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Static Response of Circular
Cavities With a Non-Radial
Crack Subject to Antiplane Stress
Tunnels, pipelines, and other subterranean circular cavities are common components of
modern infrastructure. In addition, seismic activities are common in many areas with pipe-
lines, which may put these structures under unknown risk of fracture. A particular risk case
of interest can be characterized as a plane strain problem with a circular cavity and crack in
an infinite plane under antiplane stress. Antiplane, i.e., mode III, loading has seen less study
relative to modes I and II due to the lower risk factor in structures that are especially vul-
nerable to fracture (e.g., in the automotive and aerospace industries), and the increase in
complexity compared to modes I and II. The work here further explores this phenomenon
on circular cavities, and particularly, the effect of non-radial cracks on the stress intensity
factor via a parametric study. The study introduces a semi-analytical method and also uses
commercial finite element software to further expand on the investigation.
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1 Introduction
Subterranean structures, e.g., tunnels and pipelines, in

earthquake-prone regions may undergo complex cyclic loading
leading to cracking. Comprehensive knowledge of the local stress
field around the crack tip is crucial for analyzing and designing
resilient subterranean structures that do not fail catastrophically in
the presence of small cracks (or small subsurface defects in
materials).
There have been extensive studies on the static Stress Intensity

Factor (SIF) of cracks near/embedded in circular cavities dating
back to the 1960 s. However, there has been less focus on the
case of antiplane (i.e., mode III) loading due to the lower risk
factor associated with structures particularly vulnerable to fractures
(e.g., in the aerospace and automotive industries). This is not the
case for subterranean structures, as mentioned before. Additionally,
mode III problems are more complex than modes I and II as they
require full three-dimensional (3D) models. Although antiplane
shear deformations are sometimes considered to be simple to
model mathematically, it is essential to capture the corresponding
out-of-plane behavior to understand the cavity–crack interaction.
As such, the work presented here will focus on the SIF of circular
cavities with an embedded non-radial crack under antiplane
loading by using a semi-analytical method and a Finite Element
(FE) model developed with commercial software. In this sense,
an embedded non-radial crack is one for which the orientation of
the crack is not (necessarily) perpendicular to the surface of the cir-
cular cavity. This can be contrasted with much of the prior work
which focused on radial cracks.
The overarching goals of this work are to (1) present a semi-

analytical method that calculates the mode III SIF, which is
compared against results from previous studies, and (2) explore
the efficacy/difficulties of FE for mode III problems. As mentioned
before, there is a relative lack of work on FE mode III problems,
which the authors aim to address. The FE models are employed
in a parametric study to look at the effects of size and orientation

of the cavity/crack on the SIF. The study looks at (1) the validity
of using a 3D FE model to capture a theoretically infinite body
problem, (2) the validity of a 2D model to capture non-orthogonal
loading, and (3) the limitations of each model.

1.1 Background. This subsection will briefly discuss previous
work on the SIF of cracks. Relevant analytical work will be dis-
cussed, followed by numerical studies.

1.1.1 Previous Analytical Studies. In general, exact solutions
are strictly limited to certain geometries and loading conditions.
Those antiplane shear problems concerning cavities with edge
cracks are very rare, albeit simple at first glance. For a single
axial crack (or two collinear axial cracks, i.e., one on either side
of the cavity) attached to the rim of the elliptical cavity, to the
authors’ knowledge, the very first elegant expressions of mode III
SIFs date back to the early 1970 s when they were derived via con-
tinuous dislocations [1,2]. Note that an axial crack is regarded as a
case of a radial crack. Subsequently, the utilization of integral trans-
forms leads to the same closed-form expressions [3]. For a circular
cavity with two collinear radial cracks, the mode III SIF can be
derived in explicit and concise form using the complex variable
method [4]. In addition, Rice [5,6] provided an exact linear elastic-
perfectly plastic solution for an edge crack in a finite-width plane. A
general solution was available for a sharp notch (or, as a limiting
case, a crack) considering any relation between stress and strain
in the work-hardening range [6,7]. Beyond this, the authors are
not aware of other benchmark solutions available for comparison.

1.1.2 Previous Numerical Studies. There have also been
several numerical studies on the SIF of cracks. The Finite
Element Method (FEM) is a widely used numerical tool in engineer-
ing and has also been extensively employed in fracture mechanics
problems (other numerical methods, e.g., boundary element
methods, have also been used but are not the focus of this paper).
Finite element methods for modeling cracks in commercial software
can be mostly divided into two categories: (1) local mesh refinement
near the crack tip, and (2) eXtended Finite Element Method
(XFEM). This discussion will focus on the latter as it is the
method used in the FE model herein and has been widely adopted
to model fracture mechanics problems.
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The main advantage of the XFEM is it does not require the crack
to align with the vertices of the elements; i.e., the mesh does not
need to conform to the crack. This is immediately beneficial
when investigating crack growth as the model does not require
remeshing after the crack propagates. Similarly, it becomes advan-
tageous in the case of a parametric study where the size and orien-
tation of the crack are variable, but the mesh can remain consistent
and relatively coarse around the crack tip. The XFEM achieves this
by using a displacement field approximation that can model an arbi-
trary discontinuity and the near-tip asymptotic crack fields. It was
first introduced in Refs. [8,9], in which it was shown that discontin-
uous functions can be used with the partition of unity concept—
presented in Ref. [10]—to enrich finite element approximations;
the method showed promising results for solving geometric discon-
tinuous problems such as cracks.
Since the introduction of XFEM, numerous studies using the

method for fracture mechanics problems followed. Nagashima
et al. looked at the SIF of structures with a crack between dissimilar
materials with XFEM [11]. It was also used to look at fracture in
composite materials in 2D and 3D examples which produced accu-
rate results of the mechanics of an interface crack in Ref. [12]. Fur-
thermore, Javanmardi and Maheri introduced a new algorithm for
predicting crack initiation and growth direction in 3D solid concrete
using an anisotropic damage-plasticity model and XFEM; they
compared the model against three benchmark examples with exper-
imental data and were found to be in good agreement [13]. Simi-
larly, Roth et al. [14] presented a novel 3D plain concrete XFEM
cracking model to look at the structural stability of large structures
(with emphasis on concrete dams); they demonstrated good agree-
ment with benchmark problems available from the literature and
direct application for real industrial structures. Zhuang et al. [15]
showed an example illustrating antiplane crack propagation in a
plate using XFEM with the crack growth path being linear as
expected.
There has also been considerable work done on improving the

XFEM for SIF calculations. Liu et al. [16] introduced a new
XFEM formulation that enriches the crack tip fields using higher-
order terms of the crack tip asymptotic field and found that it
resulted in excellent agreement with analytical and numerical
results in the literature. Areias and Belytschko [17] presented a
new formulation and a numerical procedure for XFEM to analyze
3D crack propagation in brittle and quasi-brittle solids. In addition,
Shen and Lew [18] introduced a variant of the XFEM to optimize
convergence using a discontinuous Galerkin method.
For a discussion on—and comparison between—different FEM

fracture modeling approaches for linear elastic fracture mechanic
problems, the reader is referred to Ref. [19]. Moreover, for an
in-depth overview of the XFEM and its application, the reader is
referred to Ref. [20].

1.2 Scope. The work presented here will focus on the static SIF
of an infinite body with a circular cavity and an embedded crack
using the semi-analytical method and the XFEM. The semi-
analytical method, which is exact for an infinite domain, is used to
test the accuracy of the FEM. Thereafter, the FEM is used to
explore the range of validity of the infinite-domain assumption for
finite domain problems and other limitations of the semi-analytical
formulation (namely the semi-analytical method is limited to cavities
with radial cracks). A study focused on optimizing the XFEM is
beyond the scope of this work, as the goal at this stage was an accu-
rate truth model, and not necessarily the fastest model.
The following sections will discuss both the semi-analytical

method and the numerical model. Furthermore, the results using
the semi-analytical method and the numerical model will be vali-
dated against previous work in the literature for both SIF and
crack opening displacement (COD). In addition, the setup and
results for the parametric study will be discussed, followed by the
findings on the validity of using 2D or 3D models for different
cavity–crack problems.

2 Semi-Analytical Method
This section will discuss the formulation of the semi-analytical

method used in the study presented here. Discussions on the FEM
and validation of the models with results in the literature are
given in Sec. 2.1.
Consider an infinitely large matrix, containing a zero-thickness

radial crack attached at the rim of a circular cavity, as depicted in
Fig. 1. The matrix is subjected to uniform antiplane loading τ∞

(at an arbitrary angle α, i.e., angle of loading) in the far field
(extending to infinity r∞). The unbounded matrix is assumed to
be homogeneous, isotropic, and linearly elastic. The length of the
crack and the radius of the cavity are a and b, respectively. The full-
plane material has the shear modulus μ. The crack tip is taken as the
origin of global polar coordinates (r, θ). The origin of local polar
coordinates (r1, θ1) is set at the center of the cavity.
Introducing an auxiliary boundary Sa of circular shape, the whole

plane is divided into two regions: an open region 1 and an enclosed
region 2 (Fig. 1). In these two regions, the only non-vanishing
out-of-plane components of the displacements uj have to obey the
governing Laplace equations, namely

1
r

∂
∂r

r
∂uj
∂r

( )
+

1
r2

∂2uj
∂θ2

= 0, j = 1, 2 (1)

where the subscript j denotes the region number.
The stress-free boundary conditions are imposed on the surface

of the cavity and expressed in terms of the polar coordinates

τ(1)r1z
= μ

∂u1(r1, θ1)
∂r1

= 0, − π ≤ θ1 ≤ π, r1 = b (2)

Accordingly, the zero-stress boundary conditions are enforced on
the crack edge (i.e., the top and bottom faces of the crack) and
written in terms of polar coordinates (r, θ)

τ(2)θz =
μ

r

∂u2(r, θ)
∂θ

= 0, θ = ±π, 0 ≤ r ≤ a (3)

2.1 Eigenfunction Expressions. For the present boundary-
value problem, the use of the method of eigenfunction expansions
is effective. This idea benefits from Westergaard’s function and
Williams’ series because these explicit expressions describe the
near-tip stress and displacement fields [21–23], Considering the
full-plane medium without any anomalies, the free-field displace-
ment uF under remote shear loads may be expressed as

uF(r, θ) =
τ∞

μ
r cos(θ − α) (4)

Fig. 1 Geometric layout of a circular cavity with a radial crack
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The “total” perturbed displacement field uP in open region 1 may
be separated into two parts: uP1 and uP2. Thus,

uP = uP1 + uP2 (5)

The first component uP1 represents the perturbed displacement
field due to the effect of region 2

uP1(r, θ) = A0 ln
r

a

( )
+
∑∞
n=1

An
a

r

( )n
cos(nθ) +

∑∞
n=1

Bn
a

r

( )n
sin(nθ)

(6)

where the expansion coefficients A0, An, and Bn are unknown.
The second component uP2 indicates the perturbed displacement

field induced by the existence of the cavity. Following Eq. (6), we
may write

uP2(r1, θ1) = C0 ln
r1
b

( )
+
∑∞
n=1

Cn
b

r1

( )n

cos(nθ1)

+
∑∞
n=1

Dn
b

r1

( )n

sin(nθ1) (7)

where the expansion coefficients C0,Cn, andDn are unknown which
will be solved in Sec. 2.3.
In region 1, the resultant displacement field u1, which is com-

posed of the free field and the total perturbed field, is given by

u1 = uF + uP (8)

In region 2, the displacement field u2 that satisfies Eqs. (1) and (3)
is given by

u2(r, θ) =
∑∞
n=0

En
r

a

( )n
cos(nθ) +

∑∞
n=0

Fn
r

a

( )2n+1
2 sin

2n + 1
2

θ

( )
(9)

where the expansion coefficients En and Fn will be determined later.
Notice that Eq. (9) inherently possesses the inverse square root
stress singularity at the crack tip.

2.2 Coordinate Transformation. When imposing the conti-
nuity conditions on Sa, unifying the two distinct polar coordinate
systems in regions 1 and 2 is indispensable. The coordinate transfor-
mation relations from the start coordinate (rs, θs) to the end coordi-
nate (re, θe) are recast in an appropriate form as

rs = Υ(re, θe) = [r2e + 2(s − e)(a + b)re cos θe + (a + b)2]1/2 (10)

θs = Θ(re, θe) = tan−1
re sin θe

re cos θe + (s − e)(a + b)

[ ]
(11)

Details are available in Appendix A.
Making use of Eqs. (10) and (11), we may rewrite Eq. (7) in terms

of (r, θ) as

uP2(r, θ) = C0 ln
Υ(r, θ)

b

[ ]
+
∑∞
n=1

Cn
b

Υ(r, θ)

[ ]n
cos [nΘ(r, θ)]

+
∑∞
n=1

Dn
b

Υ(r, θ)

[ ]n
sin [nΘ(r, θ)] (12)

Similarly, when applying Eq. (2) to the cavity surface, we may
rewrite Eq. (6) in terms of (r1, θ1) as

uP1(r1, θ1)= A0 ln
Υ(r1, θ1)

a

[ ]
+
∑∞
n=1

An
a

Υ(r1, θ1)

[ ]n
cos [nΘ(r1, θ1)]

+
∑∞
n=1

Bn
a

Υ(r1, θ1)

[ ]n
sin [nΘ(r1, θ1)] (13)

2.3 Determination of Expansion Coefficients. Across the
artificial interface Sa, we enforce the stress continuity condition

τ(1)rz (r, θ) = τ(2)rz (r, θ), − π ≤ θ ≤ π, r = a (14)

and the displacement continuity

u1(r, θ) = u2(r, θ), − π ≤ θ ≤ π, r = a (15)

Multiplying Eqs. (14) and (15) by a succession of cosine func-
tions and integrating over the range [−π, π] leads to∫π
−π

∂u1(a, θ)
∂r

cos(qθ)dθ =
∫π
−π

∂u2(a, θ)
∂r

cos(qθ)dθ, q = 0, 1, . . . ,

(16)∫π
−π

u1(a, θ) cos(qθ)dθ =
∫π
−π

u2(a, θ) cos(qθ)dθ, q = 0, 1, . . .

(17)

Likewise, invoking Eq. (2) produces∫π
−π

∂u1(b, θ1)
∂r1

cos(qθ)dθ = 0, q = 0, 1, . . . (18)

Going further with the aid of the property of orthogonal basis
functions, and reducing Eqs. (16)–(18), the following relations hold

An = 0, n = 0, 1, · · · (19)

C0 = Cn = 0, n = 2, 3, · · · (20)

C1 =
τ∞

μ
b cos α (21)

En = δ1,n
τ∞

μ
a cos α +

εnIcn
2π

, n = 0, 1, · · · (22)

with

Icn = bC1

∫π
−π

cos
[Θ(a, θ)]
Υ(a, θ)

cos(nθ)dθ, n = 0, 1, . . . (23)

where δ1,n denotes the Kronecker delta function and εn is the
Neumann factor, which is 1 if n= 0 and 2 if n≥ 1.
Subsequently, we proceed analogously. Multiplying Eqs. (2),

(14), and (15) by a sequence of sine functions, integrating, and
exploiting the orthogonality conditions gives the two relations
below

Dn = δ1,n
τ∞

nμ
b sin α +

b

nπ

∑∞
p=1

BpI
s1
p,n (24)

Fn =
2

π(2n + 1)
τ∞

μ
a sin αIs1,n −

∑∞
p=1

pBpI
s
p,n + a

∑∞
p=1

DpÎ
s2
p,n

{ }

(25)

and also yields a system of linear algebraic equations for unknown
coefficients Bn

∑∞
n=0

BnKq,n = Hq, q = 0, 1, . . . (26)

Detailed expressions are given in Appendix B (Eqs. (B1)–(B6)).
From a computational point of view, truncating the infinite series

in Eqs. (24)–(26) to a finite number of terms is needed. The expan-
sion coefficients Bn may be evaluated by standard matrix tech-
niques. In Eq. (26), the summation indices n and the weighting
indices q are truncated after N− 1 terms. Therefore, Eq. (26) consti-
tutes a system of N equations with N unknowns. The number of
truncation terms considered depends only on the required accuracy.
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Once the coefficients Bn are found, the expansion coefficients Dn

and Fn can be straightforwardly evaluated via Eqs. (24) and (25).

2.4 Near-Tip Stress Field. From Eq. (9), we may obtain the
radial stress around the cusped point of the crack. Clearly, the dom-
inant singularity arises in the leading term of the second infinite sum
when the radial distance r approaches zero. Hence, the near-tip
stress field is given by

lim
r�0

τ(2)rz (r, θ) ∼
μ

2
��
r

√ F0 sin
θ

2
(27)

Based on linear elastic fracture mechanics, we may introduce the
stress intensity factor K3

K3 = lim
r�0

����
2πr

√
τ(2)rz (r, θ) (28)

For later comparison, it is convenient to define the following nor-
malized SIF:

KIII =
K3

τ∞
����
πLc

√
sin α

(29)

where Lc is the chosen length. One may specify Lc using the exact
solution or reference solution available in the literature. For
example, Lc is the “half” crack length [4] for the case of a single
finite crack, while Lc is the “full” crack length [24] or the sum of
the cavity radius and the full crack length [3] for the case of cavity-
crack interaction.

2.5 Convergence Test. Since the present semi-analytical solu-
tion is expressed in series form, a few convergence tests are per-
formed to find a sufficient number of truncation terms. Based on
some numerical experiments, the suitable truncation value N grad-
ually goes up when the length of the crack increases. For example,
N= 120 is adequate for a/b< 0.5 and N = 135 ∼ 150 for 1 < a/b<
1.5 to produce reliable results.

2.6 Finite Element Model. To compare the results from the
semi-analytical method, in addition to results in the literature, a
numerical model was developed using ABAQUS, a commercial
(general purpose) FE software. Moreover, the numerical model
also serves as a tool to extend beyond the limitations of the semi-
analytical model in the parametric study (discussed later), as well
as investigate the validity of using a 3D or 2D model for different
types of cavity-crack problems.
The FE model is a cube with length (l), width (w), and height (h)

of 40 m. The cavity is located in the center of the cube, and the crack
is modeled using XFEM (the crack was not allowed to grow); the
radius of cavity b and the length of the crack a are variables. In
the case where the cavity is omitted, the crack is then located at
the center of the cube instead. A study on the boundary effects,
i.e., the model size needed to converge to the solution of an infinite-
domain assumption, is discussed later in Sec. 5.3.
Figure 2 shows a diagram of the FE model and the boundary con-

dition/loading used. The model uses approximately 405,246 nodes
and 186,561 elements (3D 8-node reduced integration brick ele-
ments; C3D8R in ABAQUS), varying depending on the radius of
the cavity. A preliminary mesh size study was undertaken to deter-
mine the nominal element and cube size required. In addition to the
boundary condition in Fig. 2, all nodes are pinned in the x and y
directions to simulate a pure antiplane shear problem; this was
observed to produce the most accurate SIF calculations when com-
pared to exact solutions. The SIFs were observed from the mid-
width of the cube, i.e., at z=w/2.

3 Validation Against Benchmark Results
This section discusses the validation of the semi-analytical and

numerical models. The validation is split into four parts: (1) the
crack opening displacement of a straight crack; (2) the SIF of a
straight crack with varying angle of loading α; (3) the SIF of a
single straight crack embedded in a circular cavity with varying
ratios of (a+ b)/b; and (4) the SIF of a single non-radial crack
embedded in a circular cavity with varying ratios of (a+ b)/b.

3.1 Crack Opening Displacement. The exact solution of the
COD for a straight crack (i.e., b= 0) in an infinite plate is given
by the Westergaard stress function, shown in Refs. [21,25], as
follows:

Δu(c) =
2τ∞

μ
Im

�����������
c2 −

a

2

( )2√( )
(30)

where c is the position with respect to the mid-crack location.
Figure 3 shows the plot of the COD with τ∞= 1000 MPa, μ= 80,
000 MPa, and a= 2 mm. As shown in the figure, the results from
the models are in good agreement.

3.2 Stress Intensity Factor of a Crack With Varying Angle
of Loading. For the SIF, Sih [4] obtained closed-form solutions for

Fig. 3 Crack opening displacement of straight crack

Fig. 2 Diagram of XFEM model
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the SIF of a crack in an infinite body under antiplane shear at an
angle of loading α—shown in the denominator in Eq. (29).
Figure 4 is the plot of the normalized SIF with varying angles of
loading. As shown in the figure, the results from the models are
in good agreement.

3.3 Stress Intensity Factor of a Straight Crack Embedded
in a Cavity. Table 1 gives some computed results of the normal-
ized SIF with (a+ b)/b = 1.5, 2.0, 2.5, 3.0, 3.5, and 4.0, respec-
tively. To reveal the accuracy of the present semi-analytical and
FE solutions, the calculated results of the exact solution, obtained
from Eqs. (2) and (11) in Ref. [3], are also included in Table 1.
Good consistency exists between the present results and those of
Ref. [3]. Clearly, these results ensure that the formulism presented
in Sec. 2 is effective.

3.4 Stress Intensity Factor of a Non-Radial Crack
Embedded in a Cavity. Isida and Tsuru [24] applied the body
force method to evaluate the SIF of a non-radial crack embedded
in a circular cavity/inclusion. Figure 5 shows a plot of the normal-
ized SIF for a crack embedded in a cavity at 45 deg from the x-axis.
As noted before, the semi-analytical results are not provided as it is
limited to radial cracks. Again, the results from the models are in
good agreement.
As shown in the figures of this subsection, the FE models can cal-

culate the COD and SIF for single cracks with varying angles of
loading, and non-radial cracks imbedded in a circular cavity. The
following section will generalize the case to include variable a/b,
angle of loading, and orientation of the crack in a parametric study.

4 Parametric Study
It has been shown in the literature that the ratio of the size of the

crack and cavity, a/b, affects the SIF, as well as the angle of loading.
The parameters shown thus far are sufficient to characterize the
problem for a cavity with a radial crack. The angle of the crack rel-
ative to the horizontal direction, β, see Fig. 6, is used to generalize
the problem to non-radial cracks.

4.1 Parametric Study Results. Figure 7 includes plots of the
normalized SIFs of the parametric study. The top left subplot is a 3D
scatter plot of a/b equal to 0.5, 1.0, and 2.0. The remaining three
subplots are the color plots for the three a/b values. Similarly to
the results from Ref. [3], the SIFs were normalized using Eq. (29)
with; however, α is substituted with β because the orientation of
the crack relative to the angle of loading is given by β. As shown
in the figure, the normalized SIF in smaller a/b is more sensitive

to changes in α and β. Interestingly, the normalized SIF does not
necessarily increase with the a/b ratio (similar findings were
shown in Ref. [3]); for bigger a/b, the normalized SIF increases
for large α and small β, and decreases for small α and large β.
Note that when α= β, the problem collapses to the particular case
of a radial crack. Thus, from the gradient of the case with a radial
crack (i.e., α= β), the normalized SIF is not sensitive to either α
or β, as expected.
Figure 8 shows the same results as Fig. 7 but without normalizing

the SIF. Table 2 provides the parameters used for Fig. 8, with τ∞=
10 MPa and b= 2 mm. Interestingly, the SIF is almost symmetrical
about a 45-deg line for a/b= 0.5. For example, the SIF when α= 60

Fig. 4 SIF of crack with varying angle of loading

Table 1 Values of the normalized SIF

(a+ b)/b Semi-analytical XFEM Exact (Tweed and Melrose, 1989)

1.5 0.8784 0.8683 0.8783
2.0 0.9186 0.9185 0.9185
2.5 0.9073 0.8987 0.9073
3.0 0.8889 0.8891 0.8889
3.5 0.8712 0.8681 0.8712
4.0 0.8558 0.8567 0.8558

Fig. 5 SIF of crack embedded in a circular cavity

Fig. 6 Orientation of crack and angle of loading
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and β= 0 deg is similar to that of α= 0 and β= 60 deg. On the con-
trary, when a/b= 2 there is no symmetry and the SIF becomes sen-
sitive to β and not to α. This indicates that the cavity is more critical
to the SIF at lower a/b, whereas the crack is more critical to the SIF
at higher a/b, which is as expected.

4.2 Range of Validity. Three-dimensional FE models can
solve general crack problems but are computationally expensive
and may encounter issues such as boundary condition effects when
solving theoretical infinite-domain problems. Two-dimensional ana-
lytical models, on the other hand, are not computationally expensive
but may be limited to a few particular cases (e.g., orthogonal
loading). This subsection explores the suitability and accuracy of
2D and 3D models by looking at (1) the boundary effects on the
3D XFEM model—using various model sizes for a constant cavity
and crack size; (2) non-orthogonal loading and how accurately 2D
models can find mode III SIF; and (3) what the normalized SIF
approaches as crack length increases (relative to cavity radius) and
the a/b required to approach the asymptotic value.

4.2.1 Boundary Effects on Three-Dimensional Finite Element
Model. To evaluate the boundary effects on the 3D FE model, a
cavity with an embedded non-radial crack (α = 0, β = 45 deg)
with a/b= 1 is explored. The length (l ), height (h), and width (w)
of the FE model, see Fig. 2, are varied but the mesh density is

kept constant. Table 3 shows the percent error of the different
size FE models, which keeps two dimensions constant and varies
the third dimension. Notably, the width—i.e., dimension along
the z-direction—does not have a significant impact on the accuracy
of the SIF. The SIF is most sensitive to the length parameter, as
expected. In order to obtain good results, the width, height, and
length should be approximately 4, 5, and 10 times (a+ b).

4.2.2 Two-Dimensional Model for Non-Orthogonal Loading.
As mentioned previously, the full 3D FE model is able to capture
modes I, II, and III SIF for cases of non-orthogonal loading. In
order to evaluate the accuracy of the 2D model in capturing 3D
problems (Fig. 9), the mode III SIF of the 3D XFEM model is com-
pared against the mode III SIF of the 2D analytical model (single
straight crack without cavity). Note that the loading for the 2D
model is the z-component of the loading of the 3D model. In addi-
tion, every node was pinned in the y-direction (i.e., the x-direction
pin was removed). Table 4 shows the SIFs of the 2D and 3D
models, which are in good agreement. This indicates that the 3D
problem can be modeled separately using 2D models by taking
the orthogonal components (i.e., modes I, II, and III), which is as
expected with the principle of superposition. While the results
appear to be obvious or trivial, this study has not been conducted
before, to the extent of the authors’ knowledge, and is worth explor-
ing with XFEM.

Fig. 7 Normalized SIFs of a non-radial crack in a circular cavity: (a) 3D scatter plot for a/b=0.5, 1.0, and 2.0, (b)–(d) planimetric
shaded relief plots for a/b=0.5, 1.0, and 2.0, respectively.
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4.2.3 Upper Bound of the Cavity Effect. Due to the computa-
tional cost of the 3D FE model, it is useful to know the crack
length relative to the cavity size that corresponds to the normalized
SIF approaching the asymptotic value. The ability to utilize the 3D
FE model does not depend on the absolute size of the crack and
cavity but instead on the crack length relative to the radius of the
cavity. For example, if the crack and cavity are similar in size,
the size of the model can be adjusted to accommodate an

Fig. 8 SIFs of a non-radial crack in a circular cavity: (a) 3D scatter plot for a/b=0.5, 1.0, and 2.0, (b)–(d) planimetric shaded relief
plots for a/b=0.5, 1.0, and 2.0, respectively

Table 2 Parameters for SIF with non-radial crack

a/b a

0.5 2 mm
1.0 4 mm
2.0 8 mm

Table 3 SIF With varying model sizes

Length change Height change Width change

h

a + b
=

w

a + b
= 10

l

a + b
=

w

a + b
= 10

h

a + b
=

l

a + b
= 10

l

a + b % Error
h

a + b % Error

w

a + b % Error

10 1.13 10 1.13 10 1.13
7.5 4.27 7.5 1.66 8.415 1.22
5 5.88 5 0.98 6.83 1.39
2.5 27.81 2.5 9.29 5.245 2.87
− − − − 3.66 2.51
− − − − 2.075 5.85
− − − − 1.4375 5.68
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appropriate mesh density. However, if the crack is much bigger than
the cavity (or vice versa), then the total number of elements required
in order to model the cavity and crack would be impractical.
From Eqs. (2) and (11) in Ref. [3], it is calculated that the normal-

ized SIF asymptotically approaches 0.701 as (a+ b)/b tends to infin-
ity. Furthermore, the upper bound of the normalized SIF is 0.9186
with (a+ b)/b approximately equal to 2. To get within 90% of 0.701
(i.e., 0.736), the crack length and cavity radius would need to be 10
times the cavity radius. The (a+ b)/b increases to 24 and 740 to get
within 95 and 99%, respectively.

5 Conclusion
A semi-analytical method was introduced to treat cavity-crack

interaction problems under antiplane loading. Both COD and SIF
are provided in a series solution. As a consequence of the singular
nature of eigenfunctions that enclose the crack, low computational
requirements allow for fast exploration of initial trial calculations
and parametric studies, with minimal matrix manipulations.
To further explore more general cavity–crack problems, an

XFEM model was developed. A parametric study was conducted
to look at the effects of the size, location, and orientation of the
cavity and crack; the following are the pertinent findings:

(1) The normalized SIF in smaller a/b is more sensitive to
changes in α and β. The opposite is true for SIF (not
normalized).

(2) The normalized SIF does not necessarily increase with bigger
a/b. For big α and small β, the normalized SIF increases with
bigger a/b. For small α and big β, the normalized SIF
decreases with bigger a/b.

(3) The SIF is more sensitive to changes to α for lower a/b.

A study was conducted to look at the validity of using 2D or 3D
models for different types of problems. For 3D FE models attempt-
ing to solve infinite body mode III problems, the width of the model
does not have much impact on the accuracy of the SIF. The SIF is
most sensitive to the length of the model. For accurate results, the

width, height, and length should be approximately 4, 5, and 10
times (a+ b), respectively. In addition, it was shown that a cavity
and crack under a non-orthogonal load can be resolved into the
orthogonal components and solved individually with a 2D model.
For future work that can improve upon the study, the semi-

analytical method can be generalized to solve problems that
include non-radial cracks, inclusions, multiple cracks, and gaps
between the cavity and crack. Further work is also needed to
expand this study into the dynamic response from antiplane shear
waves.

Acknowledgment
The authors would like to thank John and Wen Su for their gen-

erous contributions. The opinions presented herein are solely those
of the authors.

Funding Data

• This research is supported by the John and Wen Su Term
Research Acceleration Fund, and also by Su Development.

Conflict of Interest
There are no conflicts of interest.

Data Availability Statement
The authors attest that all data for this study are included in the

paper.

Appendix A
When the polar coordinate (r1, θ1) is to be rewritten in terms of (r,

θ), the start coordinate (rs, θs) and the end coordinate (re, θe) are
regarded as (r1, θ1) and (r0, θ0 ), respectively. This implies that
the subscripts s and e are taken as 1 and 0, respectively. Based on
Eqs. (10) and (11), we have

r1 = Υ(r, θ) = [r2 + 2(a + b)r cos θ + (a + b)2]1/2 (A1)

θ1 = Θ(r, θ) = tan−1
r sin θ

r cos θ + (a + b)

[ ]
(A2)

Appendix B
In Eqs. (24)–(26), the pertinent functions are listed as follows:

Is1p,n = −pap
∫π
−π

sin [ pΘ(b, θ1)]
Υ(b, θ1)2

Υ′(b, θ1)

Υ(b, θ1) p−1
sin(nθ1)dθ1 (B1)

Isp,n =
8p(−1) p−n

(2n + 1)2 − (2p)2
(B2)

Î
s2
p,n = −pbp

∫π
−π

sin [ pΘ(a, θ)]
Υ(a, θ)2

Υ′(a, θ)

Υ(a, θ) p−1
sin

2n + 1
2

θ

( )
dθ (B3)

Kq,n =
2n
π

∑∞
p=0

Isn,pI
s
p,q

2p + 1
− πδq,n

−
b

π

∑∞
p=1

Is1n,pI
s2
p,q

p
+
2ab
π2

∑∞
p=0

Isp,q
2p + 1

∑∞
j=1

Is1n,j Î
s2
j,p

j
(B4)

Fig. 9 Non-orthogonal loading

Table 4 2D and 3D Mode III SIF for non-orthogonal loading

Angle (deg) 3D FE (Sih, 1963) % Difference

0 25.74 25.07 2.69
26.57 23.02 22.42 2.68
45.00 18.20 17.72 2.68
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Hq =
τ∞

μ
sin α δ1,qπa + b

∑∞
p=1

δ1,p
p

Î
s2
p,q −

2a
π

∑∞
p=0

Is1,pI
s
p,q

2p + 1
−
2ab
π

∑∞
p=0

Isp,q
2p + 1

∑∞
j=1

δ1,j
j
Î
s2
j,p

( )[ ]
(B5)

Is2p,q = bp
∫π
−π

sin [ pΘ(a, θ)]
Υ(a, θ)p

sin(qθ)dθ (B6)

where the primes stand for differentiation with respect to the argu-
ments of corresponding functions.
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