;

xk 2 Dc [ S; ð25Þ

where N is the number of spheres. For the Sj boundary integral of
the spherical surface, the kernels of Uðs; xÞ; Tðs; xÞ; Lðs; xÞ and
Mðs; xÞ are respectively expressed in terms of degenerate kernels
of Eqs. (17) and (20) with respect to the observer origin at the cen-
ter of Sj . The boundary densities of uðsÞ and tðsÞ are substituted by
using the spherical boundary harmonics of Eqs. (22) and (23),
respectively. In the dSðsÞ integration, we set the origin of the obser-
ver system to collocate at the center Oj of boundary Sj to fully utilize
the degenerate kernel and spherical harmonics. By locating the
null-field point on the real surface Sk from outside of the domain
Dc in the numerical implementation, linear algebraic systems are
obtained as

½U�ftg ¼ ½T�fug; ð26Þ
½L�ftg ¼ ½M�fug; ð27Þ

where [U], [T], [L] and [M] are the influence matrices with a dimen-
sion of ðN � PÞ by ðN � PÞ, and {t} and {u} denote the vectors for tðsÞ
and uðsÞ of the spherical harmonics coefficients with a dimension of
ðN � PÞ by 1, in which, [U], [T], [L], [M], {u} and {t} can be defined as
follows:
Please cite this article in press as: Chen J-T et al. Analysis of mutiple-shepers r
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½U� ¼ ½Uab� ¼

U11 U12 � � � U1N

U21 U22 � � � U2N

..

. ..
. . .

. ..
.

UN1 UN2 � � � UNN

2
66664

3
77775; ð28Þ

½T� ¼ ½Tab� ¼

T11 T12 � � � T1N

T21 T22 � � � T2N

..

. ..
. . .

. ..
.

TN1 TN2 � � � TNN

2
66664

3
77775; ð29Þ

½L� ¼ ½Lab� ¼

L11 L12 � � � L1N

L21 L22 � � � L2N

..

. ..
. . .

. ..
.

LN1 LN2 � � � LNN

2
66664

3
77775; ð30Þ

½M� ¼ ½Mab� ¼

M11 M12 � � � M1N

M21 M22 � � � M2N

..

. ..
. . .

. ..
.

MN1 MN2 � � � MNN

2
66664

3
77775; ð31Þ

fug ¼

u1

u2

..

.

uN

8>>>><
>>>>:

9>>>>=
>>>>;
; ftg ¼

t1

t2

..

.

tN

8>>>><
>>>>:

9>>>>=
>>>>;

ð32Þ

where the vectors fukg and ftkg are in the form of Ak
00 Ak

10

n
Ak

11 � � �A
k
PPg

T and Bk
00 Bk

10 Bk
11 � � � Bk

PP

n oT
; the first subscript ‘‘a

” ða ¼ 1;2; . . . ;NÞ in the ½Uab� denotes the index of the a th sphere
where the collocation point is located and the second subscript
‘‘b” ðb ¼ 1;2; . . . ;NÞ denotes the index of the bth sphere in which
the boundary data fukg or ftkg are specified. The coefficient matrix
of the linear algebraic system is partitioned into blocks, and each
diagonal block ðUppÞ corresponds to the influence matrices due to
the same sphere of collocation and spherical harmonics expansion.
After collocating the point along the ath spherical surface, the ele-
ments of ½Uab�; ½Tab�; ½Lab� and ½Mab� are defined as

Uab ¼
Z

Sk

Z
Uðsk; xmÞ�q2 d�/k d�hk; ð33Þ

Tab ¼
Z

Sk

Z
Tðsk; xmÞ�q2 d�/k d�hk; ð34Þ

Lab ¼
Z

Sk

Z
Lðsk; xmÞ�q2 d�/k d�hk; ð35Þ

Mab ¼
Z

Sk

Z
Mðsk; xmÞ�q2 d�/k d�hk; ð36Þ

where �/k and �hkðk ¼ 1;2; . . . ;NÞ are the spherical angles of the
spherical coordinates. After obtaining the unknown spherical har-
monics, interior potentials can be obtained by using Eq. (12).

2.7. Potential gradient

Since the fictitious frequencies exist in the radiation and scat-
tering problems, some remedies are used to overcome the prob-
lems. Therefore, the LM formulation is to play an important role.
The potential gradient on the boundary is required to calculate.
For the multiple radiation or scattering, the field point and source
point may not be located on the same spherical boundary. The nor-
mal derivative should be taken special care as the source and field
points are located on different spherical boundaries. As shown in
Fig. 3 where collocation point is located on the spherical boundary
Si and the integration path is on the spherical boundary Sj, the ori-
gin is set at the center of the jth sphere under integration. The true
normal direction with respect to the collocation point x is ê1 . The
adiation and scattering problems by using the null-field integral equation
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Fig. 3. Decomposition of potential gradient.

Fig. 4. Flowchart of the present method.
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incorrect vector for the normal derivative, ê2, is obtained when the
L and M kernels are directly used. Therefore, it needs modification.
According to the definition of normal derivative in the Cartesian
coordinates, we obtain

tðxÞ ¼ @uðxÞ
@nx

¼ ru � nx; ð37Þ

where

ru ¼ @u
@x

i
*

þ @u
@y

j
*

þ @u
@z

k
*

: ð38Þ

Based on the chain rule, we have

@u
@x
¼ @u
@q

@q
@x
þ @u
@h

@h
@x
þ @u
@/

@/
@x

; ð39Þ

@u
@y
¼ @u
@q

@q
@y
þ @u
@h

@h
@y
þ @u
@/

@/
@y

; ð40Þ

@u
@z
¼ @u
@q

@q
@z
þ @u
@h

@h
@z
þ @u
@/

@/
@z

: ð41Þ

Potential gradients can be expanded into

@u
@x
¼ sin h cos /

@u
@q
þ cos h cos /

q
@u
@h
� sin /

q sin h
@u
@/

; ð42Þ

@u
@y
¼ sin h sin /

@u
@q
þ cos h sin /

q
@u
@h
þ cos /

q sin h
@u
@/

; ð43Þ

@u
@z
¼ cos h

@u
@q
� sin h

q
@u
@h
: ð44Þ

According to Eq. (37), the right normal derivative of the poten-
tial can be obtained by considering nx ¼ ê1 . The flowchart of the
present method is shown in Fig. 4.
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C3. Numerical examples

Here, four cases including radiation and scattering problems for
single and double spheres are given to demonstrate the validity of
proposed approach. Case 1 is the one-sphere radiation problem
subject to various boundary conditions. The analytical solution is
derived and is compared with others. Two-spheres radiation prob-
lem is considered in Case 2. The numerical solution in [9] is given
to compare with the solution of the present approach. Case 3 is a
scattering problem of a single sphere subject to an incident wave.
The final case of a two-spheres scattering problem solved by Peter-
son and Ström [11] is revisited to verify the validity of our ap-
proach. It is noted that the fundamental solution of the second
kind spherical Hankel function is chosen for radiation problems
(Cases 1 and 2) and the first kind spherical Hankel function for
scattering problems (Cases 3 and 4) in order to compare with other
results in the literature.
Please cite this article in press as: Chen J-T et al. Analysis of mutiple-shepers r
approach. Appl Acoust (2010), doi:10.1016/j.apacoust.2010.02.004
Case 1 A sphere pulsating with uniform radial velocity or
oscillating with non-uniform radial velocity

In the first case, we concerned with the two situations of a
sphere. One is the sphere pulsating with uniform radial velocity
and another is the sphere oscillating with non-uniform radial
velocity. When a sphere is pulsating with uniform radial velocity
U0, the exact solution of the problem can be found in [21] as shown
below:

pðqÞ ¼ a
q

iz0ka
1þ ika

� �
U0e�ikðq�aÞ; ð45Þ

where z0 is the characteristic impedance of the medium z0 ¼ q0c in
which q0 is the density of the medium at rest and c is the sound
velocity, and p is the sound pressure which is defined as

pðqÞ ¼ �iq0xuðqÞ ¼ �iz0kuðqÞ; ð46Þ

in which x is the angular frequency and k is the wave number that
equals to the angular frequency over sound velocity. After expand-
ing the surface density by using spherical harmonics, we have

B00 ¼ U0; ð47Þ

and the other coefficients are zero. Then, the unknown coefficient
can be obtained as follows:
adiation and scattering problems by using the null-field integral equation
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A00 ¼ �
1
k

hð2Þ0 ðkaÞ
h0ð2Þ0 ðkaÞ

U0; ð48Þ

by using Eq. (14). After obtaining the unknown coefficient, we have

pðqÞ ¼ �iz0U0
hð2Þ0 ðkqÞ
h0ð2Þ0 ðkaÞ

: ð49Þ

The expression of Eq. (49) seems to look different from the exact
solution in Eq. (43). However, the spherical Hankel function can be
represented by using the series form found in [22] as shown
below:

hð2Þ0 ðzÞ ¼ inþ1z�1e�iz
Xn

m¼0

ðnþmÞ!
m!Cðn�mþ 1Þ ð�2izÞ�m: ð50Þ

After substituting Eq. (50) into Eq. (49), the result of our ap-
proach looks neater and yields the same exact solution of Eq.
(45). For the numerical implementation, M is chosen to be 6 and
28 nodes are distributed on the spherical surface as shown in
Fig. 5. Fig. 6a and b show the real and imaginary parts of non-
dimensional pressure on the surface by using the numerical proce-
dure. In Fig. 6a and b, irregular frequency does not appear due to
the analytical cancellation of zero divided by zero in our formula-
tion. However, Seybert et al. [21] needed to improve their result by
using the CHIEF method. For this point, we can claim that our ap-
proach is more accurate than that of Seybert et al. [21].

In another situation for the oscillating surface with radial veloc-
ity, U0 cos h, the exact solution is also found in [21] as

pðq; hÞ ¼ a
q

� �2 iz0kað1þ ikqÞ
2ð1þ ikaÞ � k2a2

" #
U0 cos hð Þe�ikðq�aÞ: ð51Þ

After expanding the boundary density by using the spherical
harmonics, we have

B10 ¼ U0; ð52Þ

and the other coefficients are zero. Then, the unknown coefficient
can be obtained as follows:

A10 ¼ �
1
k

hð2Þ1 ðkaÞ
h0ð2Þ1 ðkaÞ

U0; ð53Þ

by using Eq. (14). After obtaining the unknown coefficient, we have

pðq; hÞ ¼ �iz0U0
hð2Þ1 ðkqÞ
h0ð2Þ2 ðkaÞ

cos h: ð54Þ
U
N

C
O

Fig. 5. Distribution of collocation points for a sphere ðM ¼ 6Þ.

Please cite this article in press as: Chen J-T et al. Analysis of mutiple-shepers r
approach. Appl Acoust (2010), doi:10.1016/j.apacoust.2010.02.004
Similarly, the present solution of Eq. (54) seems to be not equiv-
alent to the exact solution of Eq. (51) for the first glance. After
substituting series form of the spherical Hankel function, we can
prove the mathematical equivalence between Eqs. (54) and (51).

Case 2 Two-spheres vibrating from uniform radial velocity

After successfully solving one-sphere case, we extend our ap-
proach to deal with the two-spheres radiation problem [9]. As
shown in Fig. 7, the two spheres vibrate with uniform radial veloc-
ity U0. In the real calculation, we choose M to be 10. Sixty-six nodes
are distributed on each sphere as shown in Fig. 8. Figs. 9–11a show
the pressure contours of two dilating spherical sources at the hor-
0 1 2 3 4 5

ka

0

0.2

0.4

Im
(p

/z
0U

0)
Fig. 6b. Imaginary part of non-dimensional pressure on the surface.

adiation and scattering problems by using the null-field integral equation
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izontal plane of z ¼ 0 for ka ¼ 1,2 and 0.1, respectively, by using
the SHIE [9]. Figs. 9–11b are the corresponding results by using
the present approach. After comparing our results with those of
SHIE [9], good agreement is observed. For the spherical geometry
problem, the symmetry property results in high degeneracy. The
number of degenerate eigenvalues at the characteristic frequency
becomes large. Therefore, the risk of CHIEF point becomes possible.
How to choose the location of CHIEF point and how many the
CHIEF points are sufficient to overcome the irregular problem plays
an important role. Therefore, we adopt the Burton and Miller
method to remedy the irregular frequency. It is not free of
worrying about the calculation of hypersingular integrals since
the singular and hypersingular integrals are determined in an
alternative way. Fig. 12a and b shows the potentials on the nearest
point and furthest point, respectively. It is observed that the irreg-
ular frequencies are successfully suppressed.
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Fig. 9a. Pressure contours by using the SHIE (z ¼ 0 and ka ¼ 1Þ.

Fig. 8. Distribution of collocation points for two spheres ðM ¼ 10Þ.
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Fig. 9b. Pressure contours by using the present approach (z ¼ 0 and ka ¼ 1).

Fig. 7. Sketch of two spheres.
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RIn the case 1, it is found that the analytical solution for the sim-
ple case (one-sphere) can be derived by using our approach. For
more than two-spheres case, the boundary density representation
is truncated to a finite number of terms. The collocation points are
located on the real boundary to match boundary conditions and
the unknown spherical harmonics coefficients can be easily deter-
mined. Since the error is attributed from the truncated finite num-
ber of terms of spherical harmonics coefficients, our approach can
be seen as one kind of semi-analytical methods.

Case 3 Acoustic scattering by a sphere

In this case, the scattering problem of a sphere subject to an
incident plane wave [23] is considered. Not only hard sphere (Neu-
mann type) but also soft sphere (Dirichlet type) is considered. The
plane wave incidence is given as

uinc ¼ eik½z cos h0þsin h0ðx cos /0þy sin /0Þ�

¼
X1
v¼0

ð2v þ 1Þiv
Xv

w¼0

ew
ðv �wÞ!
ðv þwÞ! jvðkqÞP

w
v ðcos h0ÞPw

v ðcos hÞ

� cos wðu�u0Þ; ð55Þ
Please cite this article in press as: Chen J-T et al. Analysis of mutiple-shepers r
approach. Appl Acoust (2010), doi:10.1016/j.apacoust.2010.02.004
where ðh0;/0Þ defines the angle of the plane wave in the spherical
coordinates as shown in Fig. 13. When h0 is equal to 0 or p, it de-
notes the plane wave coming from +z or –z axis, and w is equal to
zero. The total potential velocity is superimposed by

u ¼ uinc þ ur ; ð56Þ

where ur denotes the scattering field and it is solved by using the
proposed approach. For the soft sphere ðu ¼ 0Þ, we obtain

ur ¼ �uinc; ð57Þ

and the spherical coefficients are

Avw ¼ �ivewð2v þ 1Þ ðv �wÞ!
ðv þwÞ! Pw

v ðcos h0ÞjvðkaÞ cosðw/0Þ; ð58Þ
adiation and scattering problems by using the null-field integral equation
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After using the null-field integral equation in Eq. (14), the un-
known boundary coefficients are obtained

Bvw ¼ kivewð2v þ 1Þ ðv �wÞ!
ðv þwÞ! Pw

v ðcos h0ÞjvðkaÞh
0ð2Þ
v ðkaÞ

hð2Þv ðkaÞ
� cosðw/0Þ; ð59Þ

Then, the analytical form of the total field is

u ¼
X1
v¼0

Xv

w¼0

ivewð2v þ 1Þ

� ðv �wÞ!
ðv þwÞ! jvðkqÞ þ jvðkaÞh

ð2Þ
v ðkqÞ

hð2Þv ðkaÞ

 !
Pw

v ðcos h0ÞPw
v ðcos hÞ

� cos wð/� /0Þ:
ð60Þ

For the same procedure, the hard sphere ðt ¼ 0Þ is considered
and the analytical solution is obtained as

u ¼
X1
v¼0

Xv

w¼0

ivewð2v þ 1Þ

� ðv �wÞ!
ðv þwÞ! Pw

v ðcos hiÞPw
v ðcos hÞ jvðkqÞ þ j0vðkaÞ hð2Þv ðkqÞ

h0ð2Þv ðkaÞ

 !
cosðw/

� cosðw/Þ:
ð61Þ

For the numerical implementation, M is given 10 and 66 collo-
cation points are needed. Fig. 14a and b show the scattering
parameter S versus the polar angle ðhÞ for ka ¼ 1 and 2, respec-
tively, where the scattering parameter S is defined by

psðqÞ ¼ e�ikq

kq
Sðq!1Þ: ð62Þ

Good agreement is observed after comparing with the result of
Chandrasekhar and Rao [23].

Case 4 Acoustic scattering by two spheres

After successfully verifying the scattering results of one-sphere,
we extend to deal with the two-spheres case subject to an incident
Please cite this article in press as: Chen J-T et al. Analysis of mutiple-shepers r
approach. Appl Acoust (2010), doi:10.1016/j.apacoust.2010.02.004
wave as shown in Fig. 15. The problem has been solved by Peterson
and Ström [11]. By using the null-field integral equation approach,
the M number of terms is taken 10 and 66 points are distributed on
each sphere. The radar cross section (RCS) is defined in the form

rNðq; h;/; h0;/0Þ ¼ 4pq2 jusj2

juincj2
1

pa2 : ð63Þ

It is noted that the normalized radar cross section is defined as

rA
Nðh;/; h0;/0Þ ¼ lim

q!1
rNðq; h;/; h0;/0Þ; ð64Þ

when the observed radius q is at infinity. Fig. 16a and b show the
asymptotic backscattering cross section rA

Nðp=2;p;p=2; 0Þ versus
adiation and scattering problems by using the null-field integral equation
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the separation (2kd) for soft and hard spheres, respectively at ka ¼ 2
. Since the real data of Peterson and Ström are not easy to obtain, we
used the digitizing skill to reconstruct their solution. Although a lit-
tle deviation on digitalizing and transforming the data maybe pres-
ent, it can be observed that the results of our approach agree well
with those of Peterson and Ström. Fig. 17 shows the asymptotic
backscattering cross section rA

Nðp� h0;p; h0;0Þ for ka ¼ 2and
2kd ¼ 4:5 subject to hard and soft boundary conditions. After
comparing with the results of Peterson and Ström, good agreement
is made. Fig. 18a and b show the rNð10; h;0; p=2;0Þ and
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Fig. 15. A scattering problem of two spheres and the incident wave.
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Fig. 16a. Asymptotic backscattering cross section rA
Nðp=2;p;p=2;0Þ versus the

separation (2kd) for the soft spheres ðka ¼ 2Þ.

Please cite this article in press as: Chen J-T et al. Analysis of mutiple-shepers r
approach. Appl Acoust (2010), doi:10.1016/j.apacoust.2010.02.004
rA
Nðh;0;p=2;0Þ of soft and hard spheres for ka ¼ 2 and 2kd ¼ 4:5,

respectively. It is found that our results match well with those of
Peterson and Ström when the distance is located at infinity. How-
ever, there also exists some discrepancy for rN at other places.
We wonder that the deviation stems from the numerical calcula-
tion. The accuracy of the digital number of the computer in the early
years is lower than that of the present one. At infinity, we can em-
ploy the asymptotic formulae of spherical Hankel function. This is
the reason why rA

N agrees well, but rN has little deviation at other
places.
E
D

P
R

O
O

F
0 10 20 30 40

2kd

1.2

1.6

2

2.4

2.8

3.2

3.6

4

σ
N

A

Present approach

Peterson and Stro
..m

Fig. 16b. Asymptotic backscattering cross section rA
Nðp=2;p; p=2;0Þ versus the

separation (2kd) for the hard spheres ðka ¼ 2Þ.
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2kd ¼ 4:5 subject to hard and soft boundary conditions.
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2kd ¼ 4:5.
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U4. Conclusions

For the three-dimensional radiation and scattering problems
with multiple spheres, we have proposed a null-field integral
equation formulation by using degenerate kernels and spherical
harmonics in companion with adaptive observer systems. This
method is a semi-analytical approach for Helmholtz problems with
spherical boundaries since only truncation error in the spherical
harmonics is involved. Although cases of one and two spheres
649
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are used, the present approach can be straightforward extended
to solve more general problems with radiators or scatters of
arbitrary number, radii and positions without any difficulty. In
addition, fictitious frequencies can be suppressed by using the Bur-
ton and Miller approach. A general-purpose program for solving
radiation problem with arbitrary number, size and various loca-
tions of spheres was developed. Pressure contours as well as RCS
were compared well with the exact solution and other numerical
solutions.
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