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Abstract

This paper investigates the impulse response of a longitudinally vi-
brating rod with a mass-damper-spring termination. The equations
of motion of the system are derived using Lagrange’s method. The
vibration of the rod consists of rigid-body and elastic motions. The
impulse response is predicted with a particular solution method which
constructs the response as the summation of the solution satisfying
homogeneous boundary conditions and a particular solution dealing
with non-homogeneous boundary conditions. The particular solution
method transforms the original partial differential equation to dis-
crete dynamic systems represented in a state-space form. The tran-
sient and total impulse responses at selected locations on the rod are
studied in detail. The vibration reduction of the rod by tuning the
mass-damper-spring system is discussed with the help of root locus
with respect to the mass, damping and stiffness parameters. The tun-
ing of the mass-damper-spring system can change coupling between
the rigid-body and elastic motions, which in turn can significantly
affect the response of the rod. The method of particular solution is
validated through the error analysis and response comparison of a
rod with free-free boundary conditions.

©2023 L&H Scientific Publishing, LLC. All rights reserved.

1 Introduction

The dynamic response of structures with viscous boundary conditions has received considerable at-
tention in recent years. Such systems have important applications in vibration isolation [1], sound
absorption [2], boundary control [3]. For example, the sound propagation in a Helmholtz resonator
can be modeled through the longitudinal vibration of a rod with a viscous termination [4]. The accu-
rate prediction of the response in such a system is of great significance to the optimal design of the
resonator. However, obtaining its response is an onerous task despite the simplicity of the system.
This is because the viscous boundary condition will lead to a non-self-adjoint boundary value problem
whose eigenfunctions are complex and non-orthogonal. The non-orthogonality of eigenfunctions will
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complicate the solution procedure of the traditional method of eigenfunction expansion. This paper
presents a particular solution method to deal with this issue.

Many efforts have been devoted to studying such structural systems with viscous boundary con-
ditions since the late 1980s. Physically, the viscous boundary can be considered as the combination
of absorptive and reflective boundaries. Based upon this idea, in 1988, Spiekermann and Radcliffe [4]
investigated the acoustic response in a one-dimensional tube with a damped boundary by decomposing
it into the summation of propagating and standing waves associated with absorptive and reflective
boundaries. However, the total response from this approach may not satisfy the original boundary
conditions. One year later, Singh [5] presented a method of complex eigenvalue analysis through a
longitudinally vibrating rod fixed at one end and with a damped boundary condition at the other
end. Following this work, Prater and Singh [6] developed a numerical algorithm to determine the com-
plex eigenvalues and eigenfunctions in a beam structure with arbitrarily distributed viscous dampers.
Around 2000, Gürgöze and collaborators [7–9] adopted this approach to study the complex modes of
longitudinally vibrating rods with secondary systems in-span.

However, the eigenfunctions with viscous boundary conditions are non-orthogonal, which poses
considerable difficulties in computing the time response with the traditional eigenfunction expansion
method. In 1990, Hull et al [10] reported a technique that augments the spatial interval from [0,L]
to [−L,L] in which orthogonal eigenmodes exist. Therefore, the modal expansion approach can be
applied. Using the same method, Hull [11] obtained a closed-form solution of the longitudinal response
of a bar with a viscous boundary condition. Alternatively, Jayachandran and Sun [12], inspired by
the work on non-self-adjoint operators in the applied mathematical community [13–20], addressed the
non-orthogonality of eigenfunctions by transforming the problem into a self-adjoint boundary value
problem in a Hilbert space. The modal expansion in the Hilbert space was used to formulate the
adaptive-passive control of a 1-D acoustic system. Based upon a similar idea, Oliveto et al [21] in 1997
developed a complex modal expansion method by defining new orthogonality conditions. Following
this work, Svedholm et al [22] investigated the vibration of a damped beam with general boundary
conditions under a moving load, and Alati et al [23] studied a one-dimensional rod with arbitrary
viscous damping devices. In the early 2000s, Sorrentino et al [24,25] proposed another complex modal
expansion method using a state-space method in conjunction with a transfer matrix method. In 2013,
Jovannovic [26] presented a novel approach that reconstructs the differential operator of equations of
motion using a state-space form. In the state-space representation, a bi-orthogonal vector space can be
defined, which permits a Fourier series representation of the solution. The methods based on Green’s
functions have also been used to predict the response of structures with viscous boundary conditions.
In 2011, Jovannovic and Koshkin [27] investigated a longitudinally vibrating bar with dampers at two
ends and in-span. They solved the Green’s function of the system in the Laplace domain and used
series expansion to approximate the inverse Laplace transformation of the Green’s function. In 2016,
Failla [28] presented the frequency response of beams and plane frames with external and internal
viscoelastic dampers. This work adopted a generalized function approach that gives the closed-form
solution of dynamic Green’s functions. However, as pointed out in [2], the solution based on Green’s
functions can lead to significant error at boundaries.

Recently, there is a growing interest in railway-bridge dynamics with soil-structure interactions,
due to the development of high-speed trains. Studies [29,30] have shown that the bridge response can
be considerably affected by soil medium and foundation type, which can be modeled as viscoelastic
boundary conditions. In 2020, Hirzinger et al [31] performed the dynamical analysis of a mass-spring-
damper terminated, damped beam subjected to a moving train represented by a mass-spring-damper
system. Through the complex modal expansion, the structural dynamics with bridge-soil interaction is
represented by ODEs in state space, coupled with a train subsystem. The dynamical response was then
computed numerically. One year later, König et al [32] extended this model by considering a multiple
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degree-of-freedom train model including the body, two bogies, and four axles. In 2022, König et al [33]
further studied the effect of geometric track irregularities. Meanwhile, Zangeneh et al [34] predicted
the free vibration of a viscoelastically supported beam under a moving load using a lumped two-degree-
of-freedom model. Qiao and Rahmatalla [35] proposed a method to identify the viscoelastic boundary
conditions from the dynamic response of a beam subject to a moving loading using the complex modal
analysis in conjunction with a pattern-search optimization method.

This study focuses on the impulse response of a 1-D longitudinally vibrating rod with a free end at
left and a mass-damper-spring termination at right (see Fig.1). The boundary conditions permit the
rigid-body motion of the rod that generates an instant response at the right end after impact. The
consequence of this is that two waves, i.e. the impulse wave produced at the left end and the response
wave generated by the termination at the right end, will propagate along the rod simultaneously and
reflect at both ends. To authors’ best knowledge, such dynamics due to impulsive loading and m-c-k
termination is not well studied in the literature.

The goal of this research is to develop a data-driven approach to identify termination conditions
in terms of the parameters m, c and k such that the response at the termination is minimized. To
this end, an analytical predictor that can give accurate solutions inside the rod as well as at the
termination is also of significance. Using the predictor, one can generate abundant training data in
the parameter space without performing costly experiments or using computationally expensive finite
element methods. This paper will pave the way for our following research on applying data-driven
methods for the optimization of termination design in such a system.

Although extensive research has been conducted on the dynamic response of elastic rod with viscous
boundary conditions, few experimental study of such a system has been performed, partly because of
the difficulty to build a damper without the inertial and stiffness effect of the device. This paper
explicitly investigates the effects of inertial, damping and stiffness on the impact response of the rod,
and will provide a theoretical foundation for experimental studies in the future. Furthermore, the study
of this paper can lead to creation of new configurations of the well-known Hopkinson bar experimental
setup. As a consequence, new research topics and applications based on the Hopkinson bar with various
terminations can be developed in the future.

This paper will proceed with the modeling of the system in Fig.1 using Lagrange’s method. We
will split the rigid-body and elastic motions from the rod response such that their interactions can be
represented explicitly in the equations of motion. To solve for the impulse response of the system, we will
apply a particular solution method that constructs the response as the summation of a series solution
of homogeneous boundary value problem and a particular solution satisfying the non-homogeneous
boundary condition. This method has been demonstrated (see [2, 36]) to be effective in predicting the
response of vibration of linear and nonlinear continuous systems. Through this method, the original
partial differential equation will be transformed into a discrete dynamic system represented in a state-
space form, subject to the initial conditions generated by the impact loading. We will present impulse
responses at specific locations on the rod. The solution can perfectly capture the dynamics of the
system under the impact loading. We will then use the same approach to approximate the solution
with a damped boundary condition. We will demonstrate the vibration reduction of the system with
the help of root locus with respect to the mass-damper-spring parameters. Finally, we will validate
the particular solution method by the error analysis and response comparison of a rod with free-free
boundary conditions.

2 Mathematical model

A uniform elastic rod with a mass-damper-spring system attached to its right end is shown in Fig.1.
The rod is at rest initially and excited by an impact loading applied to its free end. The displacement
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Fig. 1 A uniform elastic rod with a mass-damper-spring system at the right termination. An impact loading
f (t) is applied at the left free end. According to the convention in Structural Dynamics [37, 38], x (0 ≤ x ≤ L) is
the material coordinate attached to the particle of the rod. All the displacements u(x, t) and uM(t) are referenced
to an inertial frame.

of the rod and mass are denoted by u(x, t) and uM(t), respectively. Let u(x, t) = ur(t)+ ue(x, t) where
ur(t) represents the rigid-body motion and ue(x, t) represents the elastic motion of the rod with non-
zero frequency. It should be noted that the rigid-body motion ur(t) is a mode of rod response with
zero frequency. Separation of the rigid and elastic motions only serves the purpose to streamline the
programming later. At the right end, we have the continuity of displacement as uM(t) = u(L, t) =
ur(t)+ue(L, t).

The kinetic and potential energies of the system including the inertial and stiffness elements at the
boundary x = L are given by
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where ρ , A, E and L are the density, cross-section area, Young’s modulus, and length of the rod. M, c
and k represent the mass, damping and stiffness at the termination.

It is assumed that the impact loading is applied to both the rigid-body and elastic motion. There-
fore, the virtual work done by the impact loading over the virtual displacement δu(x, t) and by the
damper at x = L is given by

δW = f0δ (t)δur +

ˆ L

0
ε f0δ (x)δ (t)δue(x, t)dx− cu̇M(δur +δue(L, t)), (3)

where ε is an infinitesimal number used to remove the singularity introduced by the impact loading as
t → 0 and x → 0.

The Hamilton’s principle reads ˆ t2

t1
(δL+δW )dt = 0, (4)
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where L = T −V . Substituting Eqs. (1), (2) and (3) into Eq. (4) and balancing the coefficients of
variations yield the equations of motion

(ρAL+M)ür + cu̇r + kur

+ρA
ˆ L

0

∂ 2ue

∂ t2 dx+Müe(L, t)+ cu̇e(L, t)+ kue(L, t) = f0δ (t), (5)

ρA(ür +
∂ 2ue

∂ t2 ) = ε f0δ (x)δ (t)+EA
∂ 2ue

∂x2 , (6)

and boundary conditions

EA
∂ue

∂x
(0, t) = 0, (7)

EA
∂ue

∂x
(L, t) =−M(ür + üe(L, t))− c(u̇r + u̇e(L, t))− k(ur +ue(L, t)). (8)

3 Method of particular solution

The rod vibration problem in Section 2 for the time t ≥ 0+ right after the impact loading can be recast
as

ρALür +Mür + cu̇r + kur +ρA
ˆ L

0

∂ 2ue(x, t)
∂ t2 dx

+Müe(L, t)+ cu̇e(L, t)+ kue(L, t) = 0, (9)

c2
p

∂ 2ue

∂x2 = ür +
∂ 2ue

∂ t2 , (10)

with boundary conditions

EA
∂ue(0, t)

∂x
= 0, (11)

EA
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∂ 2ue

∂ t2 (L, t))

− c(u̇r +
∂ue

∂ t
(L, t))− k(ur +ue(L, t)). (12)

The initial conditions can be obtained from the following,

ρALu̇r(0)+ρA
ˆ L

0

∂ue

∂ t
(x,0)dx+M (u̇r(0)+ u̇e(L,0)) = f0, (13)

c2
p

∂ue

∂x
(0,0)+

1
ρA

f0 = u̇r(0)+
∂ue

∂ t
(0,0), (14)

ur(0)+ue(x,0) = 0, with 0 ≤ x ≤ L, (15)

∂ue

∂ t
(x,0) = 0, with 0 < x ≤ L, (16)

where cp =
√

E/ρ is the speed of the longitudinal stress wave traveling in the rod. Details on how to
obtain these conditions can be found in the appendix.

We assume that the elastic motion consists of a homogeneous solution uh(x, t) and a particular
solution up(x, t) such that

ue(x, t) = uh(x, t)+up(x, t). (17)



174 S. Y. Xing, J. Q. Su / Journal of Vibration Testing and System Dynamics 7(2) (2023) 169–186

The particular solution up(x, t) is constructed to satisfy the non-homogeneous boundary condition in
Eq. (12). As a consequence, the homogeneous solution uh(x, t) only needs to satisfy homogenous bound-
ary conditions, i.e. free-free boundary conditions. But, the governing equation for uh(x, t) becomes
non-homogeneous. However, the boundary value problem to determine uh(x, t) is now self-adjoint.
Therefore, the eigen-functions of this self-adjoint problem are the best choice to represent the solution
uh(x, t) as shown below, together with a choice of the particular solution up(x, t).

uh(x, t) =
n

∑
i=1

φi(x)yi(t), (18)

up(x, t) = (
x
L
)mα(t). (19)

where m > 1 is an integer to be determined, φi(x) is the i-th elastic mode function of a rod with free-free
boundary conditions such that ˆ L

0
φi(x)φ j(x)dx = δi j. (20)

It is noted that the rigid body mode of the free-free rod is not included in Eq. (18) for uh(x, t) because
the rigid body motion ur(t) is already included in the total response u(x, t) of the rod. Substitution of
Eqs. (17) - (19) into the boundary condition at x = L in Eq. (12) yields

n

∑
i=1

[Mÿi(t)+ cẏi(t)+ kyi(t)]φi(L)+Mür(t)+ cu̇r(t)+ kur(t)

+Mα̈(t)+ cα̇(t)+ (k+EAm/L)α(t) = 0.
(21)

It is noted that this boundary condition at x = L does not contain the homogeneous part uh(x, t) of the
elastic response. Instead, uh(x, t) satisfies free-free boundary conditions, as pointed out earlier.

Substitution of Eqs. (17) - (19) into Eq. (9) yields

ρALür +[Mür(t)+ cu̇r(t)+ kur(t)]+ρAφ̄0α̈(t)

+
n

∑
i=1

φi(L) [Mÿi(t)+ cẏi(t)+ kyi(t)]+Mα̈(t)+ cα̇(t)+ kα(t) = 0,
(22)

where

φ̄0 =

ˆ L

0
(

x
L
)mdx. (23)

Substituting Eq. (21) into Eq. (22), we transform Eq. (22) into

Lür + φ̄0α̈(t)−m(m−1)/c2
pφ̂0α(t) = 0, (24)

where

φ̂0 =

ˆ L

0

xm−2

Lm dx. (25)

Substitution of Eqs. (17) - (19) into Eq. (10) yields

n

∑
i=1

φi(x)
[
ω2

i yi(t)+ ÿi(t)
]
+ ür(t)

−m(m−1)
c2

p

Lm xm−2α(t)+ (
x
L
)mα̈(t) = 0,

(26)
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where ωi = cpκi and κi = iπ/L. Multiplying Eq. (26) by φi(x) and integrating the equation over the
length of the rod yields

ÿi(t)+ω2
i yi(t)−m(m−1)c2

pφ̂iα(t)+ φ̄iα̈(t) = 0, (27)

where

φ̄i =

ˆ L

0
(

x
L
)mφi(x)dx, (28)

φ̂i =

ˆ L

0

xm−2

Lm φi(x)dx, (29)

with i = 1,2, · · · ,n.
The left boundary condition is automatically satisfied. Now, we transform the equations of motion

(1) and (2) into a set of ordinary differential equations (ODEs) defined through Eqs. (21), (24) and
(27). To solve for the set of ODEs, we define a vector of generalized coordinates

z = [α ,ur,y1, · · · ,yn]
T . (30)

Eqs. (21), (24) and (27) can be rewritten in the matrix form as

Mz̈+Cż+Kz = 0, (31)

where

M =

[
M Mφφφ(L)T

φ̄φφ L

]
,C =

[
c cφφφ(L)T

0 0

]
,

K =

[
k+EAm/L kφφφ (L)T

−m(m−1)c2
pφ̂φφ ωωω

]
,

(32)

and

φφφ (L) = [1,φ1(L),φ2(L), · · · ,φn(L)]T , (33)

φ̄φφ = [φ̄0, φ̄1, φ̄2, · · · , φ̄n]
T , (34)

φ̂φφ = [φ̂0, φ̂1, φ̂2, · · · , φ̂n]
T , (35)

ωωω = diag(0,ω2
1 ,ω2

2 , · · · ,ω2
n ), (36)

L = diag(L,1,1, · · · ,1). (37)

Define the state vector Z = [z, ż]T . The state-space representation of Eq. (31) reads

Ż = AZ, (38)

where

A =

[
0 I

−M−1K −M−1C

]
. (39)

The formal solution of Eq. (38) reads

Z(t) = eAtZ0, (40)

where Z0 is the initial condition.
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3.1 Initial condition Z0

Substitution of Eqs. (17) - (19) into the initial conditions in Eqs. (9) - (12) yields

ρALu̇r0+Mu̇r0 = f0, (41)

u̇r0 +
n

∑
i=1

φi(0)ẏi0 =
f0

ρA
, (42)

ur0 +
n

∑
i=1

yi0 +(
x
L
)mα0 = 0, 0 ≤ x ≤ L, (43)

n

∑
i=1

φi(x)ẏi0 +(
x
L
)mα̇0 = 0, 0 < x ≤ L, (44)

where ur0 = ur(0), α0 = α(0) and yi0 = yi(0). Because Eq. (43) holds for an arbitrary point on the rod,
we obtain

ur0 = α0 = y j0 = 0, j = 0,1, · · · ,n. (45)

Hence, before impact, we have z0 = 0.
Eq. (41) yields

u̇r0 = f0/(ρAL+M). (46)

Since we consider an impact excitation which can lead to numeric singularity, we propose a least
squares solution. We uniformly sample N − 1 points along the rod denoted as xk = kL/(N − 1) for
k = 1,2, · · · ,N −1 and rewrite Eq. (44) as

n

∑
i=1

φi(xk)ẏi(0)+ (
xk

L
)mα̇(0) = 0. (47)

Let ż0 = [ȧ0, ẏ10, · · · , ẏn0]. Using the least mean squares method for Eqs. (42) and (47), we obtain

ż0 = (ΦΦΦT ΦΦΦ)−1ΦΦΦT F, (48)

where F = [ f0/(ρA)− u̇r0,0,0, ...0]T and

ΦΦΦ =

⎡
⎢⎢⎢⎣

0 φ1(0) φ2(0) · · · φn(0)
(x1/L)m φ1(x1) φ2(x1) · · · φn(x1)

...
...

...
. . .

...
(L/L)m φ1(L) φ2(L) · · · φn(L)

⎤
⎥⎥⎥⎦ . (49)

Hence, we completely determine the initial condition Z0 for Eq. (38).

4 Numerical examples

In this section, we will investigate the impact response of the rod with a mass-damper-spring termina-
tion in Fig.1 by making use of the analytical solution presented earlier. The response will be predicted
with 200 elastic modes because it is sufficient to capture the dynamic response of the rod according
to the numerical error analysis in Sec. 5. The displacement, velocity, and strain responses at selected
locations on the rod will be studied. The impact loading applied at the free end produces the initial
strain and velocity impulse. The rod response consists of two waves: the wave generated by the impact
force at the left end and the reflected wave generated by the response at the right end. Because of the
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Table 1 The parameters of the rod under investigated.

Parameter Value Parameter Value

Young’s Modulus, E, [Gpa] 10 Length, L, [m] 2

Mass, M, [kg] 0.5 Area, A, [m2] 0.1

Stiffness, k, [N/m] 10 Damping, c, [Ns/m] 2

Density, ρ, [kg/m3] 10 Impulse force, f0, [N] 1

finite length of the rod, these two waves will be reflected back and forth leading to complex dynamical
phenomena. The responses with traveling impulses at selected locations of the rod will be examined.

We also apply the proposed solution method to a rod with a viscous boundary condition. This
problem has received much attention in past decades. Furthermore, the effect of the m-c-k termination
on vibration modes of the rod will be discussed through the eigenvalue analysis of the state equation
(38). We present the root loci of selected modes with respect to the mass, spring and damping coef-
ficients, and numerically demonstrate the possibility to maximize the system damping with a proper
choice of the mass-damper-spring termination.

4.1 Response with wave phenomenon

The parameters of the rod are listed in Table 1. Note that L/cp is the time for the compressive stress
wave to travel the length of the rod. Consider a normalized time defined by τ = t/(L/cp). In the
transient response analysis, we focus on the response over a time period when the compressive stress
wave travels on the rod back and forth for the first three times. The transient impulse responses of the
rod at x = 0.25L and x = L over this short time interval are shown in Fig.2.

The spikes in the velocity and strain responses at τ = 2.75 and at various time instances τ =
0.25,0.75,1,1.25,1.75,2,2.75 and 3 clearly indicate the arrival of the forward and reflected impulsive
wave response to the initial impact at x = 0. Since the spikes are narrow in time, the displacement
remains a smooth function of time. On the other hand, the strain response at x = L shows impulsive
spikes only at time instance τ = 1,3,5 when the compressive stress wave reaches the end of the rod.
Its velocity is less influenced by the compressive stress wave because of the large inertial of the m-c-k
termination.

The displacement responses of the rod at x = 0.25L and x = L over a longer time span are presented
in Fig.3. It should be noted that the internal damping of the rod is neglected. The responses decay
due to the damping in the m-c-k termination at x = L.

4.2 Response with a viscous boundary condition

When only a damper is mounted to the right end, the eigenvalue problem becomes non-self-adjoint.
This problem has been studied extensively in the literature. To the authors’ best knowledge, the
impulse response of such a problem has not been well studied. Here, we study the impulse response
of the rod with a damper and very small mass at x = L, subject to an impact loading at x = 0. The
parameters of the rod are the same as those in Table 1. The parameters for the m-c-k termination are
c = 2 Ns/m and k = 0 N/m. The different values of the mass M are considered in the numerical studies.

Fig.4 shows the strain and velocity responses at the right end of the rod over a short time span. It
can be seen from the figure that the impulse arrives at the right end when τ is an integer, as is the case
in the earlier example. The velocity remains constant between impulses indicating that the damping
force balances the internal elastic force at the right end. The strength of the impulses decreases quickly
when the wave travels on the rod due to the damping at the right end. As the mass decreases, the
response to the impulse at x = L becomes quicker with sharper peaks. We should point out that as
M → 0, the response of the system converges to that of the rod with only a damper at the right end.
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Fig. 2 The transient response of the rod at x = 0.25L (Left column: (a), (c), (e)) and x = L (Right column: (b),
(d), (f)). Top row: Velocity. Middle row: Strain. Bottom row: Displacement. LTW: left traveling wave. RTW:
right traveling wave. RB: the time instants when a wave reaches to the right boundary. τ = t/(L/cp). n = 200.
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Fig. 3 The displacement response of the rod over a longer time span at (a) x = 0.25L and (b) x = L. n = 200.
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Fig. 4 The impact response of the rod with a damped boundary condition. n = 200.

4.3 Vibration reduction with termination design

It is understood that the m-c-k parameter values of the termination can change the vibration response
of the rod. One way to reveal their effects on the vibration response is to examine the eigenvalues of
the system. To this end, the root locus in control theory provides a handy tool [39]. Fig.5 shows the
root loci of the rod with respect to one of the three m-c-k parameters while the other two are fixed.
The m-c-k parameters and their ranges for each subplot of Fig.5 are listed in Table 2. Only the second
quadrant of the root locus is shown because it is symmetrical with respect to the real axis and the real
part of the eigenvalues is not positive.

As shown in Fig.5, the m-c-k termination has little influence on the eigenvalue associated with the
particular solution. It, however, significantly affects on the eigenvalues of the rigid-body mode. By
tuning the termination conditions, one can achieve underdamped, critically damped, and overdamped
response of the rigid-body motion. The change of rigid-body-mode eigenvalues will lead to different
couplings between the rigid-body and elastic modes. For example, with the increase of stiffness k in
Fig.5(c), the dominant coupling with the rigid-body mode will be transferred from the first elastic mode



180 S. Y. Xing, J. Q. Su / Journal of Vibration Testing and System Dynamics 7(2) (2023) 169–186

Real(�
i
)

Im
ag

(�
i)

(a)

Real(�
i
)

Im
ag

(�
i)

(b)

Real(�
i
)

Im
ag

(�
i)

(c)

Fig. 5 The root locus of the lower order dominate modes of the rod with respect to the m-c-k parameters. (a)
with respect to mass M. (b) with respect to damping c. (c) with respect to stiffness k. +: Particular solution.
�: Rigid-body mode. �: The 1st elastic mode. �: The 2nd elastic mode. �: The 3rd elastic mode. n = 200.

Table 2 The parameter settings for the root loci in Fig.5.

Subplot Variable Range Fixed Parameters

(a) M (0.01, 10) k = 10, c = 2

(b) c (0, 10) M = 0.5, c = 10

(c) k (0, 15) M = 0.5, c = 2

to the second mode, and so on. There exists a turning point on the root locus of every elastic mode. At
the turning point, the coupling between the elastic mode and the rigid-body mode becomes strongest,
leading to the smallest real part of the eigenvalue of the elastic mode. This property might be used
to maximize the decay rate of the response of the elastic modes. Fig.5 also suggests that there exist
finite ranges of m-c-k parameter values such that the largest damping for the system is achieved. The
responses of the rod at x = L and x = 1/4L as shown in Fig.6 indeed confirm that the vibration reduction
of the rod by means of the termination design is achievable. Further studies on how to optimize the
termination design will be reported in a separate work.
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Fig. 6 The rod vibration at x = L and x = 1/4L with different m-c-k terminations. Red dashed line: Initial
termination design with M = 0.1, c = 0.1 and k = 1. Black solid line: Better design with M = 2, c = 8 and k = 10.

5 Error analysis

In this section, we investigate the accuracy and convergence of the proposed particular solution method.
We first study the accuracy of the proposed solution by examining the error of the governing partial
differential equation when the proposed solution is applied to the equation. This is a common practice to
investigate the accuracy of approximate solutions when the exact solution or a highly reliable numerical
solution does not exist for comparison. Recall that the particular solution method guarantees the
satisfaction of all the boundary conditions. Hence, there is no boundary error to consider in this study.
Next, we compare the proposed solution with the existing analytical solution for a rod with free-free
boundary conditions.

5.1 Mean absolute error

We define an equation error for the rod in the domain 0 ≤ x ≤ L, and for the concentrated mass at x = L
when the computed solution is applied to the equations of motion.

ex(x, t,n) =
E
ρ

∂ 2ue

∂x2 − (ür +
∂ 2ue

∂ t2 ), 0 ≤ x ≤ L (50)

eL(t,n) = EA
∂ue

∂x
(L, t)+M(ür +

∂ 2ue

∂ t2 (L, t))

+ c(u̇r +
∂ue

∂ t
(L, t))+ k(ur +ue(L, t)), (51)

where n is the number of elastic modes included in the solution. Recall that the proposed particular
solution method incurs zero error at the boundaries. We define the following mean absolute error as a
measure of accuracy of the solution obtained with the proposed method.

e(n) =
1

Tf L

ˆ L

0

ˆ Tf

0
|ex(x, t,n))|dtdx+

1
Tf

ˆ Tf

0
|eL(t,n)|dt (52)

where Tf � 1 is a time that is sufficiently large. We have taken Tf = 10 seconds in the numerical
examples.

Fig.7 shows the mean absolute error e(n) as a function of n. The spatial integration of the mean
absolute error is computed by discretizing the rod evenly into 500 segments. The mean absolute error
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Fig. 7 Variation of the mean absolute error of the solution computed by the proposed method with the number
of elastic modes.

Table 3 Comparison of frequencies of the rod obtained by the proposed particular solution (PS) method with
the exact frequencies of the free-free rod. Frequency unit is radian per second. The zeroth order mode of the
free-free rod is the rigid body motion with zero frequency.

Mode No. i ωi by PS Method Exact ωi

0 0 0

1 1.5708 1.5708

2 3.1416 3.1416

3 4.712 4.712

4 6.2832 6.2832

5 7.8540 7.8540

200 314.16 314.16

drops monotonically as n increases, down from e(n) = 3.67×10−2 with n = 10 to e(n) = 7.875×10−3 with
n = 200. The convergence rate is relatively slow because the impulse response of strain and velocity of
the rod is not smooth and its approximation requires very fine resolution both in time and space.

5.2 A free-free rod

Next, we validate the particular solution method with an extreme case when only a tiny mass is attached
to the right end. This system is then close to the problem with free-free boundary conditions whose
exact solution is known. The rod parameters are the same as in Table 1 except for M = 1×10−8 and
k = c = 0.

The resonant frequencies of the system obtained by the particular solution method and those of the
free-free rod are listed in Table 3. The exact frequency of the free-free rod is

ωi =
nπ
l
, (53)

with i = 0,1,2, . . . . The frequencies for the rigid-body and elastic motions of the rod by the particular
solution method are identical to their exact counterparts. The frequency associated with the particular
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Fig. 8 The impulse response of the rod with almost free-free boundary conditions at x = 0.25L (Left column (a)
(c)) and at x = L (Right column (b) (d)). Top row: Velocity. Bottom row: Strain. n = 200.

solution α(t) is 222420 radian per second, 707 times larger than the frequency of the 200th elastic
mode. Such a high frequency is due to the extremely small mass M = 1×10−8. Its influence on the rod
dynamics is thus negligible.

The responses of the rod at x = 0.25L and x = 0.9L are presented in Fig.8. Because of the free-free
boundary conditions, between the arrival of impulses, the speed and strain of the rod remain constant.
Sharp changes of the velocity and strain occur when a left or right traveling impulse arrives. It is clear
that the dynamics of the impulse response with free-free boundary conditions is perfectly captured by
the proposed particular solution method.

6 Conclusions

In this paper, we have investigated the impulse response of an elastic rod with a mass-damper-spring
termination. Because the mass-damper-spring termination leads to a non-self-adjoint eigenvalue prob-
lem, we have solved this problem by using a particular solution method that constructs the solution of
the system as the combination of a solution satisfying homogeneous boundary conditions and a par-
ticular solution to satisfy the nonhomogenous boundary conditions. The advantage of this approach is
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that the particular solution can satisfy nonhomogenous boundary conditions exactly, and transform the
problem into a self-adjoint boundary value problem for the homogeneous part of the elastic response.
The transient and total impulse responses of the rod have been studied in detail. The vibration reduc-
tion of the rod by tuning termination conditions has been discussed with the help of root locus. It has
been showed that the termination can change the coupling between the rigid-body and elastic modes
which affects the vibration of the rod. The particular solution method has also been validated through
the error analysis and a comparison study of the vibration problem of a free-free rod.

Appendix

Initial conditions with impact loading

Consider an impact loading f (x, t) = f0δ (t) + ε f0δ (x)δ (t) applied to both the rigid-body and elastic
motion. Herein, ε is an infinitesimal number used to remove the singularity due to the delta functions
as t → 0 and x → 0. The equations of motion read

ρALür +Mür + cu̇r + kur +ρA
ˆ L

0

∂ 2ue(x, t)
∂ t2 dx

+Mu̇e(L, t)+ cu̇e(L, t)+ kue(L, t) = f0δ (t), (A1)

c2
p

∂ 2ue

∂x2 + ε
1

ρA
f0δ (x)δ (t) = ür +

∂ 2ue

∂ t2 . (A2)

Integrating (A1) with respect to t from 0− to 0+, we obtain

ρALu̇r(0)+ρA
ˆ L

0

∂ue

∂ t
(x,0)dx+M (u̇r(0)+ u̇e(L,0)) = f0, (A3)

where we use the fact that the system is static before the impact. Integrating (A2) with respect to x
from 0 to ε yields

c2
p

∂ue

∂x
(ε , t)+

1
ρA

ε f0δ (t)
ˆ 𝜖

0
δ (x)dx = ürε +

∂ 2u
∂ t2 (ε/2, t)ε , (A4)

where we use the mean-value theorem to evaluate the following integral

ˆ ε

0

∂ 2ue

∂ t2 dx =
∂ 2ue

∂ t2 (ε/2, t)ε . (A5)

Integrating (A4) with respect to t from 0 to ε yields

c2
p

∂ue

∂x
(ε ,ε/2)ε +

1
ρA

ε f0 = u̇r(ε)ε +
∂ue

∂ t
(ε/2,𝜖)ε . (A6)

Taking the limit ε → 0, we obtain

c2
p

∂ue

∂x
(0,0)+

1
ρA

f0 = u̇r(0)+
∂ue

∂ t
(0,0). (A7)

In summary, the initial conditions with impact loading read

ρALu̇r(0)+ρA
ˆ L

0

∂ue

∂ t
(x,0)dx+M (u̇r(0)+ u̇e(L,0)) = f0, (A8)
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c2
p

∂ue

∂x
(0,0)+

1
ρA

f0 = u̇r(0)+
∂ue

∂ t
(0,0), (A9)

ur(0)+ue(x,0) = 0, for 0 ≤ x ≤ L, (A10)

∂ue

∂ t
(x,0) = 0, for 0 < x ≤ L. (A11)
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