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Alternative derivations for the Poisson integral formula
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Poisson integral formula is revisited. The kernel in the Poisson integral formula
can be derived in a series form through the direct BEM free of the concept
of image point by using the null-field integral equation in conjunction with the
degenerate kernels. The degenerate kernels for the closed-form Green’s function
and the series form of Poisson integral formula are also derived. Two and three-
dimensional cases are considered. Also, interior and exterior problems are both
solved. Even though the image concept is required, the location of image point
can be determined straightforward through the degenerate kernels instead of the
method of reciprocal radii.

1. Introduction

Integral representation for the solution of partial differential equation is important
in both science and engineering. Green’s identity and Somigliani identity for the
Laplace and Navier problems provide the integral representation, respectively. Based
on the integral representation, the boundary integral equation method (BIEM) [11]
and the boundary element method (BEM) [1] have been developed to be powerful
tools for engineering problems. By choosing the appropriate Green’s function, the
Poisson integral formulae for the disc and sphere domains subject to the Dirichlet
condition were found [9]. How to find the Green’s function is not trivial. In the
literature, the image point was found in a semi-inverse method in priori through
reciprocal radii in the Sommerfeld’s book [12] as shown in figure 1. Sommerfeld
and Greenberg [9] both utilized the concept of reciprocal radii of William
Thomson [13] to derive the Poisson integral formula. To determine the location of
image point in a straightforward way is the main concern of the present paper.
Also, the possible derivation without employing an image point is also addressed.
Fundamental solutions are expanded into degenerate kernels in constructing the
Green’s function. Since a degenerate kernel separates the source and field points
for the closed-form fundamental solution, it plays an important role in studying the
rank-deficiency problems analytically in BEM, e.g., degenerate scale [4, 6], spurious
eigenvalues [5, 8, 10] and fictitious frequencies [2, 3]. Also, it can study the order of
pseudo-differential operator [7].

In this paper, the degenerate kernels for the closed-form Green’s function and
the series form of Poisson integral formula are both derived. The image point is
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determined in a different way to derive the Poisson integral formula by using the
degenerate kernels. The closed-form Green’s function is expanded into degenerate
kernels. Furthermore, the null-field integral equation in conjunction with the
degenerate kernel provides us with another approach to derive the Poisson integral
formula without using the concept of the image point. Both the two and three
dimensional Laplace problems for the exterior problem as well as the interior
problem are solved.

2. Derivation of the Poisson integral formula by using the

degenertae scale (two-dimensional problem)

Let us consider the two-dimensional Laplace equation,

r2uðxÞ ¼ 0, x 2 � ð1Þ

where r2 is the Laplacian operator, u(x) is the potential and � is the circular domain
with radius a. For simplicity, we consider the Dirichlet boundary condition, u ¼ fð�Þ,
as shown in figure 2. By using the fundamental solution as an auxiliary system,
Green’s identity yields

2�uðsÞ ¼

Z
B

TFðx, sÞuðxÞdBðxÞ �

Z
B

UFðx, sÞtðxÞdBðxÞ, x 2 � ð2Þ

a
o

x=(r, f)

s′=(R′ ,q ′)R  

R′

s=(R, q)

r

r′
ρ

Figure 1. Geometry of reciprocal radii.

a

u(x) = f(f), x ∈ B

∇2 u (x) = 0, x ∈ Ω

Figure 2. Two-dimensional interior Laplace problem.
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where u(x) and t(x) are the potential and flux, s and x are the source point and field
point, respectively, B is the boundary of the domain, UF and TF kernels are

UFðx, sÞ ¼ lnðrÞ, TFðx, sÞ ¼
@UFðx, sÞ

@nx
, ð3Þ

in which nx denotes the normal vector of x, r2UFðx, sÞ ¼ �ðx� sÞ and r ¼ jx� sj.
By expanding the fundamental solution into the degenerate kernel, the image point
can be determined naturally and straightforward to match the homogeneous
Dirichlet boundary condition for the Green’s function, UGðx; s, s

0Þ with an image
source. Then, we employ the boundary integral equation method (BIEM) to derive
the Poisson integral formula. In constructing the Green’s function to satisfy
the homogeneous Dirichlet boundary condition, image source is required and
must be distributed outside the domain. By replacing the UF with UG, equation
(2) simplifies to

2�uðsÞ ¼

Z
B

TGðx; s, s
0ÞuðxÞdBðxÞ, x 2 B, ð4Þ

due to the homogeneous Dirichlet condition of UGðx; s, s
0Þjx2B ¼ 0, where

TGðx; s, s
0Þ ¼

@UGðx; s, s
0Þ

@nx
: ð5Þ

Equation (4) indicates that the integral representation solution is expressed in
terms of boundary integrals since the kernel of TG and the boundary data of u(x)
are both known.

2.1. 2-D interior problem

Now, we use the degenerate kernels to derive the Green’s function and Poisson
integral formula in a different way from that of the conventional one [9, 12, 13].
The fundamental solution UF in equation (3) is expanded into

UFðx, sÞ ¼ lnðrÞ ¼ ln jx� sj

¼

UI
Fðx, sÞ ¼ lnðRÞ �

P1
m¼1

1

m

�

R

� �m
cos½mð� � �Þ�, � � R

UE
Fðx, sÞ ¼ lnð�Þ �

P1
m¼1

1

m

R

�

� �m

cos½mð� � �Þ�, � � R

8>>><
>>>:

ð6Þ

where x ¼ ð�,�Þ and s ¼ ðR, �Þ for the polar coordinate in figure 3, the superscripts
I and E denote the interior and exterior problems, respectively.

Then, we use the method of images and degenerate kernels to derive the closed-
form and series-form Green’s functions. By employing the image method, we locate
the image source outside the domain to satisfy the boundary condition as shown in
figure 4. Since s is inside the circle and x is on the boundary to match the boundary
condition, we have

ln jx� sj ¼ lnð�Þ �
X1
m¼1

1

m

R

�

� �m

cos½mð� � �Þ�, � > R ð7Þ

Since s0 is outside the boundary, we have

ln jx� s0j ¼ lnðR0Þ �
X1
m¼1

1

m

�

R0

� �m
cos½mð�0 � �Þ�, � < R0 ð8Þ
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where s0 ¼ ðR0, �0Þ is the polar coordinate for the image source s0 outside the disc as
shown in figure 4. In order to cancel out the � term since � is arbitrary in the
boundary condition, we choose the collinear points s and s0, i.e., � ¼ �0. By equating
the mth term in the series of equations (7) and (8), we have

R

�
¼
�

R0
) R0 ¼

�2

R
¼

a2

R
ð9Þ

By subtracting equation (7) with equation (8), we have

ln jx� sj � ln jx� s0j ¼ lnðaÞ � lnðR0Þ ð10Þ

Since Green’s function satisfies the homogeneous Dirichlet boundary conditions, the
closed-form Green’s function is adjusted to

UGðx; s, s
0Þ ¼ ln jx� sj � ln jx� s0j � lnðaÞ þ lnðR0Þ

¼ ln jx� sj � ln jx� s0j þ lnðaÞ � lnðRÞ
ð11Þ

where ln(a) can be understood as a rigid body term and ln(R) is the function of s
only. The Green’s function in equation (11) satisfies

r2
xUGðx; s, s

0Þ ¼ �ðx� sÞ � �ðx� s0Þ, x 2 � ð12Þ

s

x
s′

∇2UG(x;s,s′) = d(x−s) − d(x−s′), x ∈Ω

B

UG(x;s,s′) = 0, x ∈B

Figure 4. Green’s function for the two-dimensional case.

x

x = (r, f)

s = (R, q)

ρ

φ
θ

y

r

R

Figure 3. Polar coordinate for the two-dimensional problem.
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subject to the boundary condition UGðx; s, s
0Þjx2B ¼ 0. For the circular core

(0 < � < R) in figure 5(a), the closed-form Green’s function is expanded into

UGðx; s, s
0Þ ¼ ln jx� sj � ln jx� s0j þ lnðaÞ � lnðRÞ

¼ lnR�
X1
m¼1

1

m

�

R

� �m
cos½mð� � �Þ� � ln

a2

R

� �

þ
X1
m¼1

1

m

�R

a2

� �m

cos½mð� � �Þ� þ lnðaÞ � lnðRÞ

¼ ln
R

a

� �
�
X1
m¼1

1

m

�

R

� �m
�

�R

a2

� �m� �
cos½mð� � �Þ�, 0 < � � R ð13Þ

The degenerate kernel for the Green’s function in the annular region (R < � < a) in
figure 5(b) is

UGðx; s, s
0Þ ¼ ln jx� sj � ln jx� s0j þ lnðaÞ � lnðRÞ

¼ ln ��
X1
m¼1

1

m

R

�

� �m

cos½mð� � �Þ� � ln
a2

R

� �

þ
X1
m¼1

1

m

�R

a2

� �m

cos½mð� � �Þ� þ lnðaÞ � lnðRÞ

¼ ln
�

a

� �
�
X1
m¼1

1

m

R

�

� �m

�
�R

a2

� �m� �
cos½mð� � �Þ�, R � � < a ð14Þ

s′ = (R′, q ′)

s′ = (R′, q ′)

x = (r, f)

s = (R, q)

a

a

x = (r, f) s = (R, q)

(a)

(b)

Figure 5. (a) Green’s function for the interior problem (core area 0< �<R). (b) Green’s
function for the interior problem (annular area R< �< a).
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The closed-form and series-form Green’s functions are plotted in figures 6(a) and
6(b), respectively. The series solution using 50 terms in equations (13) and (14) match
well with the closed-form solution in equation (11). By substituting equation (11)
into equation (4), we obtain the Poisson integral formula

uðR, �Þ ¼
1

2�

Z 2�

0

TG R, �; �,�;
a2

R
, �

� �
fð�Þa d�

¼
1

2�

Z 2�

0

ða2 � R2Þ

½a2 þ R2 � 2aR cosð�� �Þ�
fð�Þd� ð15Þ
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Figure 6. (a) The closed-form Green’s function (a¼ 1, R¼ 0.8, R0 ¼ 1.25, �¼ 0) UGðx; s,s0Þ ¼
ln jx� sj � ln jx� s0j þ ln a� lnR. (b) The series-form Green’s function (a¼ 1, R¼ 0.8,
R0 ¼ 1.25, M¼ 50, �¼ 0)

UGðx; s,s0Þ ¼

ln
R

a

� �
�
XM
m¼1

1

m

�

R

� �m
�

�R

a2

� �m� �
cos½mð� � �Þ�, 0 < � � R

ln
�

a

� �
�
XM
m¼1

1

m

R

�

� �m

�
�R

a2

� �m� �
cos½mð� � �Þ�, R � � < a:

8>>>><
>>>>:
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with 0 < R < a, 0 < � < 2�, where f(�) is the specified boundary condition. From
equation (14), the series-form for the Poisson integral formula is

uðR, �Þ ¼
1

2�

Z 2�

0

1þ 2
X1
m¼1

R

a

� �m

cosðmð� � �ÞÞ

" #
fð�Þd�, 0 < R < a, 0 < � < 2�

ð16Þ

due to R < � in equation (2).

2.2. 2-D exterior problem

According to the successful experience of the interior problem, we extend it to the
exterior problem as shown in figure 7. In a similar way, we have the closed-form
Green function for the exterior problem as

UGðx; s, s
0Þ ¼ ln jx� sj � ln jx� s0j þ lnðaÞ � lnðRÞ: ð17Þ

The Green’s function satisfies equation (12) and the series form is expressed in two
parts. The degenerate kernel for the Green’s function (figure 8(a)) in the annular
region is

UGðx; s, s
0Þ ¼ ln jx� sj � ln jx� s0j þ lnðaÞ � lnðRÞ

¼ ln
a

�

� �
�
X1
m¼1

1

m

�

R

� �m
�

a2

�R

� �m� �
cos½mð� � �Þ�, a < � � R: ð18Þ

For the unbounded area (figure 8(b)), we have

UGðx; s, s
0Þ ¼ ln jx� sj � ln jx� s0j þ lnðaÞ � lnðRÞ

¼ ln
a

R

� �
�
X1
m¼1

1

m

R

�

� �m

�
a2

�R

� �m� �
cos½mð� � �Þ�, R � � <1 ð19Þ

. 

a

s = (R, q)x = (r, f)

s′ = (R′, q ′)

R

R′

∇2u(x) = 0,  x ∈ Ω

Figure 7. 2-D exterior Laplace problem.
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The closed-form and series-form Green’s functions are plotted in figures 9(a) and

9(b), respectively. It is found that series solution converges to the exact solution.

By using the closed-form Green’s function, we have

uðR, �Þ ¼
1

2�

Z 2�

0

ðR2 � a2Þ

½a2 þ R2 � 2aR cosð� � �Þ�
fð�Þd�, a < R <1, 0 < � < 2�:

ð20Þ

For the series-form Green’s function, we have

uðR, �Þ ¼
�1

2�

Z 2�

0

1þ 2
X1
m¼1

a

R

� �m
cosðmð� � �ÞÞ

( )
fð�Þd�, a < R <1, 0 < � < 2�:

ð21Þ

due to � < R in equation (2). For the two-dimensional interior and exterior

problems, we summarize the results in table 1.

s = (R,q)

s′=(R′, q ′) x = (r, f)

a

∇x
2UG (x;s,s′) = d(x−s) − d(x − s′), x ∈Ω

UG (x;s,s′) = 0, x ∈ B

s = (R, q)

s' = (R′, q ′)

x = (r, f)

a

(a)

(b)

Figure 8. (a) Green’s function for the exterior problem (annular region a< ��R).
(b) Green’s function for the exterior problem (unbounded region R � � <1).
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3. Derivation of the Poisson integral formula by using the

degenerate kernels (three-dimensional problem)

By extending 2-D disc to 3-D sphere Laplace problem as shown in figure 10,
equation (2) changes to

4�uðsÞ ¼

Z
B

TFðx, sÞuðxÞdBðxÞ �

Z
B

UFðx, sÞtðxÞdBðxÞ, x 2 � ð22Þ
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Figure 9. (a) The closed-form Green’s function (a¼ 1, R¼ 1.25, R0 ¼ 0.8, �¼ 0)
UGðx; s,s0Þ ¼ ln jx� sj � ln jx� s0j þ ln a� lnR. (b) The series-form Green’s function (a¼ 1,
R¼ 1.25, R0 ¼ 0.8, M¼ 50, �¼ 0)

UGðx; s,s0Þ ¼

ln
a

�

� �
�
XM
m¼1

1

m

�

R

� �m
�

a2

�R

� �m� �
cos½mð� � �Þ�, a < � � R

ln
a

R

� �
�
XM
m¼1

1

m

R

�

� �m

�
a2

�R

� �m� �
cos½mð� � �Þ�, R � � <1:

8>>>><
>>>>:
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Table 1. Green’s function of the two-dimensional Laplace problem.

Interior problem Exterior problem

Problem statement

∇2u(x)=0,  x∈Ω

u(x)=f(φ)
a

u(x)=f(φ)

∇2u(x)=0, x∈Ω

a

Auxiliary system
Fundamental solution

s
x

∇2UF(x,s)=d(x−s), x∈Ω

Green’s function

s

x s′

UG(x;s,s′)=0, x∈B

∇2UG(x;s,s′)=d(x−s)−d(x−s′), x∈Ω

B
x

s
s′

∇2UG(x;s,s′)=d(x−s)−d(x−s′), x∈Ω

UG(x;s,s′)=0, x∈B
B

Poisson integral formula
(closed-form) uðR,�Þ ¼

1

2�

Z 2�

0

ða2 � R2
Þ

a2 þ R2 � 2aR cosð�� �Þ
fð�Þd�,

0 < R < a, 0 < � < 2�

uðR,�Þ ¼
1

2�

Z 2�

0

ðR2
� a2Þ

a2 þ R2 � 2aR cosð�� �Þ
fð�Þd�,

a < R <1, 0 < � < 2�

Poisson integral formula
(series-form) uðR,�Þ ¼

1

2�

Z 2�

0

1þ 2
X1
m¼1

Rm

am
cosðmð� � �ÞÞ

( )
fð�Þd�,

0 < R < a, 0 < � < 2�

uðR,�Þ ¼
�1

2�

Z 2�

0

1þ 2
X1
m¼1

am

Rm cosðmð� � �ÞÞ

( )
fð�Þd�,

a < R <1, 0 < � < 2�

1
7
4

J
.
T
.
C
h
en

a
n
d
C
.
S
.
W
u



where the fundamental solution UF and the kernel TF are

UF ðx, sÞ ¼
�1

r
, TF ðx, sÞ ¼

@UF ðx, sÞ

@nx
ð23Þ

in which r2
xUFðx, sÞ ¼ �ðx� sÞ and r ¼ jx� sj. In order to derive the Poisson

integral formula, an auxiliary system of Green’s function subject to the homoge-
neous Dirichlet boundary condition in figure 11 needs to be constructed first.
Equation (4) reduces to

4�uðsÞ ¼

Z
B

TGðx; s, s
0ÞuðxÞdBðxÞ, s 2 �, ð24Þ

for the three-dimensional case.

3.1. 3-D interior problem

We use the degenerate kernel to derive the 3-D closed-form Green’s function and the
Poisson integral formula. Similarly, the fundamental solution is expressed in a series
form as

UFðx, sÞ ¼
�1

r

¼

UI
Fðx, sÞ ¼

1

R
�
X1
n¼1

Xn
m¼0

ðn�mÞ!

ðnþmÞ!
cosðmð’� ’ÞÞPm

n ðcos�ÞP
m
n ðcos �Þ

�n

Rnþ1
, R � �

UE
Fðx, sÞ ¼

1

�
�
X1
n¼1

Xn
m¼0

ðn�mÞ!

ðnþmÞ!
cosðmð’� ’ÞÞPm

n ðcos�ÞP
m
n ðcos �Þ

Rn

�nþ1
, R � �:

8>>>><
>>>>:

ð25Þ

a

∇2u(x) = 0,  x ∈Ω

u(a,f,j) = f(f,j)

Figure 10. Three-dimensional interior Laplace problem.

x

s
S′

∇2
xUG(x;s,s′) = d(x−s)+a d(x−s′), x∈ΩR

UG(x;s,s′) = 0,  x ∈B

a

B

Figure 11. Green’s function for the three-dimensional case.
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where x ¼ ð�,�, ’Þ, s ¼ ðR, �, ’Þ for the spherical coordinate in figure 12 and Pm
n ð � Þ

is the Legendre function. Then, we use the method of images and degenerate kernel
to derive the closed-form and series form Green’s functions and locate the image
source outside the sphere. Since s is inside the sphere and x is on the boundary
to match the boundary condition, we have

�1

jx� sj
¼

1

�
�
X1
n¼1

Xn
m¼0

ðn�mÞ!

ðnþmÞ!
cosðmð’� ’ÞÞPm

n ðcos �ÞP
m
n ðcos �Þ

Rn

�nþ1
, � > R ð26Þ

Since s0 is outside the sphere, we have

�1

jx� s0j
¼

1

R0
�
X1
n¼1

Xn
m¼0

ðn�mÞ!

ðnþmÞ!
cosðmð’� ’0ÞÞPm

n ðcos�ÞP
m
n ðcos �

0Þ
�n

R0nþ1
, � < R0

ð27Þ

By multiplying equation (27) with R0

� and subtracting equation (26), the homogeneous
Dirichlet boundary condition at � ¼ a yields the equal coefficients of the two series,

Rn

�nþ1
¼
�n�1

ðR0Þn
) R0 ¼

�2

R
¼

a2

R
ð28Þ

on the condition that s and s0 are collinear (� ¼ �0 and ’ ¼ ’). We obtain the closed-
form Green’s function

UGðx; s, s
0Þ ¼

�1

jx� sj
þ

a

R

1

jx� s0j
ð29Þ

It is easy to check r2
xUGðx; s, s

0Þ ¼ �ðx� sÞ, x 2 � and UGðx; s, s
0Þjx2B ¼ 0.

Similarly, we can express UG into the series form as shown below:

UGðx;s,s
0Þ

¼
�1

jx� sj
þ

a

R

1

jx� s0j

¼

1

R
�
1

a
þ
X1
n¼1

Xn
m¼0

ðn�mÞ!

ðnþmÞ!
cosðmð’�’ÞÞPm

n ðcos�ÞP
m
n ðcos�Þ

�nRn

a2nþ1
�

�n

Rnþ1

� �
, 0<��R

1

�
�
1

a
þ
X1
n¼1

Xn
m¼0

ðn�mÞ!

ðnþmÞ!
cosðmð’�’ÞÞPm

n ðcos�ÞP
m
n ðcos�Þ

�nRn

a2nþ1
�

Rn

�nþ1

� �
, R� �< a

8>>>><
>>>>:

ð30Þ

x 

s

x

R 
ρ

y

z

φ

ϕ

θ

ϕ

Figure 12. Spherical coordinate for the three-dimensional problem.
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After deriving the closed-form and series-form Green’s functions by using the image
method, we employ equation (24) to derive the Poisson integral formula as shown
below

uðR, �, ’Þ ¼
1

4�

Z
B

TGðx; s, s
0ÞuðxÞdBðxÞ

¼
1

4
�aða2 � R2Þ

Z �

0

Z 2�

0

sin ’

ða2 þ R2 � 2aR cos �Þ
3
2

fð�, ’Þd� d’,

with 0 < R < a, 0 < � < 2�, 0 < ’ < �, where cos � ¼ cos � cos�þ sin � sin��
cosð’� ’Þ, dBðxÞ ¼ a2 sin� d� d’. For the series-form, we have

uðR, �, ’Þ ¼
1

4�

Z �

0

Z 2�

0

�
� 1þ

X1
n¼1

Xn
m¼0

ð2nþ 1Þ
ðn�mÞ!

ðnþmÞ!
cosðmð’� ’ÞÞPm

n ðcos�Þ

� Pm
n ðcos �Þ

Rn

an

�
sin ’ fð�, ’Þd� d’, ð32Þ

with 0 < R < a, 0 < � < 2�, 0 < ’ < �, due to R < � in equation (24).

3.2. 3-D exterior problem

For the 3-D exterior problem in figure 13, we move the image source outside the
domain. Similarly, we express the closed-form Green’s function into series-form as

UGðx; s, s
0Þ ¼

�1

jx� sj
þ

a

R

1

jx� s0j

¼

1

R
�

a

R�
þ
X1
n¼1

Xn
m¼0

ðn�mÞ!

ðnþmÞ!
cosðmð’� ’ÞÞPm

n ðcos�Þ

�Pm
n ðcos �Þ

a2nþ1

�nþ1Rnþ1
�

�n

Rnþ1

� �
, a< � � R

1

�
�

a

R�
þ
X1
n¼1

Xn
m¼0

ðn�mÞ!

ðnþmÞ!
cosðmð’� ’ÞÞPm

n ðcos�Þ

�Pm
n ðcos �Þ

a2nþ1

�nþ1Rnþ1
�

Rn

�nþ1

� �
, R � � <1

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð33Þ

a

∇2u(x)=0,  x ∈Ω

u(a,θ, j) = f(θ, j)

Figure 13. Three-dimensional exterior Laplace problem.
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After deriving the closed-form Green’s function by using the image method, we can
derive the Poisson integral formula by using equation (24) as follows:

uðR, �, ’Þ ¼
1

4�

Z
B

TGðx; s, s
0ÞuðxÞdBðxÞ ¼

1

4�

Z
B

@UGðx; s, s
0Þ

@nx
uðxÞdBðxÞ

¼
�1

4�
aða2 � R2Þ

Z �

0

Z 2�

0

sin ’

ða2 þ R2 � 2aR cos �Þ
3
2

fð�, ’Þd� d’, ð34Þ

with 0 < R < a, 0 < � < 2�, 0 < ’ < �, For the series-form, we have

uðR, �, ’Þ ¼
1

4�

Z �

0

Z 2�

0

a

R

�
1�

X1
n¼1

Xn
m¼0

ð2nþ 1Þ
ðn�mÞ!

ðnþmÞ!
cosðmð’� ’ÞÞPm

n ðcos�Þ

� Pm
n ðcos �Þ

an

Rn

�
sin ’ fð�, ’Þd� d’, ð35Þ

with a < R <1, 0 < � < 2�, 0 < ’ < �, due to R > � in equation (24). For the
three-dimensional interior and exterior problems, we summarize the results in table 2.

4. Derivation of the Poisson integral formula by using the

direct BEM without using the image point

After deriving the Poisson integral formula by employing the image point in the
previous sections, we will derive it by using the direct BEM instead of finding the image
point. Then, we employ the null-field integral equation, Fourier series and the degene-
rate kernels to find the half ‘‘unknown’’ Neumann data. Then, the series-form kernel
in the Poisson integral formula can be obtained by using the direct BEM.

4.1. 2-D interior problem

Let us consider the Laplace problem in equation (1); we employ the direct boundary
integral equation method to derive the Poisson integral formula as follows:

2�uðxÞ ¼

Z
B

TI
Fðs, xÞuðsÞdBðsÞ �

Z
B

UI
Fðs, xÞtðsÞdBðsÞ, x 2 � ð36Þ

where the superscript I denotes the interior case. By collocating x outside the domain
(x! Bþ) as shown in figure 14, we obtain the null-field integral equation

0 ¼

Z
B

TE
Fðs, xÞuðsÞdBðsÞ �

Z
B

UE
Fðs, xÞtðsÞdBðsÞ, x 2 �c ð37Þ

where �c is the complementary domain of �. For a circular case, we express the
boundary density u(s) and t(s) in terms of the Fourier series

uðsÞ ¼ fð�Þ ¼ a0 þ
X1
n¼1

ðan cosðn�Þ þ bn sinðn�ÞÞ, ð38Þ

tðsÞ ¼ p0 þ
X1
n¼1

ð pn cosðn�Þ þ qn sinðn�ÞÞ, ð39Þ
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Table 2. Green’s function of the three-dimensional Laplace problem.

Interior problem Exterior problem

Problem statement

∇2u(x)=0, x∈Ω

u(a,f,j)=f(f,j)

a

∇2u(x)=0, x∈Ω

a

u(a,f,j)=f(f,j)

Auxiliary system
Fundamental solution

s

∇2UF(x,s)=d(x−s), x∈Ω

x

Green’s function s′
UG(x;s,s′)=0, x∈B

x s
B

∇2UG(x;s,s′)=d(x−s)+ a
R

 d(x−s′), x∈Ωx s′

s

x

UG(x;s,s′)=0, x∈B

R

a∇2UG(x;s,s′)=d(x−s)+     d(x−s′)

B

x
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Table 2. Continued.

Interior problem Exterior problem

Poisson integral
formula
(closed-form)

uðR,�, �’’Þ

¼
1

4�
aða2 � R2

Þ

Z 2�

0

Z �

0

sin’

½a2 þ R2 � 2aR cos ��
3
2

fð�,’Þd�d’,

0 < R < a, 0 < � < 2�, 0 < �’’ < �

uðR,�, �’’Þ ¼
�1

4�
aða2 � R2

Þ

Z 2�

0

Z �

0

sin’

½a2 þ R2 � 2aR cos ��
3
2

� fð�,’Þd�d’, a < R <1, 0 < � < 2�, 0 < �’’ < �

Poisson integral
formula
(series-form)

uðR,�, �’’Þ

¼
1

4�

Z 2�

0

Z �

0

�
� 1þ

Xn
m¼0

X1
n¼1

ðn�mÞ!

ðnþmÞ!
cosðmð’� �’’ÞÞPm

n ðcos�Þ

� Pm
n ðcos �Þð2nþ 1Þ

Rn

an

�
sin’fð�,’Þd� d’,

0 < R < a, 0 < � < 2�, 0 < �’’ < �

uðR,�, �’’Þ

¼
1

4�

Z 2�

0

Z �

0

a

R

�
1�

Xn
m¼0

X1
n¼1

ðn�mÞ!

ðnþmÞ!
cosðmð’� �’’ÞÞPm

n ðcos�Þ

� Pm
n ðcos �Þð2nþ 1Þ

an

Rn

�
sin ’fð�,’Þd�d’,

a < R <1, 0 < � < 2�, 0 < �’’ < �

1
8
0

J
.
T
.
C
h
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a
n
d
C
.
S
.
W
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where the coefficients a0, an and bn are specified since f(�) is given, p0, pn and qn are
to be determined for the Dirichlet problem. Then, we expand the UF kernel in
equation (6) and the TF kernel is

TFðs, xÞ ¼
@UFðs, xÞ

@ns
¼

TI
Fðs, xÞ ¼

1

R
þ
X1
m¼1

�m

Rmþ1
cosðmð� � �ÞÞ, � < R

TE
Fðs, xÞ ¼ �

X1
m¼1

Rm�1

�m
cosðmð� � �ÞÞ, � > R:

8>>>><
>>>>:

ð40Þ

By substituting the degenerate kernels of UE
Fðs, xÞ and TE

Fðs, xÞ when � > R and
equations (38) and (39) into equation (37) for x 2 Bþ, we obtain the unknown
coefficients as follows:

p0 ¼ 0,

pm ¼
m

a
am,

qm ¼
m

a
bm

ð41Þ

The boundary density of t(s) can be obtained as

tðsÞ ¼
X1
m¼1

m

a
ðam cosðm�Þ þ bm sinðm�ÞÞ ð42Þ

By substituting equation (42) and the degenerate kernels as well as boundary
condition of equation (39) into the equation (36), we have

2�uðxÞ ¼

Z 2�

0

1

a
þ
X1
m¼1

�m

amþ1
cosðmð���ÞÞ

" #
a0þ

X1
m¼1

ðam cosðm�Þþbm sinðm�ÞÞ

" #
ad�

�

Z 2�

0

lna�
X1
m¼1

1

m

�

a

� �m
cosðmð���ÞÞ

" # X1
m¼1

m

a
ðam cosðm�Þþbm sinðm�ÞÞ

" #
ad�

ð43Þ

a

s=(R, q)

∇2u(x) = 0,  x ∈Ω

x = (r, f)→B

Figure 14. Two-dimensional interior Laplace problem using the null-field integral equation.
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Equation (43) yields the series-form Poisson integral formula

uð�,�Þ ¼
1

2�

Z 2�

0

1þ 2
X1
m¼1

�

a

� �m
cosðmð� � �ÞÞ

" #
fð�Þd� ð44Þ

Equation (44) is found to be the same of equation (16) without employing any idea
of image point.

4.2. 2-D exterior problem

Based on the successful experience in the interior problem, we extend it into the
exterior case as shown in figure 15 and have the boundary integral equation

2�uðxÞ ¼

Z
B

TE
Fðs, xÞuðsÞdBðsÞ �

Z
B

UE
F ðs, xÞtðsÞdBðsÞ, x 2 � ð45Þ

By collocating x outside the domain (x! B�), we obtain the null-field integral
equation

0 ¼

Z
B

TI
Fðs, xÞuðsÞdBðsÞ �

Z
B

UI
Fðs, xÞtðsÞdBðsÞ, x 2 �c ð46Þ

Similarly, we substitute the degenerate kernels (� < R) and the boundary densities
in equations (38) and (39) into equation (46) and obtain the coefficients

p0 ¼
1

a lnðaÞ
a0,

pm ¼ �
m

a
am,

qm ¼ �
m

a
bm

ð47Þ

a

x = (r, f)→B

s = (R, θ)∇2u(x) = 0, x ∈ Ω

Figure 15. Two-dimensional exterior Laplace problem using the null-field integral equation.
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The boundary density t(s) is expressed in terms of

tðsÞ ¼
a0

a lnðaÞ
�
X1
m¼1

m

a
ðam cosðm�Þ þ bm sinðm�ÞÞ ð48Þ

By substituting the degenerate kernels and boundary densities of equations (38) and
(48) into equation (45), we have the series-form Poisson integral formula as follows:

uð�,�Þ ¼
�1

2�

Z 2�

0

lnð�Þ

lnðaÞ
þ 2

X1
m¼1

a

�

� �m

cosðmð� � �ÞÞ

" #
fð�Þd� ð49Þ

After comparing equation (49) with equation (21), we may wonder that the kernels
are different. However, this does not break the equivalence between equations (21)
and (49) since

Z
B

fð�Þd� ¼ 0 ð50Þ

due to the vanishing potential at infinity.

4.3. 3-D interior problem

By extending 2-D disc to 3-D sphere Laplace problem, we have the boundary
integral equation

4�uðxÞ ¼

Z
B

TI
Fðs, xÞuðsÞdBðsÞ �

Z
B

UI
Fðs, xÞtðsÞdBðsÞ, x 2 � ð51Þ

Similarly, the boundary densities u(s) and t(s) are expanded into spherical harmonics

uðsÞ ¼ fð�, ’Þ ¼
X1
n¼0

Xn
m¼0

�mnP
m
n ðcos �Þ cosðn’Þ, ð52Þ

tðsÞ ¼
X1
n¼0

Xn
m¼0

�mnP
m
n ðcos �Þ cosðn’Þ ð53Þ

where �mn is specified and �mn is to be determined. Then, we expand the UF kernel
in equation (25) and the TF kernel is

TFðs,xÞ¼
@UFðs,xÞ

@ns
,

¼

TI
Fðs,xÞ ¼

�1

R2
þ
X1
n¼1

Xn
m¼0

ðn�mÞ!

ðnþmÞ!
ðnþ1Þcosðmð’�’ÞÞPm

n ðcos�ÞP
m
n ðcos�Þ

�n

Rnþ2
,

�<R

TE
Fðs,xÞ ¼

X1
n¼1

Xn
m¼0

ðn�mÞ!

ðnþmÞ!
ð�nÞcosðmð’�’ÞÞPm

n ðcos�ÞP
m
n ðcos�Þ

Rn�1

�nþ1
,

�>R

ð54Þ

8>>>>>>>><
>>>>>>>>:
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By substituting the degenerate kernels (R > �) and the boundary densities of
equations (52) and (53) into the null-field integral equation for x 2 Bþ, we obtain
the undetermined coefficients

�mn ¼
n

a
�mn ð55Þ

where n ¼ 0, 1, . . . ,1 and m ¼ 0, 1, . . . , n. The boundary density t(s) is rewritten as

tðsÞ ¼
X1
n¼0

Xn
m¼0

n

a
�mnP

m
n ðcos �Þ cosðn’Þ ð56Þ

Substituting the degenerate kernels (R > �) and the boundary densities of
equations (52) and (56) into equation (51), we have the series-form Poisson integral
formula,

uð�,�Þ ¼
1

4�

Z �

0

Z 2�

0

"
� 1þ

X1
n¼1

Xn
m¼0

ðn�mÞ!

ðnþmÞ!
cosðmð’�’ÞÞ

�Pm
n ðcos�ÞP

m
n ðcos�Þð2nþ 1Þ

�n

an

#
sin’ fð�,’Þd�d’: ð57Þ

Equation (57) is found to be the same of equation (32) without employing any idea
of image point.

4.4. 3-D exterior problem

For the three-dimensional problem, we have the boundary integral equation

4�uðxÞ ¼

Z
B

TE
Fðs, xÞuðsÞdBðsÞ �

Z
B

UE
Fðs, xÞtðsÞdBðsÞ, x 2 � ð58Þ

We use the null-field integral equation and degenerate kernels to derive the Poisson
integral formula. By the same way, we obtain the the undetermined coefficients as
follows:

�mn ¼
�ðnþ 1Þ

a
�mn ð59Þ

where n ¼ 0, 1, . . . ,1 and m ¼ 0, 1, . . . , n. The boundary density of t(s) is

tðsÞ ¼
X1
n¼0

Xn
m¼0

�ðnþ 1Þ

a
�mnP

m
n ðcos �Þ cosðn’Þ ð60Þ

Substituting the degenerate kernels (R < �) and the boundary densities of
equations (52) and (60) into equation (58), we have the series-form Poisson integral
formula,

uð�,�Þ

¼
�1

4�

Z �

0

Z 2�

0

�1þ
X1
n¼1

Xn
m¼0

ðn�mÞ!

ðnþmÞ!
cosðmð’� ’ÞÞPm

n ðcos�ÞP
m
n ðcos �Þð2nþ 1Þ

anþ1

�nþ1

" #

� sin’ fð�,’Þd� d’: ð61Þ

After comparing equation (61) with equation (35), we may doubt the difference
of kernels. The reason is the same as equation (50).
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5. Conclusions

Alternative ways to derive the Poisson integral formula were proposed in this paper.
The closed-form Green’s function was expanded into degenerate kernels. Not only
interior problems but also exterior problems were examined to check the validity of
the present formulation for both 2-D and 3-D Laplace problems. By employing the
null-field integral equation in conjunction with the degenerate kernel and Fourier
expansion, the series-form kernel in the Poisson integral formula was derived
through the direct BEM free of the concept of the image point. Even though the
conventional method of image is used, we determined the location of image in a
different way.
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