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Abstract

An integral±differential equation (IDE) in the time domain is proposed for the free vibration of a single-degree-of-freedom (SDOF) system

with hysteretic damping which is different from the conventional complex stiffness model as employed in the frequency domain. The integral

of the Hilbert transform is embedded in the IDE and is calculated in the Cauchy principal value sense by using a numerical folding technique.

Numerical experiments show that the free vibration obtained by the frequency domain approach satis®es the IDE in the time domain. A

successive iteration algorithm is employed to solve the IDE subject to forced vibration, and a convergent solution for the hysteresis loop is

constructed, which matches the solution found by using the frequency domain approach. Both models, the time domain and frequency

domain approaches, present the noncasual effect since they are equivalent in the mathematical sense. q 1998 Published by Elsevier Science

Ltd. All rights reserved.

1. Introduction

The damping characteristic is often utilized to suppress

the vibration level using various dissipation mechanisms. In

this decade, two books on the topic of damping have been

published [1, 2]. A great deal of effort has been focused on

the frequency domain approach, especially for the hysteretic

damping model. Recently, Chen et al. [3] have successfully

solved the single-degree-of-freedom (SDOF) hysteretic

damping model in the time domain by using the concept

of phase plane. However, Crandall [4] criticized the

model in Ref. [3] for not being fully equivalent to the

hysteretic damping model in the frequency domain. The

time-domain governing equation with the Hilbert transform

for hysteretic damping was derived by Chen [3], and Inaudi

and Kelly [5] independently. Inaudi and Kelly solved the

time-domain equation by using the iteration technique with

®ctitious viscous damping and solved the transient solution

for the pulse forcing function. In this paper, we employ a

direct iteration technique to solve the time-domain govern-

ing equation for harmonic loading. Also, the hysteresis loop

is constructed by using the time-domain approach. To deal

with the numerical integral of the Hilbert transform, a fold-

ing technique for the Cauchy principal value is employed

[6]. It is demonstrated that the free vibration obtained by the

frequency domain approach using a real integral and fast

Fourier transform (FFT) satis®es the governing equation in

the time domain.

2. Method of solution

2.1. Frequency domain approach

The governing equation of a SDOF system for hysteretic

damping model has been formulated as [7]:

m �x 1
h

�v
_x 1 kx � �p� �v�ei �v t �1�

where m, h and k represent the mass, hysteretic damping

coef®cient and stiffness, respectively. �p and �v are the ampli-

tude of the harmonic loading and the exciting frequency,

respectively. To make the transfer functions conjugate for

2 �v and �v , the governing equation has been modi®ed to be

m �x 1
h

u �v u
_x 1 kx � �p� �v�ei �v t �2�

Although good for harmonic motion, Eq. (2) is invalid for

free vibration since, when the forcing term, �pe2i �v t, is set to

vanish, the presence of u �v u in the denominator of Eq. (2) is

ambiguous. Therefore, only the steady-state solution can be

obtained. In other words, the hysteretic damping is focused

on the frequency domain model [8, 9] as follows:

2m �v2 �x 1 k�1 1 sgn� �v�ih� �x � �p �3�
where h is the loss factor, kh is equal to h, and sgn� �v� is 1
1 when �v . 0 and 2 1 when �v , 0. To solve for the
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steady-state response, two approaches in the frequency

domain are employed as follows:

(1) Method of a real integral

x�t� � 1

p

Z1

0

�k 2 m �v2�cos �v t 1 kh sin �v t

�k 2 m �v2�2 1 �kh�2 d �v �4�

(2) Method of the FFT technique

x�t� � 1

2p

Z1

2 1
ei �v t

�k 2 m �v2 ^ ikh� d �v �5�

2.2. Time domain approach

By taking the inverse Fourier transform of Eq. (3), the

governing equation in the time domain which has been

derived by Chen [10] and Inaudi and Kelly [5]

independently is as follows:

m �x�t�2
kh

p

Z1

2 1
x�u�
�t 2 u� du 1 kx�t� � p�t� �6�

with the conditions at t�21 being

x�t�ut�21 � 0; _x�t�ut�21 � 0 �7�
Eqs. (6) and (7) can be viewed as the governing equation

and initial conditions in the time domain for the hystere-

tic damping model, respectively. If p(t) in Eq. (6)

vanishes, the solution, x(t), becomes the free vibration,

which can be compared with the solution obtained by

using the method of a real integral in Eq. (4) and FFT

in Eq. (5). To construct the hysteresis loop in the time

domain, the forcing function, p(t), in Eq. (6) must be

harmonic excitation. In order to solve the integral±

differential equation for Eq. (6) by using the iteration

J.T. Chen, D.W. You / Advances in Engineering Software 30 (1999) 43±4844

Fig. 1. A folding technique for the Cauchy principal value in the Hilbert transform.



technique, Eq. (6) can be reduced to the following form:

�xn11�t�1 2jv _xn11�t�1 v2xn11�t�

� 2jv _xn�t�1
v2h

p

Z1

2 1
xn�u�
�t 2 u� du 1

p�t�
m

�8�

where xn(t) denotes the nth iteration state for x(t), j is

the arti®cial viscous damping ratio, and v � �����
k=m
p

. By

using the Duhamel integral and treating the terms on the

right-hand side of the equal sign in Eq. (8) as external

forces, Eq. (8) can be reduced to the following iteration

form:

xn11�t� � 1

v
��������
1 2 j2

p Z1

2 1
e2jv�t2t�sin�v

��������
1 2 j2

q
�t 2 t��

£ v2h

p

Z1

2 1
xn�u�
�t 2 u� du 1 2jvxn�t�1

p�t�
m

( )
dt

�9�
By iterating xn(t) in Eq. (9), a hysteresis loop can be

constructed after setting harmonic loading for p(t) and the

convergent solution can be obtained using the following
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Fig. 2. Free vibration by real integral and FFT in the frequency domain for (a) h � 0.1, (b) h � 0.2, (c) h � 0.4, (d) h � 0.8. ÐÐÐ, FFT (N� 1024); - - -,

real integral.



criteria:

uxn�t�2 xn11�t�u , e; if n . N �10�
where e is tolerance and N is the number of iterations.

However, it is found that the Hilbert transform is present

in the damping force term of Eq. (6) and in the forcing term

of Eq. (9), so a numerical folding technique for the integral

will be elaborated on in the next section.

3. A numerical folding technique for the Cauchy
principal value

To deal with the Cauchy principal value in the Hilbert

transform in Eqs. (6) and (9) for free vibration and forced

vibration, respectively, we can divide the domain of integral

into three regions, two regular integrals and one singular

integral, as shown in Fig. 1 and below:Zt1

t0

x�u�
�t 2 u� du �

Zt 2 a

t0

x�u�
�t 2 u� du 1

Zt 1 a

t 2 a

x�u�
�t 2 u� du

1
Zt1

t 1 a

x�u�
�t 2 u� du �11�

By folding the domain of the second integral on the right-

hand side of the equal sign in Eq. (11), we haveZa

01

x�t 2 v�2 x�t 1 v�
v

dv �12�
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Fig. 3. Diagram for checking the solution obtained by using the frequency domain approach to satisfy the governing equation in the time domain: (a) h � 0.1,

(b) h � 0.2, (c) h � 0.4, (d) h � 0.8. ÐÐÐ, kh
p

R1
21

x�u�
�t2u� du; KKK, m �x�t�1 kx�t�.



It is easy to ®nd that the singularity at t�u in Eq. (11) can

be transformed so as to be regular at v�0 in Eq. (12),

since

lim
v!0

x�t 2 v�2 x�t 1 v�
v

dv � 2
1

2
x 0�t1�2

1

2
x 0�t2�

�13�
is bounded; i.e. the integrand in the Hilbert transform is

reduced to be nonsingular. Many available numerical

techniques can be used to determine the regular integral

easily.

4. Numerical results and discussion

4.1. Free vibration by using the frequency domain approach

By setting

m � 1 kg; k � 4p2 N m21
; v � 2p rad s21

the free vibration approach can be obtained by using the

frequency domain approach and by using either Eq. (4) or

Eq. (5). The free vibration responses are shown in Fig. 2 for

four cases: (a) h�0.1, (b) h�0.2, (c) h�0.4 and (d) h�0.8.
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Fig. 4. Hysteresis loop obtained by using the time domain approach and the frequency domain approach. ÐÐÐ, time domain approach; + + +, frequency

domain approach.



The results obtained using both methods, real integral and

FFT, are in good agreement. However, the real integral

method is more time-consuming since the domain of inte-

gration is in®nite. Also, the noncasual effect is found in Fig.

2 as expected.

4.2. Check for free vibration in the time domain

In order to check whether or not the governing equation

of Eq. (6) in the time domain is equivalent to that of Eq. (3)

in the frequency domain, the free vibration obtained by Eq.

(3) in the frequency domain approach is substituted into Eq.

(6) in the time-domain governing equation. Fig. 3 shows

that the forces for the time-domain governing equation are

in equilibrium for Eq. (6), where the sum of the inertia force,

m �x�t�, and spring force, kx(t), is equal to the damping force,

kh

p

Z1

2 1
x�u�
t 2 u

du

for h�0.1, 0.2, 0.4 and 0.8. Only a small difference appears

near t�0 owing to the presence of the Dirac Delta function

there since the velocity is discontinuous across t�0 as

shown in Table 1.

4.3. Hysteresis loop by using the frequency domain

approach and the time domain approach

The hysteresis loop is solved in the time domain by

setting the forcing function, p(t), in Eq. (9), to be harmonic

loading. The convergent solution can be obtained by six

iterations (N�6) for Eq. (9) when the arti®cial damping

ratio is chosen as 0.8. The transient behavior in the devel-

opment to steady-state response on the damping ellipse is

shown in Fig. 4. The curve originates from the second quad-

rant since noncasual effect is also present not only in free

vibration but also in forced vibration. It can be found that

the ellipse for steady state response matches the result

obtained by using the frequency domain approach very well.

5. Conclusions

The governing equation in the time domain for free vibra-

tion of hysteretic damping has been reviewed in this paper.

The free vibration obtained by using the frequency domain

approach has been proved to satisfy the governing equation

in the time domain. Also, the successive iteration technique

has been successfully applied to obtain the hysteresis loop.

Obviously, the present formulation can be extended to the

hysteretic damping model subject to arbitrary loading in the

time domain.
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Table 1

Velocity discontinuity for the free vibration of hysteretic damping

h � 0 h � 0.1 h � 0.2 h � 0.4 h � 0.8

_x�01� 1 0.974 0.957 0.924 0.871

_x�02� 0 -0.0083 -0.022 -0.049 -0.091

x(0) 0 -0.0039 -0.00773 -0.0145 -0.0232


