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Hysteretic damping revisited
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An integral-differential equation (IDE) in the time domain has been proposed for
the free vibration of a single-degree-of-freedom (SDOF) system with hysteretic
damping which is different from the conventional complex stiffness model as
employed in the frequency domain (Chen & You, Proposal NSC 85-2211-E-019-
004, National Taiwan Ocean University, 1996, Proc. 3rd National Congress
Structural Engineering, 1996; BETECH9 Conf., 1996)."> The integral of the
Hilbert transform is embedded in the IDE and is calculated in the Cauchy
principal value sense in Refs 1-3. In this paper, we extend the SDOF system to
multi-degrees-of-freedom systems and continuous systems. Also, the ratio of
dissipation energy vs time for SDOF systems is constructed for the free vibration
and compared with viscous damping. Numerical examples for different loss
factors have been presented and the lack of dependence of the exciting frequency
on the dissipation energy has been confirmed when the maximum responses are
the same. © 1997 Elsevier Science Limited. All rights reserved.
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1 INTRODUCTION

In 1994, Chen et al? successfully solved the SDOF
hysteretic damping model in the time domain by using
the concept of a phase plane. Although the model in
Ref. 4 satisfies the causal effect, Crandall® criticized the
model in Ref. 4 for not being fully equivalent to the
hysteretic damping model in the frequency domain. By
taking the Fourier transform with respect to the model
in Ref. 4, we cannot obtain the complex stiffness of
k(1 + in). The above statement can prove that Cran-
dall’s comments in Ref. 5 are right. Also, this finding
stimulates the research on the time-domain formulation
for the hysteretic damping in 1994." It is interesting that
Chen’s study'” and Inaudi’s work® both derive an
integral—differential equation (IDE) in the time-domain
approach. For a long time, the damping characteristic
was often utilized to suppress the vibration level using
various dissipation mechanisms. In this decade, two
books on the topic of damping have been published.”®
However, a great deal of effort has been focused on
the frequency-domain approach, especially for the
hysteretic damping model instead of the time-domain
approach.

In this paper, we employ a direct iteration technique
to solve the time-domain governing equation for
harmonic loading. The hysteresis loop is constructed
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by using the time-domain approach. The transient
behavior from origin to steady state on the damping
ellipse is found. Also, the curve of the ratio of energy
dissipation to time for the free vibration of hysteretic
damping is constructed and is compared with that of
viscous damping. To prove that the present model in the
time domain is fully equivalent to that in the frequency
domain, the relation between dissipation energy and
exciting frequency is considered. In order to make the
present formulation more practical, the extensions to
multiple degrees of freedom and continuous systems are
shown to see its validity.

2 FORMULATION

The governing equation of a single-degree-of-freedom
(SDOF) system for the hysteretic damping model has
been formulated as:’

mi2+gu+ku=ﬁ(a)ef“” (1)

where m, h and k represent the mass, hysteretic damping
coefficient and stiffness, respectively, and p and @ are the
amplitude of the harmonic loading and the exciting
frequency, respectively. To make the transfer functions
conjugate for —& and @, the governing equation has
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been modified to be:*

mii + %a + ku = p(w)e™ (2)
Although good for harmonic motion, eqn (2) is invalid
for free vibration since, when the forcing term, pe'™, is
set to vanish, the presence of || in the denominator of
eqn (2) is ambiguous. Therefore, only the steady-state
solution can be obtained. In other words, the hysteretic
damping is focused on the frequency domain model'®!!
as follows:

—m@* % + k(1 + sgn(@)in)x = p (3)

where 7 1s the loss factor, k7 is equal to A, and sgn(w) 1s
+1 when @ > 0 and —1 when @ < 0. To solve for the
time-domain response, two approaches in the frequency
domain®> have been employed as follows:
(1) Method using a real integral for p = 1

1 J“ (k—mdzz)cos@tﬁ-knsin@tdw (4)

St M m?)? + (kn)*

(2) Method using the FFT technique for p = 1

1 OC elL«,‘I

X = 2m fo (k — mw® + sgn(w)ikn) dw (5)
where sgn is the sign function. By taking the inverse
Fourier transform of eqn (3), the governing equation in
the time domain, which has been derived by Chen
& You'™ and Inaudi & Kelly6 independently, is as
follows:

. kn ™ x(u) B
mx(t) — - J_x = u>du + kx(t) = p(1) (6)
with the conditions at 7 = —oc being
x(’)l!:*i = 01 '\.’([)‘{:*36 = 0 (7)

Equations (6) and (7) can be viewed as the governing
equation and initial conditions in the time domain for
the hysteretic damping model, respectively. If external
excitation, p(r), in eqn (6) vanishes, the solution, x(7),
becomes the free vibration, which has been found®® to
be equal to the solution obtained by using the method of
a real integral in eqn (4) or using FFT in eqn (5). To
construct the hysteresis loop in the time domain, the
forcing function, p(f), in eqn (6) must be harmonic
excitation. In order to solve the integral-differential
equation for eqn (6) by using the iteration technique,
eqn (6) can be reduced to the following form:

j‘:nJrl (!) + 2£w>*n+l (’) + wzxnﬂ ([) = 2£w)'c,,(l)

W' (% x,(u) p(1)
+7Jm(1_u)du+7 (8)

where x,(r) denotes the nth iteration state for x(z), £ is
the artificial viscous damping ratio, and w = /k/m. By

using the Duhamel integral and treating the terms on the
right-hand side of the equals sign in eqn (8) as external
forces, eqn (8) can be reduced to the following iteration

form:
1 T
J o Eli=")
w 1——52 0

<siny/1 - €= ) ©)

X {wszoc __x,,(u) du + 26wx, (1) +€%}d‘r

T ) (T— 1)

By iterating x,(#) in eqn (9), a hysteresis loop can be
constructed after setting harmonic loading for p(¢), and
the convergent solution can be obtained using the
following criterion:

Xpp (1) =

J X (1) =Xy (Odt <,  ifn>N (10)
where ¢ is the error tolerance and N is the number of
iterations. It is noted that the Hilbert transform is
present in the damping force term of eqn (6) and in
the forcing term of eqn (9), so an integral in the
Cauchy principal value sense must be considered as in
Refs 2 & 3.

3 NUMERICAL RESULTS AND DISCUSSION
3.1. Ratio of energy dissipation curve for free vibration

By setting

m = 1kg, k = 47 N/m, w = 27rad/s

the damping force, F;(¢), at time ¢ can be determined by

Fylt) = -@r x4,

T)-xt—Uu

where x(z) is the displacement history of free vibration.
The ratio of the energy dissipation at time ¢ is defined by

Jz Fy(u)x(u)du
0

™=t
j Fy(u)x(u)du
0
The ratio of the dissipation energy curve for the free
vibration is shown in Fig. 1(a, b) for hysteretic damping
and viscous damping, respectively. It is found that the
total energy is damped out as time approaches infinity
for both cases. Also, the time to damp out 95% of the
total energy is shown in Fig. 1(a, b).

3.2 Hysteresis loop using the time-domain approach

The hysteresis loop is solved in the time domain by
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Fig. 1. Ratio of dissipation energy vs time for (a) hysteretic damping and (b) viscous damping.

setting the forcing function, p(¢), in eqn (9), to be
a harmonic loading: sin2n(H(r — 20) — H(z — 30)) for
20 < t < 30s, where H(t) is the Heaviside function as
shown in Fig. 2(a). The convergent solution can be
obtained in six iterations (N = 6) for the error tolerance
€ = 1 x 10® when the maximum response of x(r) is 0-03
for eqn (9) when the artificial damping ratio is chosen to
be 0-8. The steady-state output occurs in the second
cycle after the transient behavior as shown in Fig. 2(b).
The transient behavior in the development to steady-
state response on the damping ellipse is shown in Fig. 3.

The curve originates from the second quadrant since a
noncausal effect is present not only in the free vibration
but also in the forced vibration as shown in Fig. 2(b) for
nonzero response at ¢ < 20s. It can be seen that the
ellipse for the steady-state response matches the result
obtained by using the frequency-domain approach very
well.

3.3 The relationship between dissipation energy and loss
factor

To demonstrate that the present model in the time
domain is fully equivalent to that in the frequency

-
100 | harmonic loadAing ]

2 lithh
T ow ! ”p,
8 | 'J
| zY
100 i '
] L r T

0.00 20.00 40 00

tume (sec)
(@

domain, four examples for different loss factors, n = 0-1,
0-2, 04 and 0-8, are presented to demonstrate the
relationship between the dissipation energy and strain
energy. Table 1 shows that the dissipation energy, W,
satisfies

W =2nkn

where V is the maximum strain energy, as shown below:
1 »]
V= Eer;lax

in which X, is the maximum response. This result
matches the definition of hysteretic damping in the
frequency domain approach.

3.4 The relationship between dissipation energy and
exciting frequency

In order to understand that the dissipation energy for
hysteretic damping is independent of exciting frequen-
cies, Table 2 shows that the dissipation energy for the
SDOF hysteretic system subjected to the four different
frequencies, w = 0-5m, 7, 1-57 and 2-0m, is the same when
the maximum responses, X,,.,, are the same.
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Fig. 2. (a) Forcing function, (b) response function.
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Fig. 3. Hysteresis loop obtained by using the time-domain approach and the frequency-domain approach: (a) n = 0-1, (b) n = 0-2,
(c) n =04, (d) n = 0-8. —— time domain, o o o frequency domain.

3.5 Extension to multiple-degree-of-freedom (MDOF)
systems

The proposed technique can be utilized in the case
of MDOF systems with linear hysteretic damping.
Consider the MDOF system with the governing
equation

MX— Knk + Kx = F )
where
(1) = %J: (:‘(_“l) du (12)

and x is the displacement vector, M, K and F denote the
matrix, the stiffness matrix and the load vector,
respectively.

By using the modal reaction method,'*!* eqn (11) can
be reformulated to an integral—differential equation of

SDOF as follows:

Gt) + wigilr) — miGi(r) = 9T (1), i=12,...N

(13)

where w; denotes the ith natural frequency and ¢7 is the
transpose of the ith mode.

For simplicity, a two-DOF system with proportional
damping is considered as shown in Fig. 4 with the
following system parameters,

m; = 200 Mg,
m, = 250 Mg,

m=01,  k =150MN/m

m =01, ky =75MN/m
and the external force vector
F(1) = 2500 sin me[H (1 — 2) — H(t — 8)],
F(f)=0

where H () is the Heaviside function.

Table 1. Dissipation energy for different loss factors with p(r) = sin27t(H (¢ — 20) — H(t — 30))

n=201 n=202 n=04 7=08
Max. response (Xpay) 0-0865 0-074 0-0487 0-0292
Strain energy (V = %kX,iax) 0-1478 0-1104 0-0468 0-01682
Area of ellipse, dissipation energy (W) 0-0939 0-1389 0-1179 0-0846
Loss factor ( = ) 0-1 0-2 0-4 08
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Table 2. Dissipation energy for the SDOF hysteretic system subjected to four different excitation frequencies,
@=05r, @=m &=157, ©=2m, for n =08 and p(t) = Asinwet(H(t — 10) — H(t — 40))

w=057 o= w= 157 w=2r
Amplitude (4) 4149 3448 3425
Max. response (Xpax) 1 1 1
Strain energy (V = 1kX2,,) 19-74 19-74 19-74
Area of ellipse, dissipation energy (W) 99-22 9922 99-22
Loss factor (n = %) 08 08 0-8

The governing equation for the MDOF system in eqn
(11) is reduced to

|:ml 0 } [x,] N [kl'fll + ko —kznz] [il}
0 myj[*2 —kam kymy || %2
ki+ky —ky||x, F|

—ky ky ] [Xz} - [Fz
where the explicit forms of M, C, K and F matrices are
shown below:

(my 0 200 0

M= = (14)
[0 m 0 250
[ ki —kn 15 ~15

C— 1™ 1M _ (15)
L —kim  kim + kamo —15 225
"k —k 150 —150

K= = (16)
|~k ki + ~150 225
F, F,

= |e)" ) (17)

Equation (13) for the two generalized coordinates, ¢, ()
and ¢,(t), are decoupled as follows:

IER I

1500 |[g| _[16667x107
+ = (1)
0 1500 | |42

14907 x 10-3
By employing the same techniques as for SDOF systems
the responses for the two DOFs are shown in Fig. 5.
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Fig. 4. A two-DOF system.

]

3.6 Extension to continuous systems

Consider a shear beam model as shown in Fig. 6 with
the following governing equation:

_gPulxn | Gnaza(x, D 4 p(x)ii(x, 1) = —p(x, 1),

Ox? Ox?
0<x<l! (18)
where
U )
a(x,t) = ;J_m -7 dr

and p is density, u(x,?) denotes the displacement at

position x and time ¢, <’ denotes the differentiation with

respect to time, G is the shear modulus and p(x, ¢) is the

external force. For simplicity, it is assumed to be zero.
The boundary conditions are

u(0,1) = a(t), u(l,)=0 (19)

where a(?) is support motion. Assuming that the motion
starts from rest, the initial conditions are

w(x,0)=0,  a(x,0)=0 (20)

The solution can be decomposed as u(xt) = a(f)+
S 1 4u(t)u,(x) where u,(x) is the mode shape and
q,(1) is the generalized coordinate.

By using the modal reaction method, 21315 eqn (18) can
be reformulated as

2 oo . ;
q’l(t)—'_wiqn-}.l(t)—w;_njvoc qn( ) dT:f;'([)

(Z_T) Nn ’
n=1,2,3...(21)
where
!
N, = pz
G2n—1)m

Sty =——55——al1)
_(@n-)r
Wy = —2[_ Vv G/p

By introducing the artificial damping for iteration
scheme, eqn (21) becomes

G (1) + 26w, @i (1) + whal (1)
whn r AGIAG)

= 250),,(]1,,(1) + p VOO(T—-—T_)dT_i_—N_ (22)
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where q{,“ (7) denotes the (j + 1)th iteration solution for
the nth generalized coordinate, g,(¢), and ¢ is artificial
damping. After we solve the response, the damping force
can be obtained by

Ou(x,t)

ox

>~ Ou(x)

= G’) qn(t) )
; Ox

Consider that the shear beam has the following properties:
G=1N/m?’, =08,

The boundary condition is

Fy(x,1) = Gn 0<x<! (23)

(24)

p=1kg/m® and /=1m

u(0,0) =sin(@f),  wu,(l,1)=0 (25)
where @ = T.
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Fig. 5. Responses of the two-DOF system.
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Fig. 6. A shear beam model (continuous system).

The hysteresis loop at the depth / can be constructed
as shown in Fig. 7 and is compared with the frequency
domain approach.'* The results are satisfactory and
match well.

4 CONCLUDING REMARKS

The governing equation in the time domain for the
SDOF system of hysteretic damping has been employed
to construct the hysteretsis loop. The transient curve in
the development from the origin to the steady state on
the damping ellipse has been found. Also, numerical
examples for different loss factors have been presented
and the lack of dependence of the exciting frequency on
the dissipation energy has been confirmed when the
maximum responses are the same. Finally, the extensions
to MDOF system and continuous system are shown to
validate the present formulation.
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Fig. 7. Hysteresis loop at x =/ for the shear beam.
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